REPORT

Supplemental Remedial Investigation Former IFG Facility and Ley Creek Deferred Media

General Motors Corporation Syracuse, New York

April 2000

REPORT

Supplemental Remedial Investigation Former IFG Facility and Ley Creek Deferred Media

General Motors Corporation Syracuse, New York

James R. Heckathorne, P.E. Vice President

April 2000

5000 Brittonfield Parkway P.O. Box 4873 Syracuse, NY 13221

CERTIFICATION

The on-site observation of the Supplemental Remedial Investigation (RI) activities was performed under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I hereby certify that all the activities that comprised the Supplemental RI were performed in accordance with the Department-approved Final Supplemental RI /FS Work Plan (O'Brien & Gere Engineers, Inc. - October 1999) and modifications agreed upon by the Department as documented herein.

This certification is made to satisfy the requirement set forth at Paragraph III.D of the Order on Consent between General Motors Corporation and the New York State Department of Environmental Conservation (Index # D-7-0001-97-06).

By:

James R. Heckathorne, P.E.

Vice President

O'Brien & Gere Engineers, Inc.

Contents

Executive summary vii				
1.	Introduction	1		
	1.1. Objectives and overview			
	1.2. Site description and history			
	1.2.1. Property			
	1.2.2. Facility manufacturing operations			
	1.2.3. Facility description			
	1.2.4. Facility regulatory programs			
	1.2.5. Environmental investigations			
	1.2.6 Additional NYSDEC data collection activities			
2.	Site investigations	27		
	2.1. Soil			
	2.1.1. Soil boring installation			
	2.1.2. Trench excavation			
	2.1.3. Soil sampling and analysis			
		11		
		11		
		18		
	2.2.3. Permeability measurements	18		
		18		
		19		
	2.3. Storm water	52		
	2.3.1. Sewer televising			
	2.3.2. Storm water sampling and analysis			
	2.4. Ley Creek 6			
	2.4. 1. Surface water sampling and analysis			
	2.4.2. Sediment sampling and analysis			
	2.4.3. Fish sampling and analysis			
3.	Results of investigative activities	55		
	3.1. Hydrogeologic conditions	55		
	3.1.1. Geologic setting			
	3.1.2. Site geology			
	3.1.3. Site hydrogeology			
	3.2. Soil			

i

3.2.1. Background soils	. 72
3.2.2. Manufacturing building subsurface	. 72
3.2.3. Southeast property area	
3.2.4. Industrial waste treatment plant area	
3.2.5. Former thinner tanks area	
3.2.6. Northeast property area	
3.2.7. Northern property area	
3.2.8. Southwest property area	101
3.3. Ground water	
3.3.1. Volatile organic compounds	105
3.3.2. Semivolatile organic compounds	111
3.3.3. Polychlorinated biphenyls	
***************************************	112
3.3.4. Metals	113
3.4. Storm water	113
3.4.1. Main storm sewer system	114
3.4.2. Eastern storm sewer system	117
3.5. Ley Creek	118
3.5.1. Surface water sampling and analysis	118
3.5.2. Sediment sampling and analysis	120
3.5.5. Fish	126
4. Remedial and decommissioning activities	129
4.1. Remedial activities	129
4.1.1. Oil/water collection sump system	129
4.1.2. Storm sewer rehabilitation	130
4.1.3. Thinner area ground water recovery system	130
4.1.4. Surface impoundment closure	131
4.1.5. Ley Creek relief interceptor sewer area IRM program	131
4.2. Decommissioning activities	134
4.3. Sewer televising IRM	136
-	
5. Remedial investigation conclusions	137
References	153

List of Tables

Located in text

- 2-4 Storm outfall assessment sampling schedule
 2-5 Storm outfall assessment sampling summary
 3-39 1996 NYSDEC sediment organic concentration ranges
- 3-40 1996 NYSDEC sediment inorganic concentration ranges

Located at end of the report

- 2-1 Soil boring installation/sample summary Phase II ESA soil boring summary 2-2 2-3 Ground water monitoring well specifications 2-6 Ley Creek surface water sampling summary 2-7 Ley Creek sediment sampling summary 2-8 Fish sampling information - 1992 Ley Creek PCB Dredgings Site 3-1 Ground water elevation data summary 3-2 Permeability/hydraulic conductivity data summary 3-3 Subsurface soil field screening summary 3-4 Summary of source area characterization 3-5a Surface soil data summary - Detected PCB data 3-5b Subsurface soil data summary - Detected PCB data
- 3-6 Soil data summary Detected oil and grease and petroleum hydrocarbon data
- 3-7 Soil data summary Detected metals data
- 3-8a Soil data summary Detected Method 8021 VOC data
- 3-8b Soil data summary Detected Method 8260 VOC data
- 3-9 Soil data summary Detected Method 8270 SVOC data
 3-10 Soil data summary detected 8290 dioxin and furan data
- 3-11 Soil data summary 8290 dioxin and furan toxicity equivalent quotient (TEQ) data
- 3-12a Ground water data summary Detected Method 8021 VOC data
- 3-12b Ground water data summary Detected Method 8260 VOC data
- 3-13 Ground water data summary Detected Method 8270 SVOC data
- 3-14 Ground water data summary Detected PCB data
- 3-15 Ground water data summary Detected metals data
- 3-16 Storm sewer data summary
- 3-17 Outfall 003 water and sediment data 1992 RI
- 3-18 1996 NYSDEC sampling VOC surface water data
- 3-19 1996 NYSDEC sampling SVOC surface water data
- 3-20 1996 NYSDEC sampling inorganic surface water data
- 3-21 1996 NYSDEC sampling PCB sediment data
- 3-22 1996 NYSDEC sampling VOC sediment data

List of Tables (continued)

3-23	1996 NYSDEC sampling - SVOC sediment data
3-24	1996 NYSDEC sampling - inorganic sediment data
3-25	1996 NYSDEC sampling - TOC sediment data
3-26a	Surface water data summary - Detected Method 8021 VOC data
3-26b	Surface water data summary - Detected Method 8260 VOC data
3-27	Surface water data summary - Detected Method 8270 SVOC data
3-28	Surface water data summary - Detected Method 8082 PCB data
3-29	Surface water data summary - Detected Method 6010/7470/9010B
	metals and cyanide data
3-30a	Sediment data summary - 8021 VOC data
3-30b	Sediment data summary - 8260 VOC data
3-31	Sediment data summary - 8270 SVOC data
3-32	Sediment data summary - 8082 PCB data
3-33	Sediment data summary - 6010/7470/9010B/9014 metals and
	cyanide data
3-34	Sediment data summary - TOC data
3-35	Sediment data summary - dioxin and furan data
3-36	Sediment data summary - dioxin and furan TEQ data
3-37	Fish data - 1985 Ley Creek sampling program
3-38	Fish data - 1992 RI

List of Figures

Located at end of report

22000000	. at the of report
1-1	Site location map
1-2	Facility plan
1-3	Historic plating/die casting/press line layout
1-4	Historic injection molding operation layout
1-5	IWT plant layout
1-6	IWT plant process schematic
1-7	Existing process sewer system
1-8	Storm and sanitary sewers
1-9	Inactive historic storm sewer layout
1-10	Potential areas of concern
2-1	Site sub-areas
2-2	Monitoring well location plan
2-3	Soil boring location plan
2-4	1985 Test trench location plan
2-5	1999 Test trench sampling location plan
2-6	Surface soil sampling location plan

List of Figure (continued)

2-7	1996 NYSDEC Ley Creek surface water and sediment sampling
	location plan
2-8	1998-1999 Ley Creek surface water and sediment sampling
	location plan
3-1	Top of till elevation contour map
3-2	Generalized geologic cross section
3-3	Shallow ground water elevation map
3-4	Deep ground water elevation map
3-5a	Manufacturing building subsurface-VOC and SVOC
	concentrations in soil
3-5b	Manufacturing building subsurface - site-related metals and
	cyanide in soil
.3-5c	Manufacturing building subsurface - PCB concentrations in soil
3-6a	Southeast property area - VOC and SVOC concentrations in soil
3-6b	Southeast property area - site-related metals and cyanide in soil
3-6c	Southeast property area - PCB concentrations in soil
3-7a	IWT plant area - VOC and SVOC concentrations in soil
3-7b	IWT plant area - site-related metals and cyanide in soil
3-7c	IWT plant area - PCB concentrations in soil
3-8a	Southwest property area - VOC and SVOC concentrations in soil
3-8b	Southwest property area - site-related metals and cyanide in soil
3-8c	Southwest property area - PCB concentrations in soil
3-9a	Former thinner tanks area - VOC and SVOC concentrations in soil
3-9b	Former thinner tanks area - site-related metals and cyanide in soil
3-9c	Former thinner tanks area - PCB concentrations in soil
3-10a	Northeast property area - VOC and SVOC concentrations in soil
3-10b	Northeast property area - site-related metals and cyanide in soil
3-10c	Northeast property area - PCB concentrations in soil
3-11a	Northern property area - VOC and SVOC concentrations in soil
3-11b	Northern property area - site-related metals and cyanide in soil
3-11c	Northern property area -site-related metals and cyanide in soil
3-11 d	Northern property area - PCB concentrations in soil
3-11e	Northern property area - PCB concentrations in soil
3-12	Site-wide VOCs, SVOCs, and PCBs in ground water
3-13	Former thinner tanks area - VOC concentrations in ground water
3-14	Deep ground water iso-concentration map
3-15	TCE concentrations in Outfall 003
3-16	PCB concentrations in Outfall 003
3-17	1998-1999 Ley Creek data - sediment data presentation map
3-18	1998-1999 Ley Creek data - surface water data presentation map

List of Appendices

- A Solid Waste Management Unit (SWMU) and Area of Concern (AOC) status
- B 1999 Ground water sampling field logs
- C 1999 Supplemental RI detected concentrations
- D 1999 Dioxin toxicity equivalence calculations
- E Historic SPDES monitoring data
- F Historic ground water elevation data
- G NYSDEC Comments on 1997 Preliminary RI/FS Report

List of Exhibits

- A 1999 O'Brien & Gere Engineers Supplemental RI soil boring logs/well construction details
- B 1999 O'Brien & Gere Engineers Supplemental RI trench logs
- C 1999 O'Brien & Gere Engineers Supplemental RI permeability procedures/field logs
- D 1996 NYSDEC sediment sample locations
- E 1957 Aerial photo
- F O'Brien & Gere Technical Services underground tank removal documentation
- G CRA analytical results and quality assurance review, May 1996

Executive summary

Objectives and overview

The objective of this report is to fulfill the requirements of a Supplemental Remedial Investigation (RI) for the General Motors Corporation (GM) Former Inland Fisher Guide (IFG) Facility (facility) and Ley Creek Deferred Media (collectively designated the site) in Syracuse, New York. The New York State Department of Environmental Conservation (NYSDEC) and GM entered into an Administrative Order on Consent (Index # D-7-0001-97-06; Order), which became effective September 25, 1997. The Order requires GM to conduct a remedial investigation/feasibility study (RI/FS) for the site. The Former IFG Facility was classified by NYSDEC as a Class 2 Site in the New York State (NYS) Registry of Inactive Hazardous Waste Disposal Sites (Registry; Site No. 7-34-057). The Ley Creek Deferred Media includes ground water underlying the Ley Creek PCB Dredgings Site, a Class 2 Registry site (Site No. 7-34-044), and surface water and sediment in Ley Creek between Townline Road and Route 11.

The Ley Creek Deferred Media are being evaluated as part of the RI/FS process under the Order because NYSDEC deferred to this Order the evaluation of these media from the RI/FS completed for the Ley Creek PCB Dredgings site. However, for purposes of this Report, except where the text indicates otherwise, the reference to site is to the Former IFG Facility.

A significant amount of data related to site environmental conditions has been collected over the past 17 yrs under various regulatory programs and as part of other GM activities. A Preliminary RI/FS Report was developed by O'Brien & Gere Engineers, Inc. (O'Brien & Gere) on behalf of GM for the Former IFG Facility and Ley Creek Deferred Media. The Preliminary RI/FS Report was submitted to NYSDEC, consistent with the requirements of the Order, on October 24, 1997 (O'Brien & Gere 1997).

NYSDEC issued comments on the Preliminary RI/FS Report on March 13, 1998 (Benjamin 1998). GM's responses were submitted to NYSDEC on May 18, 1998 (Hartnett 1998). As a result of NYSDEC's comments regarding additional data needs, a Supplemental RI was conducted for the site, in accordance with the approved Final Supplemental RI/FS Work Plan (O'Brien & Gere 1999a), the provisions of the Order, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as

amended by the Superfund Amendments and Reauthorization Act (SARA), the United States Environmental Protection Agency's (USEPA's) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA 1988), and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR Part 300). Supplemental RI field activities were conducted by O'Brien & Gere in 1998 and 1999.

Sufficient data have been collected at the site to allow for development of a Supplemental Feasibility Study (FS). This document presents a compilation of the environmental site data and serves as the Supplemental RI Report submittal identified in paragraph III.A of the Order. GM will submit an Addendum to the Supplemental RI Report to incorporate the results of an additional investigation to determine the extent of VOC ground water impacts in the deep overburden zone at the eastern and northeastern boundaries of the site and adjacent off-site areas. This investigation will be performed in accordance with a NYSDEC-approved work plan.

Under the Order, GM is to prepare a Supplemental Feasibility Study within 45 days after the receipt of NYSDEC's written approval of the Risk Assessment Report (see paragraph V.A of the Order). The Risk Assessment Report is being developed in a manner that is parallel to the preparation of the Supplemental RI Report. GM's latest risk assessment submission is entitled "Ecological Risk Assessment Problem Formulation Document", and it was forwarded to NYSDEC under cover of GM's letter of April 6, 2000.

Site description and history

The site includes both the Former IFG Facility and the Ley Creek Deferred Media. The Former IFG Facility comprises approximately 65 acres of property located at 1 General Motors Drive in the Town of Salina, Onondaga County, New York. Facility structures include the main manufacturing building, the attached administration building, the primary switch house, powerhouse, the industrial waste treatment (IWT) plant, mold storage (former tank farm) building and bulk handling building. Various paved parking lots and undeveloped areas are present on the property. The facility is bounded to the south by Conrail railroad tracks and a wood pallet recycling facility, to the east and northeast by GM Circle and Townline Road, to the west by a Niagara Mohawk Power Corporation (NMPC) electrical transfer station and to the north by Factory Avenue and an undeveloped area adjacent to Ley Creek. The facility is located in an area zoned for industrial use in the Town of Salina. The area surrounding the facility is generally characterized as highly urbanized.

The Ley Creek PCB Dredgings site is located directly north of the facility and Factory Ave. The Ley Creek PCB Dredgings site consists of the area between Factory Avenue and Ley Creek, extending west from the Former IFG Facility Outfall 003 discharge for approximately 4,000 ft. Ley Creek Deferred Media includes ground water underlying the Ley Creek PCB Dredgings site and surface water and sediment in Ley Creek between Townline Road and Route 11.

Facility background

Historically, the Former IFG Facility was used for the manufacture of metal automotive trim components such as bumpers, grills, wheel disks and hubcaps. More recently, the facility was used for the manufacture of interior and exterior plastic trim components such as bumpers, grills and door panels. The facility began operations in 1952, operating initially as a plating facility and later for the manufacture of plastic automotive components. The facility ceased manufacturing operations in December 1993.

Beginning in 1997, GM implemented a facility cleaning program to decontaminate surfaces and decommission unneeded systems, and this has led to a program to redevelop the Former IFG Facility. The process for site redevelopment is outlined in a Redevelopment Addendum to the Order (effective on November 23, 1999), and for one specific tenancy, in the Stipulation between GM and NYSDEC (effective August 23, 1999). Facility cleaning activities have been, and continue to be, conducted as Interim Remedial Measures (IRMs) under the Order. The completion of the Phase 1 and Initial Phase 2 IRM cleaning work has been documented in a certification report (O'Brien & Gere 2000a). As of April 2000, the redevelopment and the Phase 2 IRM programs are in progress.

Investigative activities

Twenty-five environmental investigations, the majority conducted in accordance with regulatory programs, have been conducted at or near the site. These site investigations, conducted from approximately 1983 to 1999, included the sampling and analysis of soil, ground water, surface water, storm water, sludge, sediment and fish. The following investigations were conducted (referenced dates are associated with actual investigations and not necessarily with associated reports):

- 1983 Thomsen Associates and Empire Soils Investigations, Inc. (Empire Soils) Hydrogeological Investigation and monthly ground water monitoring, which continued until 1997.
- 1985 EDI Engineering & Science (EDI) Hydrogeological Investigation.
- 1985 EDI Phase II Hydrogeological Investigation.
- 1985 EDI Ley Creek sampling program.
- 1985-1986 EDI Solvent Spill Hydrogeological Investigation/Remedial Action Plan and bi-weekly ground water monitoring, which continued until 1997.
- 1986-1987 O'Brien & Gere Engineers Hydrogeologic Investigation of Fill Area Along Ley Creek.
- 1987 O'Brien & Gere Engineers Storm Outfall Assessment.
- 1989 O'Brien & Gere Engineers Storm Sewer Sampling Study.
- 1988-1989 O'Brien & Gere Engineers Surface Impoundment Post-Closure Ground Water Monitoring Program, which continued until 1997.
- 1988-1989 O'Brien & Gere Engineers Ley Creek Dredged Material Area Field Investigation.
- 1990-1991 O'Brien & Gere Engineers Ley Creek Relief Interceptor Sewer Area IRM Sampling Program.
- 1991 Onondaga County Ley Creek Relief Interceptor Sewer Area Sampling Program.
- 1992 O'Brien & Gere Engineers Ley Creek Dredged Material Area RI.
- 1993 O'Brien & Gere Engineers storage cell confirmation sampling program (related to soil storage during 1993 IRM).
- 1994 Entrix, Inc. (Entrix) Phase I Environmental Site Assessment (ESA).
- 1995-1996 Conestoga-Rovers & Associates (CRA) Phase II ESA.

- 1996 NMPC Factory Avenue soil sampling.
- 1996 O'Brien & Gere Engineers utility pole location sampling program.
- 1995-1996 O'Brien & Gere Engineers Outfall 004 sewer line sampling program.
- 1999 O'Brien & Gere Engineers Supplemental RI sampling program.

The following additional investigatory data provided by NYSDEC were also incorporated into the RI:

1996 NYSDEC Sampling.

Based on correspondence with NYSDEC (Benjamin 1999 and Hartnett 1999a), it was agreed that the following data generated for the site would be included in this report:

- soil data generated between 1983 and 1999
- ground water data generated from the July and November 1999 former thinner tank area quarterly monitoring, the November 1999 surface impoundment semiannual monitoring, and the August and November 1999 Supplemental RI sampling
- surface water data generated from the 1996 NYSDEC sampling and the 1998 and 1999 Supplemental RI sampling
- sediment data generated from the 1996 NYSDEC sampling and the 1998
 Supplemental RI sampling
- fish tissue data generated between 1993 and 1999.

In order to present the most current ground water environmental evaluation, ground water discussions are limited to the latest rounds of ground water sampling. Historical ground water conditions are discussed in the 1997 Preliminary RI/FS Report (O'Brien & Gere 1997).

Hydrogeologic conditions

The site is located within the Erie-Ontario Lowlands Physiographic Province (Ontario Lowland) of New York State and has generally flat topography. Site overburden consists of fill, glaciolacustrine deposits, and lodgement till underlain by red shale bedrock. A generalized geologic cross-section is

provided as Figure 3-2. The fill is loose to dense and ranges in thickness from 1 to greater than 16 ft, being thickest in the northwestern area of the site. Glaciolacustrine deposits located beneath the fill consist primarily of silt and fine sand with discrete clay layers, with thickness increasing northeast across the site from 7 to 28 ft. In the northern portion of the site the glaciolacustrine deposits can be divided into an upper, middle and lower unit. The upper unit consists predominantly of silt and fine sand and varies in thickness from approximately 4 to 14 ft. The middle unit consists predominantly of silt and clay. The middle unit originates near the northern edge of the manufacturing building and is continuous in the northern portion of the site. The middle portion varies in thickness from approximately 5 to 15 ft. The deeper portion consists of silt and fine sand. Sand and gravel lenses were noted at isolated locations at the interface between the glaciolacustrine deposits and the till. The thickness of this layer varies from .5 to 11 ft. Lodgement till consists of very dense silt with embedded gravel of varying thickness overlying the bedrock. As shown in Figure 3-1, the top of the till slopes to the northeast towards monitoring well OBG-6D. The slope of the till surface appears to control the direction of migration of volatile organic compounds (VOCs) detected in the ground water at the site.

Ground water is encountered between 3 and 13 ft below ground surface at the site. The saturated portions of the fill and glaciolacustrine units comprise the unconfined overburden aquifer. The overburden overlies the lodgement till unit which limits hydraulic connection between the overburden and bedrock. The approximate upper 15 ft of the saturated overburden has been designated the shallow overburden aquifer zone, which encompasses the saturated portion of the fill and upper glaciolacustrine unit. The deep portion of the aquifer is not present in the southern portion of the site due to the shallow depth to till. The deep aquifer zone starts near monitoring well MWI-3 and is located in the lower glaciolacustrine unit that encompasses the approximate 10 ft immediately above the lodgement till. The classifications were developed to evaluate ground water quality in the two zones and discuss variations in ground water flow regimes.

As indicated on Figure 3-3, the shallow overburden ground water flow direction is northeast across the site toward Ley Creek with an average hydraulic gradient of 0.009 ft/ft. Using an average porosity and a range of measured hydraulic conductivity, the shallow ground water flow velocity range was estimated to be 0.07 to 16.4 ft/year. As indicated on Figure 3-4, deep overburden ground water also flows towards the northeast, and has an average hydraulic gradient of 0.01 ft/ft. The deep ground water flow velocity range was estimated to be 0.44 to 32.5 ft/yr. Ground water discharge at the facility in the shallow overburden was estimated to be

between 15 and 3553 gal/day, and in the deep overburden the flow was estimated to be between 64 and 4667 gal/day. Vertical permeability was determined to be one to three orders of magnitude lower than the horizontal values for the glaciolacustrine deposits, suggesting that horizontal ground water flow is the preferred path for the overburden at the site.

An upward flow potential exists between the glaciolacustrine deposits and the underlying till. This information suggests that the lodgement till layer behaves as an aquitard in the vicinity of the site.

Soil investigative results

Soil data are described with respect to the following areas at the site: manufacturing building subsurface, IWT plant area, former thinner tanks area, northeast property area, and the northern property area. New York State (NYS) soil cleanup objectives presented in NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) 4046, *Determination of Soil Cleanup Objectives and Cleanup Levels* (NYSDEC 1995), were used as screening values for comparison to soil concentrations. It should be noted that soil background values were not used during screening. Detected concentrations in soil are illustrated on figures provided in Appendix C. Detected concentrations above screening levels are illustrated in Figures 3-5 through 3-11. Detected concentrations are summarized in Tables 3-5 through 3-11. Additionally, a summary of the constituents detected, above screening levels, in samples associated with each area at the site is provided in Table 3-4.

Manufacturing building subsurface

Polychlorinated biphenyls (PCBs) were detected in soil beneath the manufacturing building above the 10 mg/kg screening level, in the vicinity of the abandoned underground oil collection sumps and tanks and the abandoned storm sewer trenches beneath the facility floor, at concentrations up to 4300 mg/kg. Petroleum hydrocarbons (identified as SAE 30W oil) were detected in soil in the vicinity of the abandoned underground oil collection sumps and tanks at concentrations up to 80,000 mg/kg. Concentrations of chromium (74.5 to 120 mg/kg), nickel (13.70 to 4000 mg/kg), copper (30.0 to 689 mg/kg), and zinc (25 to 52.2 mg/kg) were above screening levels (50, 13, 25, and 20 mg/kg, respectively) at locations adjacent to former electroplating sumps. Concentrations of chromium (74.5 J to 120 J mg/kg), copper (29 to 30.7 mg/kg), nickel (14.4 to 34.1 mg/kg) and zinc (21.2 to 67 mg/kg) were also detected above screening levels in the vicinity of the former oil/water collection sumps. Trichloroethene (TCE), methylene chloride, and 1,2-dichloroethene (1,2-DCE) concentrations were above screening levels (0.7, 0.1, and 0.25 mg/kg (trans), respectively) in the vicinity of the paint room, with detected concentrations ranging as follows:

TCE (0.73 to 150 mg/kg), methylene chloride (0.15 J mg/kg), and 1,2-DCE (0.31 to 5.1 mg/kg). Toluene and xylene were detected at concentrations of 720 and 1.9 J mg/kg, respectively, above screening levels of 1.5 and 1.2 mg/kg, respectively, in the former compactor area. Detections above screening levels are presented in Figures 3-5A, 3-5B, and 3-5C.

Southeast property area

PCBs, several semivolatile organic compounds (SVOCs) and metals were detected above screening levels in surface soil samples collected from the general storage area, at the following concentrations: PCBs (8 J mg/kg), benzo(a)anthracene (0.27 J mg/kg), benzo(a)pyrene (0.11 J mg/kg to 0.37 J mg/kg), benzo(b)fluoranthene (0.32 J mg/kg to 0.72 J mg/kg), benzo(k)fluoranthene (0.23 J mg/kg), chrysene (0.52 J mg/kg), and siterelated metals arsenic (92.80 to 162 mg/kg), copper (38 mg/kg to 60.3 mg/kg), nickel (20.3 mg/kg and 54 mg/kg), and zinc (53.1 mg/kg and 892 mg/kg). In addition to site-related metals, beryllium (0.66 J mg/kg) and iron (23,700 mg/kg) were also detected above screening levels.

Benzo(a)pyrene (0.13 J mg/kg), benzo(b)fluoranthene (0.26 J mg/kg), nickel (13.9 to 26.9 mg/kg), and zinc (31.9 to 53.1 mg/kg) were also detected above the respective screening levels in samples collected from beneath the parking lot in this area. Detections above screening levels are presented in Figures 3-6A, 3-6B, and 3-6C.

Industrial waste treatment plant area

PCBs were detected at concentrations above the screening level of 1 mg/kg in surface soils in the IWT plant area at concentrations ranging from 2 J to 3900 mg/kg. In addition, PCBs were detected above the screening level of 10 mg/kg for subsurface soil in one soil boring location at 190 mg/kg, in the vicinity of the former fuel oil tanks. Several SVOCs were detected above the screening levels in surface soil in the IWT plant area, at the following concentration ranges: benzo(a)anthracene (0.33 J to 12 J mg/kg), benzo(a)pyrene (0.077 J to 8.4 mg/kg), benzo(b)fluoranthene (0.31 J to 12 J mg/kg), benzo(k)fluoranthene (0.47 J to 3.8 J mg/kg), chrysene (0.41 J to 18 J mg/kg), indeno(1,2,3-c,d)pyrene (3.5 J to 12 J mg/kg), and phenol (0.041 J to 0.85 J mg/kg). Site-related metals including arsenic, chromium, copper, lead and zinc were detected above the screening levels across the IWT Plant Area at the following concentration ranges: arsenic (13.7 to 27.1 mg/kg), chromium (59.1 to 32,000 mg/kg), copper (37.2 to 4790 mg/kg), lead (717 mg/kg), nickel (14.9 to 6630 mg/kg), and zinc (47.2 to 5880 mg/kg). Beryllium (0.47 J mg/kg) and iron (16,900 mg/kg) were also detected above the screening levels in one sample in this area. Oil & grease concentrations ranged from 80 mg/kg to 440 mg/kg in the IWT plant area

soils. Dioxin detections, when converted to 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) equivalents, were all below the screening level of 1000 ng/kg. 2,3,7,8-TCDD equivalents ranged from 10 to 916.41 ng/kg. Detections of constituents detected above screening levels in this area are presented in Figures 3-7A, 3-7B, and 3-7C.

Former thinner tanks area

Concentrations of toluene, ethylbenzene and/or xylene were detected above screening levels (1.5, 5.5, and 1.2 mg/kg, respectively) in soil in the former thinner tanks area. Detected concentrations above screening levels of toluene ranged from 1.92 to 720 mg/kg; detected ethylbenzene concentrations above screening levels ranged from 6.40 to 61 mg/kg; and detected xylene concentrations above screening levels ranged from 1.23 to 330 mg/kg.

Several SVOCs were detected at concentrations above the screening levels in one subsurface soil sample collected from the vicinity of the transformer/switch house at the following concentrations: benzo(a)pyrene (0.63 to 110 J mg/kg), benzo(b)fluoranthene (0.86 to 140 J mg/kg), anthracene (170 J mg/kg), benzo(a)anthracene (0.77 to 150 J mg/kg), benzo(g,h,i)perylene (130 J mg/kg), benzo(k)fluoranthene (0.34 J to 59 J mg/kg), chrysene (0.82 to 170 J mg/kg), dibenzo(a,h)anthracene (0.18 J to 65 J mg/kg), dibenzofuran (12 J mg/kg), fluoranthene (560 mg/kg), indeno(1,2,3-c,d)pyrene (76 J mg/kg), phenanthrene (450 mg/kg), and pyrene (480 mg/kg). Similarly, several SVOCs were detected above screening levels in surface soil in the vicinity of the transformer/switch house at the following concentrations: benzo(a)pyrene (0.18 J to 300 J mg/kg), benzo(b)fluoranthene (0.24 J to 360 J mg/kg), anthracene (230 mg/kg), benzo(a)anthracene (350 J mg/kg), benzo(g,h,i)perylene (310 J mg/kg), benzo(k)fluoranthene (120 J mg/kg), chrysene (380 mg/kg), dibenzo(a,h)anthracene (39 Jmg/kg), dibenzofuran (21 mg/kg), fluoranthene (1200 mg/kg), fluorene (65 mg/kg), indeno(1,2,3-c,d)pyrene (190 J mg/kg), phenanthrene (670 mg/kg), and pyrene (1000 mg/kg). Site-related metals including nickel (18.2 mg/kg) and zinc (56.8 mg/kg), and metals beryllium (0.63 mg/kg) and iron (20,500 mg/kg), were also detected above the screening levels in surface soil in the vicinity of the former thinner tanks area. Detections above screening levels are presented in Figures 3-9A, 3-9B, and 3-9C.

Northeast property area

Concentrations of PCBs were detected above the screening level in one surface soil sample at 7 mg/kg and in one subsurface soil sample at 24 J mg/kg. Several SVOCs were detected at concentrations above the screening levels in surface samples at the following concentrations: benzo(a)anthracene (0.28 J mg/kg to 7.7 mg/kg), benzo(a)pyrene (0.22 J mg/kg to 6.9 J mg/kg), benzo(b)fluoranthene (0.34 J mg/kg to 10 J mg/kg), benzo(k)fluoranthene (0.41 J mg/kg to 3.7 J mg/kg), dibenzo(a,h)anthracene (0.17 J mg/kg), and chrysene (0.47 J mg/kg to 8.9 mg/kg). In addition, several SVOCs were detected at concentrations above the screening levels in subsurface samples, at the following concentrations: benzo(a)pyrene (0.64 J mg/kg), benzo(b)fluoranthene (1 J mg/kg), benzo(k)fluoranthene (0.37 J mg/kg), and chrysene (0.74 J mg/kg). TCE was the only VOC detected in subsurface soil at concentrations greater than the screening level of 0.7 mg/kg at concentrations ranging from 0.79 J to 1.5 J mg/kg.

Sample data for one soil boring installed near the acid-alkali bunker (HA-2) indicated nickel at 16 mg/kg which is above the screening level of 13 mg/kg. In addition, copper (25.9 to 65.1 mg/kg), chromium (61.2 mg/kg), nickel (22 to 97.8 mg/kg), zinc (147 to 200 mg/kg), beryllium (0.67 J mg/kg), and iron (21,500 mg/kg) in surface soil, and copper (25.9 mg/kg), nickel (16 J to 66 mg/kg), and zinc (23.5 to 57.9 mg/kg) in subsurface soil were also detected at concentrations above the screening levels in samples collected in the northeast property area. Detections above screening levels are presented in Figures 3-10A, 3-10B, and 3-10C.

Northern property area

PCBs were detected at concentrations above the screening level of I mg/kg for surface soil in the 0 to 1-ft interval of soil borings collected in the general northern property area. PCBs were detected above the 10 mg/kg subsurface screening level in the general northern property area at concentrations up to 25 mg/kg. Site-related metals arsenic (1.7 to 9.9 mg/kg), chromium (8.5 to 106 mg/kg), copper (8.5 to 62 mg/kg), nickel (14.3 to 50.5 mg/kg), and zinc (21.5 to 212 mg/kg) were also detected above the respective screening levels in samples collected from the general northern property area.

The former drainage swale was visually evident as a black silt layer mixed with some organic matter during the trenching activities, and the approximate location of the former drainage swale is shown in Figures 3-11A, B, C, D, and E. PCBs were also detected above the screening level in the vicinity of a former drainage swale at concentrations up to 6,800 mg/kg (8 ft below surface). TCE (1.2 mg/kg) and chlorobenzene (13 mg/kg) were also detected above the screening levels in the former drainage swale area.

Site-related metals arsenic (7.9 to 12.09 mg/kg), chromium (106 to 34,900 mg/kg), copper (270 to 6,990 mg/kg), nickel (19.3 to 19,700 mg/kg), and zinc (49 J to 4,730 J mg/kg) were also detected in samples collected from the former drainage swale.

PCB concentrations in surface soil samples collected between the Former IFG Facility fence line and Factory Avenue, following installation of the Ley Creek Relief Interceptor sewer, indicated PCB concentrations up to 130 mg/kg, above the 1 mg/kg surface soil screening level. Surface soil samples collected in the former footprint of the soil storage cell located near the northwestern corner of GM's property indicated PCBs ranging from 1.3 to 6.3 mg/kg, above the surface soil screening level.

The limits of the on-site landfill were identified based on visual observation during the trenching activities. Paint sludge, fly ash, and sludge material were observed during the trenching activities. The approximate location of the on-site landfill is shown in Figure 1-10. Surface soil samples collected from the areas of the on-site landfill showed detections of TCE, cis-1,2-DCE, benzo(a)pyrene, benzo(b)fluoranthene, di-n-octyl-phthalate, PCBs (Aroclor 1248), and site-related metals arsenic, chromium, copper, nickel, and zinc, and metals beryllium, iron, and selenium. These constituents were detected at the following concentration ranges: TCE (46 J mg/kg), cis-1,2-DCE (0.34 mg/kg), benzo(a)pyrene (0.16 J mg/kg to 0.37 J mg/kg), benzo(b)fluoranthene (0.25 mg/kg to 0.63 J mg/kg), di-n-octyl phthalate (56 mg/kg), PCBs (0.3 mg/kg to 2,600 J mg/kg), arsenic (2.7 mg/kg to 15 mg/kg), chromium (14.2 mg/kg to 1,770 mg/kg), copper (11.8 mg/kg to 267 mg/kg), nickel (11.8 mg/kg to 443 mg/kg), zinc (25 mg/kg to 394 mg/kg), beryllium (0.94 J mg/kg), and iron (31,200 mg/kg).

Subsurface soil samples collected within the suspected location of the landfill indicated xylene, toluene, ethylbenzene, cis-1,2-DCE, 2-methylphenol, 4-methylphenol, 4-chloro-3-methylphenol, phenol, PCB Aroclors 1242 and 1248, and site-related metals arsenic, chromium, copper, nickel, and zinc, and metals barium, mercury, beryllium, iron, and selenium were also detected above the respective screening levels. These constituents were detected at the following concentration ranges: xylene (110 N mg/kg), toluene (8.8 N mg/kg), ethylbenzene (10 N mg/kg), cis-1,2-DCE (11 mg/kg), 2-methyl phenol (0.11 J mg/kg to 0.44 J mg/kg), 4-methyl phenol (1.6 J to 3.8), 4-chloro-3-methylphenol (0.28 J mg/kg), phenol (0.067 J mg/kg to 0.099 J mg/kg), PCBs (17 mg/kg to 4300 mg/kg), arsenic (4.2 mg/kg to 65.7 mg/kg), chromium (19.1 mg/kg to 17,200 mg/kg), copper (22.1 mg/kg to 23,200 mg/kg), nickel (22.2 mg/kg to 7,940 mg/kg), zinc (52.1 mg/kg to 53,300 mg/kg), mercury (0.033 J mg/kg to 0.16 mg/kg), beryllium (0.95 J mg/kg), iron (45,900 mg/kg), and selenium (2.9 mg/kg).

Constituents detected at concentrations above screening levels in the vicinity of the closed surface impoundments were limited to PCBs (76 mg/kg), nickel (13.1 to 28.5 mg/kg), and zinc (21.4 to 54.3 mg/kg).

Detections above screening levels are presented in Figures 3-11A, 3-11B, and 3-11C.

Southwest property area

PCBs were detected above the screening level for surface soil at concentrations ranging from 2 to 44 mg/kg. SVOCs in surface soil that exceeded NYSDEC TAGM 4046 screening levels included benzo(a)anthracene (0.32 J to 0.66 mg/kg), benzo(a)pyrene (0.37 J to 0.69 mg/kg), benzo(b)fluoranthene (0.64 J to 1.4 mg/kg), benzo(k)fluoranthene (0.31 J mg/kg), chrysene (0.41 J to 0.88 J mg/kg), and phenol (0.065 J mg/kg). Site-related metals chromium (75 to 180 mg/kg), copper (25.8 to 73 mg/kg), nickel (13.1 to 506 mg/kg), and zinc (39.6 to 2,090 mg/kg) also exceeded the screening levels in surface soil. Beryllium (0.45 J mg/kg) and iron (15,000 mg/kg) were also detected above the screening levels in surface soil.

PCBs were not detected in subsurface soil at concentrations greater than the screening levels in the southwest property area. TCE was detected at 2 J mg/kg, above the screening level in subsurface soil. No SVOCs were detected above the screening levels. Site-related metals nickel (14.6 to 18.4 mg/kg) and zinc (28.3 to 38.9 mg/kg) were detected above the screening levels. Detections above screening levels are presented in Figures 3-8A, 3-8B, and 3-8C.

Ground water investigative results BTEX

Ground water samples were collected during the 1999 Supplemental RI and analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) from the wells in the former thinner tanks area. From 1986 through September 25, 1997 ground water samples were collected twice per month from ten wells as required by the 1986 SPDES Consent Order. Since September 25, 1997, quarterly ground water samples have been collected from fifteen wells, and an additional four wells are sampled annually as required by the 1997 Consent Order. In February 2000, NYSDEC and GM agreed, based on analytical results, to modify the frequency of the monitoring to annually for eight wells in the former thinner spill area (Hartnett 2000b, Benjamin 2000).

In general, xylene has contributed greater than 75% of the total BTEX concentrations in these wells.

Consistent with historical data, the highest concentrations of BTEX detected in November 1999 were at wells T-2 (178,800 μ g/L), T-3 (32,100 μ g/L), T-4 (64,800 μ g/L), T-21 (192,400 μ g/L), and T-15 (9400 μ g/L) located adjacent to the building. Lower concentrations were detected in wells located radially away from the former thinner tank area, T-21 area and T-15 area.

The lateral extent of the BTEX plume is illustrated on Figure 3-13. The BTEX plume has been defined to the east by reference to OBG-PZ-3 and OBG-PZ-7 where no BTEX was detected, to the west by wells T-6 and T-7, and to the south by well T-1 where 9 μ g/L of BTEX was detected. The northern extent appears to be limited by the northern recovery trench.

Chlorinated hydrocarbons

A total of 55 ground water samples were analyzed for chlorinated hydrocarbons using USEPA Method 8021. Concentrations of chlorinated hydrocarbons above NYS Class GA standards have been detected at the facility in both shallow and deep overburden wells and consisted predominantly of TCE and cis-1,2-DCE.

This discussion describes the ground water chemistry from the southern portion of the site to the northern portion of the site, which is consistent with the ground water flow direction.

Chlorinated hydrocarbons in shallow overburden aquifer zone. The data indicate that no VOCs were detected in upgradient monitoring well OBG-11, in the southwest property area. Upgradient monitoring wells U-1S and U-1D were installed in the southeast property area at the miscellaneous storage area. Xylene was detected at U-1S at 31 μ g/L, which is above the NYS Class GA standard. The extent of the xylene contamination in this area of the site is limited as xylene was not detected in any other on-site wells, other than in the former thinner tanks area.

Monitoring wells OBG-12 and OBG-13 were installed adjacent to the southern side of the manufacturing building and downgradient of the IWT Plant area. No VOCs were detected in either well which suggests that the IWT Plant area is not a source of VOCs to the ground water. Monitoring well OBG-15, located in the southwest property area immediately adjacent to the manufacturing building and downgradient of the former container storage pad and former tank farm building (mold storage building) contained 277 µg/L of total VOCs, primarily TCE. The information suggests that the

mold storage building may be a source of VOCs. Monitoring well WT-3R, located in the southeast portion of the site and near the manufacturing building contained 22 μ g/L of total VOCs. The source of VOCs at WT-3R is unknown.

Continuing north, monitoring wells MWI-1 and MWI-2 were installed in the southern portion of the manufacturing building. At MWI-1 the only VOC detected was vinyl chloride at 6 µg/L, and at MWI-2, the total VOC concentration was 60 µg/L. Monitoring well MWI-3 installed in the northern portion of the manufacturing building contained 29,940 µg/L of total VOCs. The likely source of VOCs detected at MWI-3 is near the paint room as evidenced by the elevated VOCs, PID readings and reported odors at soil borings BH-47, BH-49, and BH-9.

In the northwest portion of the manufacturing building (1975 addition), low concentrations of chlorinated VOCs were detected. Total chlorinated VOCs were detected at OBG-PZ-2 and OBG-PZ-3 at 42 μ g/L and 17 μ g/L, respectively. The source of the chlorinated VOCs in this area appears to be either the paint room area or closed surface impoundment #1.

VOCs were detected in only three wells sampled from wells installed north of the manufacturing building including the northern property area and northwest property area. The detections were noted at OBG-10S, MW-2S and W-11S which indicate that VOCs in the shallow zone are limited to the northern side of the manufacturing building and administration building. The highest concentration was 437 μ g/L at W-11S which is consistent with the presence of VOCs in the soil at OBG-TB-36 and OBG-TB-37 in this area.

No VOCs were detected at MW-1S, MW-3S, MW-4S and MW-5S located around closed surface impoundments #1 and #2. This data, in conjunction with the low concentration detected at MW-2S (2 μ g/L of total VOCs), indicate that the former surface impoundments are not a source of VOCs.

Along the northern property boundary, adjacent to Factory Avenue, no VOCs were detected in the shallow ground water zone which indicate that no VOCs are migrating off-site in the shallow ground water zone.

Chlorinated hydrocarbons in deep overburden aquifer zone. As previously noted, the increasing depth of the glacial till layer near the northern portion of the manufacturing building results in both shallow and deep ground water zones in the northern portion of the site. The deep ground water zone extends to Ley Creek.

Review of ground water data for wells in the deep zone indicates TCE was the primary VOC detected, with lesser amounts of cis-1,2-DCE and vinyl chloride. The total VOC concentration in this zone ranges from 12 μ g/L at OBG-7D to 181,000 μ g/L at OBG-10D. A ground water iso-concentration map of the total VOC concentrations in the deep zone is presented as Figure 3-14. The figure illustrates the axis of the plume trends southwest to northeast from monitoring well OBG-10D, which contained 181,000 μ g/L of total VOCs, toward monitoring well OBG-6D at the downgradient property boundary, that contained 68,400 μ g/L of total VOCs.

Monitoring wells MW-3D, MW-4D, and MW-5D, located approximately 350 ft west of OBG-6D, at former surface impoundment #2 contained total VOCs at concentrations between 17,000 and 37,000 μ g/L. The compounds detected are the same as those detected at OBG-10D and OBG-6D, which suggests a similar source.

Since no significant concentrations of VOCs were detected in the shallow ground water zone, it can be concluded that the source of VOCs to the deep ground water zone is from the manufacturing building, likely near MWI-3 and near soil borings BH-47, B-49, and B-9. The VOCs likely migrate vertically downward in this area and then migrate horizontally within the lenses of the deeper glaciolacustrine unit.

The deeper silt and fine sand layer reflects the topography of the till layer which slopes to the northeast toward OBG-6D. Field screening data further suggests that VOC migration is limited to small lenses.

The northeastern and eastern extent along the axis of the plume is not defined as the total VOCs at OBG-6D was 68,400 μ g/L, and no deep wells exist northeast of OBG-6D. Total VOC concentrations in monitoring wells located west of OBG-6D are significantly lower, ranging from 12 μ g/L to 3,250 μ g/L. The source of VOCs in the northwestern area may originate from the manufacturing building.

Semivolatile organic compounds

SVOCs detected in the ground water were limited to bis(2-ethylhexyl) phthalate, diethylphthalate and 2,4-dimethylphenol. The phthalate compounds are common plasticizers, and their presence may be associated with sampling or laboratory artifacts.

The compound 2,4-dimethylphenol was detected only at monitoring well OBG-9S at a concentration of 4 μ g/L, which is slightly above the ground water standard of 1 μ g/L. In summary, the data indicate that no significant concentrations of SVOCs were detected in the ground water.

PCBs

PCB concentrations above the NYS Class GA standard detected at the site in both shallow and deep overburden wells consist mainly of Aroclors 1242 and 1248. In summary, samples collected from 16 of the 42 wells contained PCBs at concentrations above the current NYS Class GA standard of 0.09 μ g/L for PCBs. The highest concentrations of PCBs were detected in six shallow monitoring wells and two deep monitoring wells. These wells were installed in the following source areas: surface impoundment #2, the on-site historic landfill, the former drainage swale, and the abandoned storm sewer associated with oil/water collection sump 5. The concentrations in ground water at these locations ranged from 2 to 18 μ g/L. Soil in these areas was also found to contain PCBs at concentrations up to 4,300 mg/kg (abandoned line leading to oil/water collection sump 5), 2,600 mg/kg (on-site landfill), and 6,800 mg/kg (former drainage swale). Concentrations at the remaining 10 wells were between 0.09 and 0.9 μ g/L.

Metals

No metals were detected at concentrations above the NYS Class GA standards in the 42 wells sampled in 1999. The data indicate that the facility is not a source of metals to the ground water.

Ley Creek Deferred Media ground water

With the exception of methylene chloride in OBG-5 (5 μ g/L), zinc in OBG-4 (2.28 mg/L), and PCBs in OBG-4 (0.5 NJ μ g/L), no constituents were detected above Class GA standards in ground water samples collected from the ground water underlying the Ley Creek PCB Dredgings Site (Ley Creek Deferred Media).

Storm water investigative results

The storm sewer system at the facility comprises piping associated with surface water discharge outfalls designated 003 and 004. The storm sewer system in the immediate vicinity of the manufacturing building and in the majority of the northern property area drains to Outfall 003, and is referred to as the main storm sewer system. The main storm sewer system drains precipitation runoff from the facility ground and roof. Since September 25, 1997, the effective date of the new State Pollutant Discharge Elimination System (SPDES) permit, the main storm sewer system also receives IWT plant treated effluent in accordance with the SPDES permit. The southeastern corner of the property and portions of the parking lot areas east of the facility drain to Outfall 004; this system is referred to as the eastern storm sewer system. Both Outfalls 003 and 004 discharge to Ley Creek under the terms of the September 25, 1997 SPDES permit.

Main storm sewer system

Constituents detected in the main storm sewer system tributary to Outfall 003 in 1987 included PCBs, VOCs (TCE and 1,2-DCE), metals (lead, copper and zinc) and phthalates. A first-flush pattern to storm water pollutant loadings during rain events was observed during the 1987 study.

A 1989 storm sewer sampling program indicated a potential source of PCBs to the storm sewer system on the southwestern corner of the facility, and a PCB contribution to Outfall 003 from the section of storm sewer serving the middle of the facility. It was also concluded that little or no PCBs were originating from off-site, and that there were no influxes of PCBs into the new sections of storm sewer along the west side of the manufacturing building. A source of TCE within the main storm sewer system was generally located on the west side of the manufacturing building.

Routine SPDES monitoring of Outfall 003 since between January 1994 and March 2000 has indicated TCE consistently below its discharge limit (prior to the September 25, 1997 permit) of 160 µg/L, at concentrations ranging from less than detectable to 53 µg/L. The September 25, 1997 SPDES permit contains a final action level for TCE of 5 µg/L for Outfall 003, to become effective three years from the effective date of the Order and SPDES permit. With the exception of September and October 1999, PCB Aroclors 1242 and 1248 have also been consistently detected below their respective discharge limits (prior to the September 25, 1997 permit) of 2 and 4 µg/L, since January 1994, at concentrations ranging from less than detectable to I μg/L and less than detectable to 24 μg/L, respectively. In September and October 1999, PCBs were detected at 24 µg/L and 3.6 µg/L, respectively. The September 25, 1997 SPDES permit contains interim discharge limitations of 2 µg/L per Aroclor, and final discharge limitations of 0.3 µg/l per Aroclor, with a discharge goal of non-detect at the higher of 0.065 µg/l or the site-specific method detection limit. The Order requires that the Outfall 003 discharge meet final discharge limitations within the shortest reasonable time period, which shall not exceed three years from the effective date of the Order. Total xylenes have periodically been present in this outfall as well, at concentrations up to 16.8 µg/L in April 1998. The source of the xylenes is likely impacted ground water from the former thinner tanks area on the west side of the facility, which potentially seeps into the storm sewer system. The Order contains an interim action level for total xylenes of 100 µg/L for Outfall 003. The September 25, 1997 SPDES permit contains a final action level for xylenes of 5 µg/L for Outfall 003, to become effective three years from the effective date of the Order and SPDES permit.

Eastern storm sewer system

Constituents detected within the eastern storm sewer system leading to Outfall 004 in 1987 included PCBs, lead, copper, zinc, cyanide (one sample event only), cis-1,2-DCE (one sample event only), tetrachloroethene (PCE) (one sample event only, at the upstream sample point), naphthalene and phthalates.

Televising of the Outfall 004 sewer line for integrity in 1992 showed the Outfall 004 line was not subject to significant ground water infiltration. Sampling of Outfall 004 and portions of the associated storm sewer system in 1995 and 1996 indicated that PCBs were infrequently present in the Outfall 004 discharge. SPDES monitoring between 1994 and 2000 shows PCBs detected infrequently below the final discharge limit (effective in September 2000). Manhole sampling to date has not indicated the source of detections of PCBs in the Outfall 004 discharge.

Ley Creek surface water investigative results

Bis(2-ethylhexyl)phthalate, aluminum, iron, silver and zinc were detected in surface water samples collected in 1996 at concentrations above the Class B surface water standards. Based on data collected during the 1998/1999 Supplemental RI concentrations of detected VOCS, SVOCs, and PCBs did not exceed the NYS Class B surface water standards. Aluminum, iron, and cyanide were the only inorganics detected during the 1998/1999 Supplemental RI at concentrations above the NYS Class B surface water standards.

Ley Creek sediment investigative results

VOCs, SVOCs, PCBs, chlorinated dioxins and furans, and metals were detected in samples collected during the Supplement RI field program. Metals were detected above the NYS sediment criteria in both upstream and downstream samples. There are no sediment screening criteria for the VOCs, SVOCs, PCBs, and chlorinated dioxins and furans detected in the sediment.

The concentrations of Aroclor 1016, Aroclor 1242, and Aroclor 1248 in Ley Creek sediment downstream of the site are statistically greater than upstream levels. However, the concentrations of metals, SVOCs, and VOCs are statistically equivalent with the upstream sediments.

Ley Creek fish investigative results

PCBs were present in fish collected in the vicinity of the site. Quantitative conclusions could not be drawn related to the proportionate contribution by the site to PCBs in fish due to the tendency of the fish collected to migrate for several miles. Aroclors other than those associated with the Former IFG Facility Outfall 003 discharge were detected in fish. In 1992, PCB concentrations in whole fish samples ranged from less than detectable to 1.45 mg/kg. PCB concentrations in fish filets or edible portion samples ranged from 0.11 to 2.4 mg/kg.

Remedial and decommissioning activities

GM conducted several remedial efforts at the facility, generally in conjunction with either a NYSDEC Consent Order or Resource Conservation and Recovery Act (RCRA) closure program, including installation and operation of an oil/water collection system, storm sewer rehabilitation, installation and operation of a ground water recovery system in the former thinner tanks area, surface impoundment closure, and soil excavation/disposal in the area of the Ley Creek Relief Interceptor sewer. Since manufacturing operations at the facility ceased in 1993, GM performed facility decommissioning activities including: coal pile removal, trench drain cleaning, tank removal/closure, surface cleaning, and piping removal. On-going decommissioning efforts include additional piping removal, process system decommissioning, building decontamination, drain/piping cleaning, fly ash hopper demolition, and asbestos abatement.

In addition to these activities, a sewer televising IRM is planned to evaluate the integrity of the storm sewer leading to Outfall 003 and the oil/water separation sumps in the manufacturing building, and their associated piping. Cleaning of the sumps and sewer lines will also be conducted as part of this IRM.

RI conclusions

With the exception of the need for additional delineation of VOCs in ground water in the deep overburden ground water at the eastern and northeastern boundaries of the Former IFG Facility, the nature and extent of contamination at the site has been sufficiently evaluated to begin preparation of the Supplemental FS.

The extent of VOCs in deep ground water east and northeast of the Former IFG Facility will be evaluated as an additional investigatory effort. The results will be presented as an addendum to this report and will be utilized during finalization of the Supplemental FS for the site.

1. Introduction

1.1. Objectives and overview

The objective of this report is to fulfill the requirements of a Supplemental Remedial Investigation (RI) for the General Motors Corporation (GM) Former Inland Fisher Guide (IFG) Facility (site) and Ley Creek Deferred Media in the Town of Salina, New York. As noted below, a portion of the site is also in the Town of DeWitt. The New York State Department of Environmental Conservation (NYSDEC) and GM entered into an Administrative Order on Consent (Index # D-7-0001-97-06; Order), which became effective September 25, 1997. The Order requires GM to conduct a remedial investigation/feasibility study (RI/FS) at the site. The Former IFG Facility was classified by NYSDEC as a Class 2 Site in the New York State (NYS) Registry of Inactive Hazardous Waste Disposal Sites (Registry; Site No. 7-34-057). The Ley Creek Deferred Media includes ground water underlying the Ley Creek PCB Dredgings Site, a Class 2 Registry site (Site No. 7-34-044), and surface water and sediment in Ley Creek between Townline Road and Route 11. The Ley Creek Deferred Media are included as part of the site because NYSDEC deferred to this Order the evaluation of these media, from the RI/FS completed for the Ley Creek PCB Dredgings site.

A significant amount of data related to site environmental conditions has been collected over the past 17 yrs under various regulatory programs and as part of other GM activities. A Preliminary RI/FS Report was developed by O'Brien & Gere Engineers, Inc. (O'Brien & Gere) on behalf of GM for the Former IFG Facility and Ley Creek Deferred Media. The Preliminary RI/FS was submitted to NYSDEC, consistent with the requirements of the Order, on October 24, 1997 (O'Brien & Gere 1997).

NYSDEC issued comments on the Preliminary RI/FS Report on March 13, 1998 (Benjamin 1998). GM's responses were submitted to NYSDEC on May 18, 1998 (Hartnett 1998). As a result of NYSDEC's comments regarding additional data needs, a Supplemental RI was conducted for the site in 1998 and 1999 by O'Brien & Gere in accordance with the approval Final Supplemental RI/FS Work Plan (O'Brien & Gere 1999a), the provisions of the Order, the Comprehensive Environmental Response,

Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA), and the United States Environmental Protection Agency's (USEPA's) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA 1988), and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR Part 300). This document presents the environmental site data collected during the 1998/1999 Supplemental RI and the data provided in the 1997 Preliminary RI/FS Report and serves as the Supplemental RI Report submittal identified in paragraph III of the Order. In addition, where appropriate, NYSDEC comments on the 1997 Preliminary RI/FS Report are addressed in this document. A tabular summary of the NYSDEC comments on the 1997 Preliminary RI/FS Report is included in Appendix G, along with GM's 1998 responses to the comments and references to the locations of text revisions, where a text revision was proposed.

Sufficient data have been collected at the site to allow for development of a Feasibility Study (FS). This document presents a compilation of the environmental site data and serves as the Supplemental RI Report submittal identified in paragraph III.A of the Order. GM will submit an Addendum to the Supplemental RI Report to incorporate the results of an additional investigation to determine the extent of VOC ground water impacts in the deep overburden zone at the eastern and northeastern boundaries of the site and adjacent off-site areas. This investigation will be performed in accordance with a NYSDEC-approved work plan.

Under the Order, GM is to prepare a Supplemental Feasibility Study within 45 days after the receipt of NYSDEC's written approval of the Risk Assessment Report (see paragraph V.A of the Order). The Risk Assessment Report is being developed in a manner that is parallel to the preparation of the Supplemental RI Report. GM's latest risk assessment submission is entitled "Ecological Risk Assessment Problem Formulation Document", and it was forwarded to NYSDEC under cover of GM's letter of April 6, 2000.

This Supplemental RI report has been organized to present the data and associated conclusions which can be drawn regarding environmental conditions associated with the Former IFG Facility and Ley Creek Deferred Media. This section, Section 1, provides a history of the facility's manufacturing operations and a facility description, a summary of the regulatory issues and programs and a listing of previous environmental investigations. Section 2 of the report provides a discussion of the site investigation activities completed to date, including discussions of sample locations, investigation dates, media sampled, laboratory analysis and field

methods and procedures. Section 3 presents the results and findings of the investigatory activities, including site geology, hydrogeology and analytical data for media sampled. Section 4 of the report is a discussion of the various remedial and facility decommissioning programs which GM has implemented over the facility's history as related to environmental issues. Section 5 presents the conclusions of the RI. Relevant support information such as tables and figures, are presented following the sections of report text.

1.2. Site description and history

1.2.1. Property

A site location map is provided as Figure 1-1. The site includes both the Former IFG Facility and the Ley Creek Deferred Media. The Former IFG Facility comprises approximately 65 acres of property located at 1 General Motors Drive in the Town of Salina, Onondaga County, New York. Facility structures include the main manufacturing building, the attached administration building, the primary switch house, powerhouse, the industrial waste treatment (IWT) plant, mold storage (former tank farm) building and bulk handling building. The facility was constructed in 1952 by the Brown-Lipe Chapin Division of GM on undeveloped land as deeded to GM from Gilbert Mautz, Earl Henry Barton and Bessie Galster Hoffman on April 5, 1951.

Various paved parking lots and undeveloped areas are present on the property. These areas surround the main manufacturing building and related outbuildings. Major undeveloped areas consist of areas along the facility's western and northern property boundaries. The facility is bounded to the south by Conrail railroad tracks and a wood pallet recycling facility, to the east and northeast by GM Circle and Townline Road, to the west by a Niagara Mohawk Power Corporation (NMPC) electrical transfer station and to the north by Factory Avenue and the Ley Creek PCB Dredgings site. A facility plan is provided as Figure 1-2.

The facility is currently being redeveloped for tenant use. To date, Reva Plastics, Inc., Carpenter, and New Process Gear occupy space in the building.

The facility is located in an area zoned for industrial use in the Town of Salina; a small portion of the facility (entrance gate area and a portion of the parking lot) is located in the Town of DeWitt. The area surrounding the facility can generally be characterized as highly urbanized. The area is also characterized by a high degree of industrial activity, as evidenced by the

presence of manufacturing facilities such as Carrier Corporation, Syracuse China Corporation, New Process Gear and Bristol-Myers Squibb Company. Numerous small industrial businesses are present along Factory Avenue and in nearby areas of the City of Syracuse. Syracuse International Airport-Hancock Field is located approximately 1½ mi north of the facility.

The Ley Creek PCB Dredgings site is located directly north of the facility and Factory Ave. The Ley Creek PCB Dredgings site consists of the area between Factory Avenue and Ley Creek, extending west from the Former IFG Facility Outfall 003 discharge for approximately 4,000 ft. Ley Creek Deferred Media includes ground water underlying the Ley Creek PCB Dredgings site and surface water and sediment between Townline Road and Route 11.

1.2.2. Facility manufacturing operations

General. Historically, the facility was used for the manufacture of metal automotive trim components such as bumpers, grills, wheel disks and hubcaps. More recently, the facility was used for the manufacture of interior and exterior plastic trim components such as bumpers, grills and door panels. The facility began operations in 1952 as the Brown-Lipe-Chapin Division of GM. Operations conducted at the facility included metal die casting; nickel, chromium and copper cyanide electroplating; stamping; polishing; buffing; painting and machining. The products of these operations were the metal automotive parts as previously mentioned. In 1961 Brown-Lipe-Chapin merged with another GM division, Ternstedt, and subsequently became part of GM's Fisher Body Division in 1968. During the early 1960's injection molding operations were added to the existing metal operations. Metal finishing and die casting were subsequently reduced and replaced by injection molding by the early 1970's. The facility operated as the Fisher Body Division until 1984, when it became the Fisher Guide Division until 1989. The facility then operated as the Inland Fisher Guide Division of GM from 1989 until the facility ceased manufacturing operations in December 1993. In 1992, prior to ceasing of manufacturing operations, the facility was operating 127 injection molding machines. After the facility ceased manufacturing operations in 1993, the facility was reassigned to GM's North American Operations Property Management Group, which was later redesignated the Worldwide Facilities Group.

Beginning in 1997, GM implemented a facility cleaning program to decontaminate surfaces and decommission unneeded systems. Subsequent to certifying that certain areas within the manufacturing building were clean (Hartnett 1999b, c, d), GM began redeveloping the manufacturing building

for use by various tenants including Reva Plastics, Inc., Carpenter, and New Process Gear. Facility cleaning activities continue as interim remedial measures (IRMs) under the Order, and are being conducted in accordance with a NYSDEC approved work plan (Royal Environmental 1999). Phase 1 and Initial Phase 2 IRMs have been documented in a certification report (O'Brien & Gere 2000a). As of April 2000, the redevelopment and the Phase 2 IRM programs are still in progress. Ownership of the facility is scheduled to be transferred to REALM. REALM will continue to redevelop the facility for reuse.

The following paragraphs provide a description of the major unit operations which were historically conducted at the facility:

Plating operations (1952 to approximately 1973). The approximate locations of the historic plating operations at the facility are presented on Figure 1-3. The plating operations at the facility consisted of the immersion of the parts in an electrically charged solution or bath and subsequent rinsing of parts to remove the clinging film or "drag out" in a rinse tank. The plating units in the manufacturing building, operating in conjunction with the die casting operations, consisted of one plating unit with four process baths in series, each separated by a rinse tank. The baths were copper, nickel, bright nickel and chromium. Prior to IWT plant construction, trenches (up to approximately 18 inches in depth) formed into the concrete surrounding the plating tanks drained to the process sewer system, which tied into the storm sewer outside of the building. As part of IWT plant construction, reinforced concrete plating sumps (typically 5 ft by 5 ft by up to 5 ft depth) were installed to collect plating tank trench drainage, and the reinforced concrete acid/alkali bunker was installed to intercept process sewer flows. Cyanide and chromium plating wastewaters were pumped via overhead piping from the sumps to the IWT plant. Acid/alkali wastewaters were either pumped from the acid/alkali sump through overhead piping to the acid/alkali bunker or the IWT plant, or acid/alkali trenches continued to drain to the process sewer system, which was then connected to the acid/alkali bunker. The sump locations are depicted on Figure 1-3.

Facility personnel have indicated that around 1973, when the plating equipment was removed, the sumps and trenches were either cleaned, filled in with gravel and covered with new concrete or continued to be operated in conjunction with the painting and parts washing operations which were included as part of the ongoing injection molding operation.

Die casting operations (1952 to approximately 1973). The facility's die casting operations were generally performed within one area of the manufacturing building as presented on Figure 1-3. These operations

consisted of the operation of reverberatory furnaces to melt ingots and metal trimmings and the use of die casting machines to mold automotive bumpers and grilles. Aluminum and zinc ingots (and scrap zinc alloy trimmings) were melted in one of two furnaces, and the alloy was placed in a heated batch tank near each die cast machine. The alloy was then injected into the die cavity, and the casting was placed into a quench pit for cooling. The part was then trimmed of flash from the area where the die halves met, buffed and plated. The plant used Pydraul PCB hydraulic oil in the die cast machines. In the die cast operations, reinforced concrete quench pits of approximate 10 ft depth were located below the die cast machines for quenching of cast parts. Reinforced concrete sumps were located in each quench pit, and were pumped out for pit clean out. Pit sumps were pumped out to the process sewer system, which connected to the storm sewer system prior to IWT plant construction, and to the acid/alkali bunker and IWT plant following IWT plant construction. Parts went from the quench pits to presses for trimming via a conveyor. Drippings, trimmings from the presses, and off specification parts went into a shaker trench, which consisted of a shaker conveyor, which conveyed the trimmings and off specification parts to a reverberatory furnace, and a reinforced concrete trench (of approximately 1.5 ft depth) underlying the conveyor, which carried the drippings to a 12 in x 12 in x 3 in reinforced concrete sump which led to the storm sewer system. Historic plant drawings indicating the configuration of die cast units within the die cast area, including pits, and shaker and utility trenches are not available. Facility personnel have indicated that in approximately 1973, when the die casting equipment was removed, the sumps and trenches were cleaned, filled in with gravel and covered with new concrete.

Press lines (1952 to approximately 1973). Sheet metal press lines and associated pits were historically operated near the northeast corner of the manufacturing building as presented on Figure 1-3. The press lines were used in the manufacture of wheel disks and hubcaps, and operations consisted of pressing of sheet metal, kneading, buffing, electroplating and painting. The press lines were hydraulically-operated, and trenches were located underneath them for access purposes. In the press line operations, reinforced concrete pits of up to approximately 14 ft depth were located beneath the press lines, and contained air cushions and air bladders. Reinforced concrete sumps were located in each pit, and were pumped out for pit clean out. Pit sumps were pumped out to the process sewer system, which connected to the storm sewer system prior to IWT plant construction, and to the acid/alkali bunker and IWT plant following IWT plant construction. Separate trenches are not recollected by former employees to be part of press line operations. Historic layout drawings for the press line

operations were not found during the historic drawing review. Facility personnel have indicated that in approximately 1973, when the press line equipment was removed, the sumps and trenches were cleaned, filled in with gravel and covered with new concrete.

Injection molding operations (1963-1993). Injection molding operations, which started in approximately 1963, comprised the major facility process from the time the plating and die casting equipment was removed in 1973 until the facility ceased manufacturing operations in 1993. Injection molding operations were performed throughout the facility as indicated on Figure 1-4. The injection molders operated by using high temperature and pressure to mold polypropylene pellets into automotive trim components such as bumpers, door panels and miscellaneous parts. The various types and grades of polypropylene pellets were stored in silos located near the southeast corner of the manufacturing building and were then pneumatically conveyed to each injection molder. The pellets were then heated, melted and injected into the molds using high pressure. The resulting part would be removed from the mold.

Several types of injection molders were operated by the facility (*i.e.*, Cincinnati, Battenfield, Van Dorn, Husky) ranging in size from 70 to 220 tons. The injection molders contained hydraulic oil (some containing PCBs) systems which were used to generate the required pressure for the process. Hydraulic oil leakage collected in shallow concrete trenches (of approximately 6 in depth; some cut and others formed) surrounding each injection molder. Prior to implementation of the oil reclamation system, oil was pumped out for off-site disposal. In approximately 1975, thirteen underground concrete sumps (depths and construction described in Appendix G) were installed to collect oil from the trenches, and five underground steel tanks (depths and construction described in Attachment 1) were installed to store molder oil when molder repair was necessary. Sumps were pumped out with portable pumps, which transported oil to the above-ground Dirty Oil Transfer Station, and pumped via overhead piping to the oil reclamation system at the IWT plant.

In approximately 1995, the hydraulic oil tanks were removed and the sumps were abandoned in place by filling them with sand, gravel and/or concrete. The piping associated with the tanks and sumps was plugged. These closure activities were conducted in accordance with a SPDES consent order. The approximate locations of the sumps and tanks are shown on Figure 1-3.

Painting operations (1963-1993). The facility's painting operations were performed from approximately 1963 until July or August of 1993. The paint room was constructed in 1973 to provide for an automated parts painting

operation and included ten paint booths. A waterwash spray curtain, which was eventually replaced by an emulsion based system, was used for overspray control during the paint application process. The paint room, which was located in the approximate center of the manufacturing building, was operated in conjunction with the paint storage and paint mix rooms, which were located near the northwestern portion of the facility, as indicated on Figure 1-3. Paints and thinners were stored and mixed in these rooms and then pumped to the paint room through a series of overhead pipes running through the facility.

1.2.3. Facility description

Main manufacturing building. The main manufacturing building is an approximate 770,000 ft² metal and brick building which was originally constructed in 1952. Two major building additions were constructed over time. The building was expanded in 1965 to include additional bays located to the south of the original portion of the building. Following the 1965 building expansion, the facility included bays A-K/0-25, as indicated on Figures 1-3 and 1-4. Another expansion was constructed in 1974-1975, which consisted of a new metal sided warehouse section, including bays AA-FF/14-25, constructed to the north of the original manufacturing building. In addition to manufacturing and production, the building contained warehouse, receiving, maintenance and storage areas.

Administration building. The administration building is an approximate 40,000 ft² two story concrete block and metal building which is attached to the north side of the main manufacturing building, as indicated on Figure 1-2. The building housed the facility cafeteria, nurse's office and the various facility administration offices. The administration building was constructed in 1952 along with the manufacturing building.

Powerhouse. The facility powerhouse is an approximate 17,600 ft² concrete and metal building located southeast of the manufacturing building, as indicated on Figure 1-2. The building contains a basement and supplied steam and compressed air to the manufacturing building. Three natural gas fired boilers are located in the building. These boilers were formerly coal fired. To the east of the powerhouse are the former coal storage silos and the former coal yard; to the south is the coal delivery rail line and ash hopper; and to the west is the natural gas house. Located to the northeast of the powerhouse is the bulk handling building, which is a metal sided shed constructed over the rail line formerly used to deliver polypropylene pellets to the facility.

IWT plant. The IWT plant is an approximate 12,600 ft² building which contains a main level and a basement. The IWT plant and related tankage and process equipment are located south of the manufacturing building, as indicated on Figure 1-2, and are connected to the building via an overhead pipe trestle. The IWT plant was originally constructed in approximately 1965 in order to treat plating-related wastewater from the facility processes. The unit operations at that time were focused towards the plating operations and included cyanide and metals treatment. As GM's manufacturing operations changed over the facility's operational history, the IWT plant was required to treat wastewater generated more from painting and injection molding operations rather than plating-related wastes. During the mid-1980s, the IWT plant was modernized to meet discharge standards established by the local Onondaga County Department of Drainage and Sanitation (OCDDS) Publicly Owned Treatment Works (POTW). In 1986, a garage addition to the IWT plant was constructed for use as a temporary hazardous waste storage area (also known as the Hazardous Waste Accumulation Area). This area contains supplemental wastewater treatment equipment, roll off boxes for hazardous waste debris, spill response equipment and storage space. In October 1997, the IWT plant discharge was redirected to the sewers leading to Outfall 003, in accordance with a September 25, 1997 State Pollutant Discharge Elimination System (SPDES) permit. Current and former IWT plant features are shown on Figure 1-5.

Currently, the IWT plant treats the following water streams, as depicted in Figure 1-6: ground water collected in the thinner area ground water recovery system; water collected in the oil/water collection sumps, the IWT plant basement sump, and the main IWT sump (also known as the acid-alkali bunker), and water generated at the facility during IRMs. Each of these streams is directed to an equalization tank, and subsequently treated by oil separation, solids settling and filtration, and carbon adsorption.

Mold storage (former tank farm) building. The mold storage (former tank farm) building is an approximate 7,200 ft² metal sided building located near the southwest corner of the manufacturing building, as indicated on Figure 1-2. This building was also constructed during the 1965 expansion and was formerly used for the storage of chemicals used in the plating and related processes. Tanks containing plating chemicals and solvents were located inside the building and piped into the manufacturing building via an overhead pipe trestle. Specifically, the former tank farm included three 9,000 gallon cyanide solution tanks, one 7,000 gallon trichloroethene (TCE) tank, two 13,000 gallon acid-alkali tanks, one 12,500 gallon chrome solution tank, and one 12,000 gallon sulfuric acid tank. During the early 1980s, the tanks were removed from the building, and it was then used for storage of molds and miscellaneous equipment. An approximate 6000 ft² concrete

open area located directly west of the mold storage building was formerly used for the temporary storage of hazardous waste. Use of this area was discontinued during the late 1980s.

Main transformer substation. The main transformer substation or primary switch house is an approximate 1,800 ft² building located west of the manufacturing building, as indicated on Figure 1-2. This building contains electrical equipment used to support the four facility transformers which are located adjacent to the building to the north.

Process/storm/sanitary sewer systems. The process sewer system is located beneath the floor of the manufacturing building as indicated on Figure 1-7. The sewers are constructed of vitrified clay and range in diameter from 4 to 18 inches. The process sewer system formerly served the paint room and, prior to that, the plating operations. Operations which would contribute flow to the process sewer system are inactive; however, there remains a limited amount of flow present in the system, likely from ground water, and condensate and incidental infiltrations through cooling towers on the roof. The process sewer system drains to the main IWT sump (acid-alkali bunker); the main IWT sump discharge is conveyed via overhead piping to the IWT plant.

The sanitary sewer system at the facility is located beneath the main manufacturing building and near the IWT plant, as depicted on Figure 1-8. The sanitary sewers are believed to be constructed of cast iron. Sewer #1, which is accessed via the manhole located in front of the administration building, is associated with the domestic sewage discharge from the manufacturing building. Sewer #2, which is accessed via a manhole located adjacent to the east side of the IWT plant, was the former IWT plant effluent discharge, prior to the October 1997 redirection of IWT plant discharge to Outfall 003. The line associated with Sewer #2 runs along the east side of the plant and combines with the flow from Sewer #1. The sewer lines then discharge to the Onondaga County Department of Drainage and Sanitation (OCDDS) POTW.

As part of the redevelopment activities for the Carpenter Leasehold Space, a new sanitary connection was installed from the manufacturing building to the sanitary sewer on the southeast side of the building.

The storm sewer system at the facility is comprised of piping associated with surface water discharge outfalls designated 003 and 004, as depicted on Figure 1-8. The storm sewer system in the immediate vicinity of the manufacturing building and in the majority of the northern property area

drains to Outfall 003 and will be referred to as the main storm sewer system. The main storm sewer system drains precipitation runoff from the facility ground and roof, and receives IWT plant treated effluent. The southeastern corner of the property and portions of the parking lot areas east of the facility drain to Outfall 004; this system will be referred to as the eastern storm sewer system. Both Outfalls 003 and 004 discharge to Ley Creek under the terms of the September 25, 1997 SPDES permit.

A portion of the historic storm water collection system is located beneath the manufacturing building. This part of the system was formerly connected to downspouts from the building roof and conveyed storm water from the roof through the facility property and eventually to Ley Creek. In the mid-1980s, the underground system beneath the facility floor was abandoned, and a new overhead system was constructed. The new overhead system ties into the existing main storm sewer system outdoors. Portions of the main storm sewer outdoor piping were rehabilitated (either by sliplining or cured in place liner) or replaced altogether during this period of time as well. The storm sewers beneath the building were plugged, and oil/water collection sumps were installed to intercept water and oil within the lines. The configuration of the facility's historic (now inactive) storm sewer system is depicted on Figure 1-9. Storm sewer modifications are discussed in detail in Attachment 3 of Appendix G.

In March 2000, a work plan was submitted to NYSDEC to conduct a storm sewer televising IRM. The IRM is being conducted in order to evaluate the integrity of storm sewer lines leading to Outfall 003, the oil/water collection sumps, and the abandoned storm sewers associated with these sumps. To facilitate the televising, the sewers will be cleaned, which will result in the removal of sediment and oil present in these sewers and oil/water collection sumps. The results of the IRM will be used to evaluate compliance with the final SPDES permit conditions that become effective in September 2000. NSYDEC's Comments on the work plan were received on March 16, 2000 (Benjamin 2000b). A comment response letter was submitted to NYSDEC on April 6, 2000 (Hartnett 2000a), and the work plan will be finalized in April 2000.

Closed surface impoundments. During its operational history, the facility operated two surface impoundments on the facility property. Impoundment locations are indicated on Figure 1-2. Impoundment #I was constructed in 1963 and received treated effluent from the IWT plant and storm water runoff from paved areas. Prior to the early 1980's, an overflow pipe from the IWT sump connected to the storm sewer leading to the Impoundment #1. In the early 1980's, the overflow pipe was plugged and a containment area was constructed to contain IWT sump overflow, which was pumped out by

tanker following overflow events. Impoundment #2 was constructed in 1979 and was designed to collect storm water runoff and oil which may have been present in the runoff. The two surface impoundments were closed in 1989. Prior to closure, sediments in the former impoundments were sampled in 1986 and in 1988. The 1986 sample results indicated that PCBs were present in sediments at 200 to 300 mg/kg (impoundment #1) and up to 17 mg/kg (impoundment #2). Several metals including chromium, iron, mercury, and zinc were also detected in these sediments. In 1988 sample results indicated that PCBs were present in sediments at concentrations ranging from 35 to 6,400 mg/kg (Weston 1988a and 1989). The closure process consisted of the removal and disposal of impacted sediment from the two impoundments. Impoundment #2 was backfilled with clean soil, regraded, and covered with a soil layer and vegetative seeding. Impoundment #1 was backfilled with clean soil and with PCB-containing soil from the Meadowbrook/Hookway site in Syracuse, New York, regraded, and covered with 1 ft of clay, 1.5 to 2 ft soil, and vegetative seeding. A postclosure quarterly ground water monitoring program was conducted until September 25, 1997, when the Order became effective. The Order supersedes the post-closure monitoring program and requires semi-annual ground water monitoring of the ten impoundment monitoring wells.

1.2.4. Facility regulatory programs

Operations at the Former IFG Facility have been regulated and monitored under a number of regulatory programs. A chronological review of these programs follows:

SPDES/Clean Water Act (CWA). The facility has been the subject of National Pollutant Discharge Elimination System (NPDES) or SPDES permits and consent orders since 1972, when the first NPDES permit was issued. In 1972, two outfalls were permitted: Outfall 001, which discharged drainage from the eastern portion of the facility, and Outfall 002, which discharged IWT plant treated effluent and drainage from the western portion of the facility. Outfalls 001 and 002 combined for discharge to Ley Creek. Future SPDES permit renewals established Outfall 003 to monitor the combined discharge from Outfalls 001 and 002, and Outfall 004 to monitor storm drainage from the facility parking lots, as well as areas upgradient of the facility. In 1986, IWT plant effluent was removed from the SPDES discharge and directed to the OCDDS POTW. IWT plant effluent was returned to Outfall 003 under the current SPDES permit, effective September 25, 1997, to which the Order is appended. The current SPDES permit contains discharge limitations and monitoring requirements for Outfalls 003 and 004, as well as the IWT plant discharge (Outfall 03B), and

the point at which the eastern storm sewer system enters the facility property (Outfall 04I).

In 1981, GM entered into a Consent Order with NYSDEC (No. 7-0383) for investigation of the source of PCB-contaminated oil being discharged to a holding pond prior to discharge to Ley Creek. This investigation detected leakage from the underground hydraulic oil sumps beneath the manufacturing building. It was also identified that PCB-contaminated oil was infiltrating into the storm sewer system beneath the manufacturing building and subsequently discharging with the storm sewer discharge. In accordance with a revised 1983 Consent Order with NYSDEC (No. 7-0383), the underground hydraulic oil sumps were abandoned, and the underground hydraulic oil tanks were removed, as discussed in Section 1.2.2. Additionally, as discussed in Section 1.2.3., the portion of the storm sewer system beneath the manufacturing building was abandoned, and eight oil/water collection sumps, depicted on Figure 1-9, were installed in the vicinity of the plugged storm sewer lines to collect oil and water accumulating in the abandoned lines. Oil/water collection sumps are pumped to the IWT plant for treatment, as further discussed in Section 4.1.1.

In accordance with a 1982 SPDES permit renewal, GM conducted a hydrogeological investigation in the vicinity of the former coal pile area. Additionally, ground water in the vicinity of the coal pile and powerhouse was monitored monthly and reported quarterly under the SPDES permit until September 25, 1997, when the current SPDES permit became effective.

GM entered into a 1985 Consent Order (case #7-0585) with NYSDEC to address continuing issues related to:

- Suspected continued infiltration of PCB-containing hydraulic oil into the sewer systems subsequent to installation and operation of the oil/water collection sumps
- Wastewater treatment effectiveness
- Overall impact, if any, of facility operations on subsurface soil and ground water on the property.

In compliance with this Consent Order, GM conducted a series of engineering studies and modifications in subsequent years. The following efforts were performed to reduce discharges to Ley Creek:

- Additional replacement of storm sewer piping underneath the manufacturing building with overhead piping and plugging of inactive storm sewers
- Sliplining or Insituform[®] lining of portions of the storm sewer system (as indicated in Figure 1-8)
- Conduct of a two-phased hydrogeological investigation at the facility
- Conduct of a storm water outfall assessment
- Modification of the IWT plant and redirection of treated process wastewater discharge to the OCDDS POTW
- Closure of Impoundments #1 and #2
- Connection of the storm sewer lines which formerly discharged to the surface impoundments into one line discharging through Outfall 003 to Ley Creek
- Application for a SPDES permit amendment for storm water discharge through Outfalls 003 and 004.

In 1986, GM entered into a SPDES Consent Order with NYSDEC to investigate and remediate a release of thinner from three underground storage tanks (USTs) and associated piping located on the west side of the The tanks formerly stored thinners (xylene, toluene and ethylbenzene) associated with the facility's painting operations. The tanks were removed in 1985, and impacted soil and ground water was identified. An investigation was performed and a remedial action plan was developed to remediate the thinner plume (EDI Engineering & Science [EDI] 1986b). As discussed in Section 4.1, the remedial program consists of the operation of two ground water recovery trenches and sampling and analysis of ground water monitoring wells. The locations of the former thinner tanks and recovery trenches are indicated on Figure 1-2. This system was installed in late 1986 and has been operational since. Monitoring of ten wells was performed biweekly until September 25, 1997, when the Order became effective. The Order supersedes the 1986 SPDES Consent Order and requires quarterly monitoring of fifteen wells and annual monitoring of four wells. In February 2000, NYSDEC and GM agreed, based on analytical results, to modify the monitoring frequency to annually for eight wells (Hartnett 2000b and Benjamin 2000).

Resource Conservation and Recovery Act (RCRA). The closure and associated post-closure quarterly ground water monitoring programs at the two closed surface impoundments were performed pursuant to RCRA post-closure standards as established by NYSDEC (6 NYCRR Part 373). As discussed in Section 4, the two surface impoundments were closed in accordance with a closure plan (Weston 1988a), as documented in the closure documentation report (Weston 1989). The post-closure monitoring program background, history and procedures were documented in a report dated April 1988 and revised November 1992, as prepared by O'Brien & Gere (O'Brien & Gere 1988, 1992c). Quarterly ground water sampling and analysis with quarterly and annual reporting of the results to NYSDEC began in 1989 and was performed until September 25, 1997, when the Order became effective. The Order supersedes the RCRA post-closure monitoring program and requires semi-annual ground water monitoring of the ten impoundment monitoring wells.

Historically, GM operated a drum storage area located west of the former mold storage building. The drum storage area was operated on a temporary (less than 90 day) basis. This area was taken out of service when the IWT plant garage was constructed. A closure plan for the former drum storage area was submitted to NYSDEC RCRA personnel for their review in 1988 (Weston 1988b). GM received comments from NYSDEC on the proposed closure plan. A revised closure plan was not submitted to NYSDEC due to NYSDEC's intention to include the drum storage area closure in a multimedia regulatory program.

In 1988, a RCRA Visual Site Inspection (VSI) was conducted at the facility by A.T. Kearney, Inc. and DPRA Incorporated, working under contract to USEPA. The VSI was a facility walk through to evaluate potential Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) as defined by RCRA. The results of the VSI were documented in a report dated February 1989 (AT Kearney and DPRA 1989).

In 1989, in response to the findings of the RCRA VSI, GM reviewed the potential SWMUs and AOCs and compiled a listing of issues associated with the status of each SWMU and AOC. This review is documented in a report dated October 1990 as prepared by O'Brien & Gere (O'Brien & Gere 1990b).

In 1991, GM was presented with a draft Part 373 hazardous waste management permit by NYSDEC. This draft permit identified several SWMUs and AOCs throughout the facility and proposed requirements for operation and closure of each. GM submitted comments on the draft permit to NYSDEC on December 21, 1991 (Kochem 1991). The permit was not finalized. Appendix A presents a list of these SWMUs and AOCs and their current status.

Fulfillment of and compliance with the Order satisfies any RCRA postclosure permit requirements or any interim status RCRA requirements to investigate the scope of contamination from a SWMU or AOC.

New York State Inactive Hazardous Waste Disposal Site Program - Ley Creek PCB Dredgings Site. In 1985, GM entered into a Consent Order with NYSDEC to conduct an investigation of PCB contamination in soil and ground water in the Ley Creek area, which is currently referred to as the Ley Creek PCB Dredgings site. Pursuant to this Consent Order, a hydrogeologic investigation was conducted (O'Brien & Gere 1987a), which is discussed further in Sections 1.2.5, 2 and 3.

In 1987, GM entered into a Consent Order (#A7-0129-87-09) with NYSDEC to investigate the areal and vertical extent of PCBs at the Ley Creek PCB Dredgings site and identify any current and/or potential on-site and off-site releases or migration of PCBs. Pursuant to this Consent Order a field investigation was conducted (O'Brien & Gere 1989b), which is discussed further in Sections 1.2.5, 2 and 3.

In 1991, GM entered into a Consent Order (#A7-0239-90-07) with NYSDEC to develop and implement an RI/FS at the Ley Creek PCB Dredgings site (Site No. 7-34-044). The RI/FS began in 1991 and was completed in 1996 (O'Brien & Gere 1993 and 1996b). A Record of Decision (ROD) was issued by NYSDEC for the Ley Creek PCB Dredgings site in March 1997. The remediation construction phase began in December, 1999. NYSDEC deferred to this Order the evaluation of ground water, surface water, and sediment associated with the Ley Creek PCB Dredgings site (Ley Creek Deferred Media).

New York State Inactive Hazardous Waste Disposal Site Program - Ley Creek Relief Interceptor Sewer Interim Remedial Measure. Also in 1991, GM entered into a Consent Order (#A7-0263-91-05) with NYSDEC to develop and implement an IRM program in an area adjacent to GM's northern property boundary where the County of Onondaga proposed to install a new Ley Creek Relief Interceptor Sewer. As part of the IRM, GM

excavated PCB-containing soil, installed and operated a ground water treatment system and temporarily stored excavated soil pending characterization and disposal. The IRM began in 1991 and was completed in early 1994.

New York State Inactive Hazardous Waste Disposal Site Program - Former IFG Facility and Ley Creek Deferred Media. GM and NYSDEC entered into a Consent Order (Order), effective September 25, 1997, to develop and implement an RI/FS and meet SPDES discharge limits at the Former IFG Facility. This Supplemental RI Report has been developed in accordance with the requirements of this Order.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program. By an undated Joint Demand for Information, NYSDEC and USEPA requested in July of 1994 that GM, under CERCLA § 104 (e) and related statutory authorities under the New York State Environmental Conservation Law, provide historical information related to environmental conditions at the Former IFG Facility. GM submitted its response to the joint demand on September 29, 1994. NYSDEC and USEPA made a supplemental demand for information, under letter dated December 8, 1994, and GM submitted its supplemental response on February 2, 1995.

NYSDEC and USEPA thereafter notified GM by letter, dated June 23, 1997, of their designation of the Former IFG Facility and the Ley Creek PCB Dredgings site as sub-sites to the Onondaga Lake National Priorities List (NPL) site.

Clean Air Act. The facility has historically retained certificates to operate process, ventilation or exhaust systems (air permits for applicable processes), as issued by the NYSDEC Division of Air. Since the facility ceased manufacturing operations in 1993, permits have been discontinued.

OCDDS Industrial Wastewater Program. In the mid-1980s, GM elected to discontinue its process water discharge to Ley Creek and discharge this water instead to the OCDDS POTW under the terms of an industrial wastewater discharge permit. Accordingly, OCDDS issued GM Industrial Wastewater Discharge Permit No. 97, and GM began discharging in late 1986. The terms of the permit required a self-monitoring program, which consisted of monthly sampling and analysis of several components of the discharge and quarterly reporting to OCDDS. IWT plant effluent was redirected from discharge to the POTW to discharge to Ley Creek via Outfall 003 under the current SPDES permit, effective September 25, 1997.

1.2.5. Environmental investigations

Twenty five environmental investigations, the majority conducted in accordance with the regulatory programs previously identified, have been conducted at the Former IFG Facility and for the Ley Creek Deferred Media. These investigations, which were conducted from approximately 1983 to 1999, included the sampling and analysis of soil, ground water, surface water, storm water, sludge, sediment and fish. The site investigation programs are itemized as follows and are further discussed in Sections 2 and 3 of this report.

1983 to 1997 - Thomsen Associates and Empire Soils Investigations, Inc. (Empire Soils) Hydrogeological Investigation and monthly ground water monitoring. Thomsen Associates and Empire Soils installed five wells as part of a hydrogeologic investigation in the vicinity of the former coal pile in 1983 (Thomsen Associate and Empire Soils 1983). Pursuant to a 1982 SPDES permit renewal, ground water was routinely monitored for total iron and pH in the vicinity of the coal pile. Five wells were sampled monthly until the late 1980s/early 1990s, when four wells were damaged. Since that time, with NYSDEC's concurrence, one well was sampled monthly with quarterly reporting until September 25, 1997, the effective date of the current SPDES permit. The current SPDES permit does not require ground water monitoring in the vicinity of the coal pile because the coal pile was removed in 1996.

1985 EDI Hydrogeological Investigation. A hydrogeological investigation was conducted by EDI pursuant to a 1985 SPDES Consent Order to evaluate potential facility impacts on ground water, storm water and soil. Field efforts included soil boring and monitoring well installation, trench installation, water level measurements, vertical permeability measurements, hydraulic conductivity measurements, and sampling of soil, ground water, storm water, and Ley Creek surface water (EDI 1985a).

1985 EDI Phase II Hydrogeological Investigation. Subsequent to the hydrogeological investigation, EDI conducted a Phase II hydrogeological investigation to further investigate three areas of contamination identified in the hydrogeological investigation: an area near the Administration Building, the Outfall 003 storm sewer pipeline route, and the IWT plant area. Field efforts included soil boring and monitoring well installation, water level measurements, and sampling of soil and ground water (EDI 1986a).

1985 EDI Ley Creek sampling program. EDI conducted a program in 1985 to evaluate the occurrence and concentration of PCBs in Ley Creek sediment

and water. Field efforts included sampling and analysis of surface water, sediment and fish (EDI 1985b).

EDI Solvent 1985-1986 1997 Spill Hydrogeological to Investigation/Remedial Action Plan and subsequent ground water monitoring. As discussed in Section 1.2.4, pursuant to a 1986 SPDES Consent Order, EDI conducted a hydrogeological investigation to evaluate contamination associated with a thinner release from three former USTs and associated piping used for painting operations. The locations of the former thinner USTs are indicated on Figure 1-2. Field efforts included soil boring and monitoring well installation, water level measurements, and sampling of soil and ground water (EDI 1986b). Additionally, ten ground water monitoring wells in this area were sampled bi-weekly pursuant to the SPDES Consent Order to provide monitoring data relative to the operating ground water recovery system. Bi-weekly monitoring ceased September 25, 1997, the effective date of the Order. The Order superseded the 1986 SPDES Consent Order and required quarterly monitoring of fifteen wells and annual monitoring of four wells. In February 2000, NYSDEC and GM agreed, based on analytical results, to modify the monitoring frequency to annually for eight wells (Hartnett 2000b and Benjamin 2000).

1986-1987 O'Brien & Gere Hydrogeologic Investigation of Fill Area Along Ley Creek. O'Brien & Gere conducted a hydrogeologic investigation to evaluate the presence of PCBs in fill materials, native soil, and ground water, and to evaluate the migration of PCBs to Ley Creek via ground water discharge. Field efforts included soil boring and monitoring well installation, water level measurements, in situ hydraulic conductivity measurements, and sampling and analysis of soil and ground water (O'Brien & Gere 1987a).

1987 O'Brien & Gere Storm Outfall Assessment. Pursuant to a 1985 SPDES Consent Order, O'Brien & Gere conducted a storm outfall assessment to evaluate contamination associated with storm water discharges. Storm water samples were collected from various storm sewer manholes at the facility during four storm events (O'Brien & Gere 1987b).

1989 O'Brien & Gere Storm Sewer Sampling Study. O'Brien & Gere conducted a storm sewer sampling effort in 1989 to evaluate sources of PCBs and TCE to the Outfall 003 storm water discharge. Storm water samples were collected from various storm sewer manholes at the facility during six sampling events (O'Brien & Gere 1989c).

1988-1989 to 1997 - O'Brien & Gere Surface Impoundment Post-Closure Ground Water Monitoring Program. In accordance with a post-closure monitoring program (O'Brien & Gere 1988, 1992c), ten monitoring wells (five shallow/deep well nests) in the vicinity of the closed surface impoundments were monitored monthly with quarterly and annual reporting from 1989 until September 25, 1997, the effective date of the Order. The Order supersedes the post-closure monitoring program and requires semi-annual monitoring of the ten wells.

1988-1989 O'Brien & Gere Ley Creek Dredged Material Area Field Investigation. O'Brien & Gere conducted a field investigation to evaluate the horizontal and vertical extent of PCBs in dredged fill material and ground water. Field efforts included geophysical surveys, soil boring and monitoring well installation, water level measurements, in situ hydraulic conductivity measurements, and sampling and analysis of soil, ground water, sediment, surface water, and air (O'Brien & Gere 1989b).

1990-1991 O'Brien & Gere Ley Creek Relief Interceptor Sewer Area IRM Sampling Program. O'Brien & Gere installed a series of soil borings along the Ley Creek Relief Interceptor Sewer pipeline route in 1990 to identify the limits of soil excavation and disposal efforts to be conducted as an IRM by GM at the facility. Eighteen borings were installed to depths of 10 to 12 ft, and soil samples were collected for PCB analysis (O'Brien & Gere 1990, 1991). Additionally, post-excavation confirmation soil samples were collected from the IRM excavation (O'Brien & Gere 1992b).

1991 Onondaga County Ley Creek Relief Interceptor Sewer Area Sampling Program. As part of the installation of the Ley Creek Relief Interceptor Sewer in 1991, Onondaga County's contractors collected subsurface soil samples along the pipeline route for analysis for PCBs (Onondaga County 1991). Following completion of construction of the sewer, Onondaga County's contractors collected surface soil samples along the pipeline route for analysis for PCBs (Cocciardi 1991).

1992 O'Brien & Gere Ley Creek Dredged Material Area RI. An RI was conducted by O'Brien & Gere pursuant to a 1991 Consent Order with NYSDEC to evaluate dredged material along the southern bank of Ley Creek north of Factory Avenue, as well as ground water, Outfall 003 discharge water, Ley Creek sediment, and Ley Creek fish. Field efforts included soil boring and monitoring well installation, water level measurements, in situ hydraulic conductivity testing, and sampling of surface and subsurface soil, ground water, Outfall 003 storm discharge, and Ley Creek sediment and fish (O'Brien & Gere 1993).

1993 O'Brien & Gere storage cell confirmation sampling program. O'Brien & Gere collected ten surface soil samples from an area on the northwestern portion of the facility in 1993. Samples were collected in the former location of a storage cell used for PCB-contaminated soil excavated during the Ley Creek Relief Interceptor Sewer Area IRM (O'Brien & Gere 1994).

1994 Entrix, Inc. (Entrix) Phase I Environmental Site Assessment (ESA). At the request of counsel, a Phase I ESA was conducted for the facility between May 1993 and October 1993 by Entrix. Although this is a privileged and confidential, prepared at the request of counsel document, the data contained in the report were used throughout the preparation of this Supplemental RI Report. The purpose of the Phase I ESA was to qualitatively evaluate general facility environmental conditions and identify potential areas of concern (PAOCs) where information indicated the potential for a past release of chemicals into the environment at levels which could adversely impact public health and the environment. The Phase I ESA identified PAOCs at the facility, and additional PAOCs were identified by GM subsequent to the Phase I ESA.

1995-1996 Conestoga-Rovers & Associates (CRA) Phase II ESA. At the request of counsel, subsequent to the Phase I ESA, a Phase II ESA was initiated at the facility in August 1995 by CRA. The Phase II ESA was performed to confirm or deny contaminant releases into the environment which may have occurred at each identified PAOC. Additional Phase II ESA activities were conducted at the facility in April 1996 in order to address data gaps and to better characterize the extent of contamination at certain PAOCs where the August 1995 Phase II ESA activities had indicated the presence of a contaminant release. Although these are privileged and confidential, prepared at the request of counsel documents, the data contained in the reports were provided to NYSDEC (Hartnett 1996) and were used throughout the preparation of this Supplemental RI Report.

The following PAOCs, as indicated on Figure 1-10, were investigated during the Phase II ESA:

#1 Abandoned underground oil sumps and tanks. The Phase I ESA identified eight hydraulic oil sumps and five hydraulic oil USTs as a PAOC. Upon further review, thirteen hydraulic oil sumps were identified by GM. As indicated on Figure 1-3, sumps are labeled as A through M and tanks are labeled as N through R. The sumps and tanks are located throughout the manufacturing building and were used to collect hydraulic oil from trenches around injection molders. The tanks

were removed, and the sumps were taken out of service by filling them with sand, gravel, and/or concrete in the mid 1980's.

- #2 Former PCB oil USTs. The Phase I ESA identified two potential
 former PCB oil USTs located on the eastern side of the manufacturing
 building as a PAOC. No documents or information regarding the history
 of the tanks are available. These tanks were not located during the Phase
 II ESA and are suspected to have been removed.
- #3 Former thinner tanks. The Phase I ESA identified the need to further evaluate the extent of the solvent release associated with the former operation of three thinner USTs associated with facility painting operations. As discussed in Section 1.2.4, an investigation was performed by EDI, and a remedial action plan was developed and implemented (EDI 1986b). The EDI investigation did not indicate whether the contaminated plume extends beneath the manufacturing building, which was the focus of the Phase II ESA sampling. The PAOC is located at the northwest corner of the manufacturing building, as indicated in Figure 1-10.
- #4 Electroplating wastewater treatment tanks. The Phase I ESA
 identified two aboveground concrete tanks located to the south and east
 of the IWT plant building as a PAOC. The tanks were formerly used for
 the treatment of chromium and cyanide residues from electroplating
 operations.
- #5 Former liquid waste incinerator area. The Phase I ESA identified
 a former liquid waste incinerator area and two 1,500 gallon feed tanks
 that were operated in the IWT plant between 1968 and 1972 as a PAOC.
 The incinerator was used to burn waste or unrecyclable solvents, paints,
 and oils. This PAOC is located in the vicinity of the existing Hazardous
 Waste Accumulation Area at the IWT plant, as indicated on Figure 1-10.
- #6 Hydrochloric acid spill area. The Phase I ESA identified an area in the basement of the IWT plant where a hydrochloric acid spill occurred in 1985 as a PAOC.
- #7 On-site landfill. The Phase I ESA identified an on-site landfill, occupying approximately 3 acres, located northwest of the manufacturing building as a PAOC. The landfill was used from 1952 to 1961 or 1962 for the disposal of boiler fly ash and bottom ash, paint and buffing sludges, plating wastes (estimated 10 cu yd per year), general trash, and construction debris. Six to eight feet of soil/clay was placed on the

landfill in 1962 or 1964. Disposal of boiler fly ash and construction debris continued until about 1970. It is unclear whether the material placed in the landfill after 1964 was placed on top of the soil/clay, or in a different area of the landfill.

- #8 Acid-alkali bunker. Subsequent to the Phase I ESA, GM identified
 the acid-alkali bunker, also known as the main IWT sump, as a PAOC.
 The acid/alkali bunker received discharge from the process sewer system.
 From the acid/alkali bunker, wastewater was pumped to the IWT plant.
 The acid/alkali bunker is adjacent to the north side of the manufacturing
 building, as indicated on Figure 1-10.
- #9 Sulfur dioxide (SO₂) scrubber area. Subsequent to the Phase I ESA, the SO₂ scrubber area was identified as a PAOC by GM. The scrubbers were formerly operated as part of the IWT plant to remove SO₂ from the boiler flue gas stream.
- #10 General storage area. The general storage area consists of a concrete pad located east of the IWT plant, which was identified by GM as a PAOC subsequent to the Phase I ESA. This area was used for storage of various facility equipment (e.g., conveyors, fork trucks) prior to disposal of the equipment.
- #11 Dock leveler sumps in the east and west receiving docks. Loading
 dock leveler sumps were identified as a PAOC by GM subsequent to the
 Phase I ESA. The sumps were formerly a part of the manufacturing
 building's east and west receiving docks, and potentially formerly
 contained PCB hydraulic oil.
- #12 Compactor area. The compactor area was identified by GM as a PAOC subsequent to the Phase I ESA. The compactor was formerly located between the original manufacturing building and the building addition, which is in the northwestern corner of the manufacturing building.
- #13 Sumps in former plating area. Seven sumps formerly used in electroplating operations located throughout the manufacturing building were identified as a PAOC by GM subsequent to the Phase I ESA. The sumps were used for the collection of electroplating fluids which contained chromium, copper, nickel and cyanide.
- #14 Former paint shop. During the August 1995 sampling in the vicinity of the former plating area sumps, GM identified the former paint shop as a PAOC due to the volatile organic constituent (VOC) detections

in borings BH-7 and BH-9 in that area. The former paint shop occupies an area of approximately 28,000 ft² and is located near the center of the manufacturing building, as indicated on Figure 1-10. The former paint shop was originally constructed in 1963 to provide for an automated parts painting system for the parts created in the manufacturing process. Various solvents were used and stored within the paint shop.

#15 Storm water sewer trench. A portion of the inactive storm sewer trench shown in Figure 1-9 under the manufacturing building was investigated in April 1996 to evaluate whether hydraulic oil releases from underground sumps and/or tanks migrated along the storm sewer trench. This portion of the storm sewer trench was selected for the investigation because it was the portion of the storm sewer trench leading to oil/water collection sump #5 (where oil has been observed) and based on its proximity to total petroleum hydrocarbons detected in soil samples collected in fill surrounding abandoned hydraulic oil sumps during the 1995 sampling activities. The storm water sewer trench contains vitrified clay pipe that was formerly used to convey storm water originating from the manufacturing building's roof drains. The use of the storm water sewer trench was discontinued in the mid 1980's, when a replacement system consisting of overhead lines was built and the original system was plugged. Several oil/water collection sumps were installed within the storm water sewer trench to remove oil or water that may have accumulated within the former storm water drainage system. The contents of these sumps are pumped to the IWT plant for treatment and disposal.

1996 NMPC Factory Avenue soil sampling. NMPC installed thirty soil borings along the north and south sides of Factory Avenue to evaluate soil conditions at proposed power pole locations. Nine poles were installed on the south side of Factory Avenue in the vicinity of the facility, and soil samples were collected and analyzed for PCBs (NMPC 1996).

1996 O'Brien & Gere utility pole location sampling program. O'Brien & Gere installed three soil borings along the facility southern property boundary to evaluate soil conditions at proposed telephone pole locations. Soil samples were collected and analyzed for PCBs (O'Brien & Gere 1996a).

1995-1996 O'Brien & Gere Outfall 004 sewer line sampling program. O'Brien & Gere collected samples from the Outfall 004 sewer line in 1996 to evaluate the source of PCBs to the Outfall 004 discharge.

1998/1999 O'Brien & Gere Supplemental RI sampling program. O'Brien & Gere installed and sampled 18 new monitoring wells, completed and sampled 46 soil borings, and collected 31 surface soil samples. The locations of the new monitoring wells and soil borings are illustrated on Figures 2-2 and 2-3, respectively. In addition, 40 existing ground water monitoring wells were sampled. Samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), PCBs, and site-related metals (arsenic, chromium, copper, lead, nickel, and zinc). In addition, some samples were also analyzed for target compound list/target analyte list (TCL/TAL) metals, and TCL pesticides, and five surface soil samples were analyzed for dioxins and furans. The Supplemental RI work was conducted to address data needs identified by NYSDEC for the site based on NYSDEC's review of the preliminary RI/FS report. NYSDEC's specific needs were as follows:

- horizontal and vertical extent of ground water contamination at the site
- characteristics of ground water flow within the glacial till (unless it can be demonstrated, with the available data, that ground water contamination does not exist within that unit)
- current ground water data for evaluation of construction worker direct contact exposure pathways
- adequate analytical results (VOCs, SVOCs, PCBs/pesticides, inorganics) for site wide ground water
- background off-site ground water conditions
- migration pathways presented by subsurface utilities
- presence of PCB non-aqueous phase liquid (NAPL) and solvent dense non-aqueous phase liquid (DNAPL)
- background surface and subsurface soil data
- investigation of solid waste management units (SWMUs) identified in NYSDEC's 1991 draft Part 373 hazardous waste management permit
- · subsurface soil VOC data for risk assessment
- · surface soil data for risk assessment
- comprehensive sampling for metals in ground water across site

 evaluation of potential presence of PCBs in ground water in several major portions of site.

1.2.6 Additional NYSDEC data collection activities

Additional data collection efforts were conducted by or on behalf of NYSDEC in various locations in Ley Creek. These data collection efforts, conducted between 1987 and 1996, included sampling and analysis of sediment and surface water. Data collected prior to 1996 is presented in the 1997 Preliminary RI/FS Report. Data collection efforts conducted in 1996 are summarized as follows and are further discussed in Sections 2 and 3 of this report.

1987 Former Ley Creek Bed Sampling - NYSDEC collected four sediment samples in the former Ley Creek bed west of Rt. 11 on May 28, 1997 for PCB analysis. The flow path of Ley Creek was redirected north of the original creek bed during dredging activities in the early 1970's (Momberger 1987).

1989/1990 Rotating Intensive Basin Studies (RIBS) Sampling - NYSDEC collected sediment and surface water samples from Ley Creek at the Park Street bridge as part of the RIBS water quality assessment program in 1989 and 1990. Samples were analyzed for a range of parameters, as discussed in Sections 2 and 3 (NYSDEC 1992).

1993 Salina Town Landfill Preliminary Site Assessment (PSA) Sampling - Ecology and Environment Engineering, P.C. collected surface water and sediment samples from Ley Creek in the vicinity of the Salina Town Landfill in 1993 on behalf of NYSDEC as part of the PSA for the Salina Town Landfill Site. Samples were analyzed for a range of parameters, as discussed in Sections 2 and 3 (Ecology and Environment 1994).

1996 NYSDEC Sampling - NYSDEC collected sediment and surface water samples from various locations in Ley Creek in 1996 for analysis for PCBs, VOCs, SVOCs, and inorganic parameters. Selected sediment samples were also analyzed for total organic carbon (TOC).

2. Site investigations

Section 2 presents a summary of the investigative efforts conducted at the site relative to environmental conditions. Media addressed include soil, ground water, storm water, and Ley Creek surface water, sediment, and fish. The site has been divided into eight sub-areas, as shown on Figure 2-1. Sample locations for each of the eight sub-areas are discussed below. Sample locations are identified on Figures 2-2 through 2-8.

2.1. Soil

Facility soil has been evaluated during several investigative programs at the facility. Soil boring installation, trench excavation, subsurface soil sample collection, and surface soil sample collection efforts are discussed in the following subsections.

2.1.1. Soil boring installation

A total of 274 soil borings were completed at or near the facility during the following investigations:

- 1983 Coal Pile Area SPDES Ground Water Monitoring Program
- 1985 EDI Hydrogeological Investigation and Phase II Hydrogeological Investigation
- 1985-1986 EDI Solvent Spill Hydrogeological Investigation
- 1988-1989 O'Brien & Gere Surface Impoundment Post-Closure Ground Water Monitoring Program
- 1990-1991 O'Brien & Gere Ley Creek Relief Interceptor Sewer Area IRM Sampling Program
- 1991 Onondaga County Ley Creek Relief Interceptor Sewer Area Sampling Program
- 1995-1996 CRA Phase II ESA

- 1996 NMPC Factory Avenue Soil Sampling Program
- 1996 O'Brien & Gere Utility Pole Location Sampling Program.
- 1998/1999 O'Brien & Gere Supplemental RI sampling program.

Investigations were generally performed between 1983 and 1999. A summary of soil boring installations during each soil investigation is presented below. A summary of soil boring depths is presented in Table 2-1. Soil boring logs for the 1998/1999 Supplemental RI are included in Exhibit A. Certain soil borings were later converted to ground water monitoring wells, as described in the following sections. A discussion of installation and sampling of ground water monitoring wells is provided in Section 2.2. Soil boring locations for the investigations described herein are presented on Figure 2-3.

1983 Thomsen Associates and Empire Soils Hydrogeologic Investigation. Six soil borings, designated B-1 to B-6, were installed by Thomsen Associates and Empire Soils in the vicinity of the former coal pile for SPDES ground water monitoring well construction. Borings were advanced using a 3¾ inch I.D. hollow stem auger and were terminated at depths of 26.5 ft (B-1), 30.5 ft (B-2), 26.0 ft (B-3), 26.5 ft (B-4), 21.5 ft (B-5), and 26.5 ft (B-6). Monitoring wells were installed within five of the six borings (B-1, B-2, B-4, B-5, and B-6). Remaining well locations are indicated on Figure 2-2 (Thomsen Associates and Empire Soils 1983).

1985 EDI Hydrogeological Investigation. From April 20, 1985 to June 4, 1985, EDI installed a total of thirty-seven borings at the facility. Soil borings were installed using 4-1/4 inch internal diameter (I.D.) hollow stem augers, as follows (EDI 1985a):

• Fourteen soil borings, designated P-1 to P-14, were installed either in, or adjacent to, the backfilled areas around various facility storm sewer pipelines. Ground water monitoring wells designated as "P" wells were installed into the borings. Locations of remaining "P" monitoring wells are indicated on Figure 2-2. At each "P" soil location, a soil boring was advanced adjacent to the storm sewer pipe, within the backfilled zone, until the bottom of the backfilled zone was reached. If the water table was encountered within the backfilled area, a ground water monitoring well was installed. If the water table was below the base of the backfill, the boring was abandoned and backfilled with a cement grout, and a new boring was advanced for installation of a ground water monitoring well

outside of the backfilled zone. At selected "P" locations, soil samples were collected as discussed in Section 2.1.3.

- Eighteen soil borings, designated W-1S to W-9S and W-1D to W-9D, were installed as part of the ground water monitoring well series designated as "W" wells, which consisted of ten pairs of deep and shallow wells. Locations of remaining "W" monitoring wells are indicated on Figure 2-2. The shallow borings were installed to the water table. The deep borings were terminated when the underlying lodgement till unit was encountered.
- Three borings, designated U-1S, U-1D, and U-2, were installed to construct "U" series wells which were intended to provide upgradient background data. "U" series wells also consist of pairs of deep and shallow wells. Locations of remaining "U" monitoring wells are indicated on Figure 2-2. Only a deep boring was required due to the shallow depth at which the till was encountered at U-2.
- Two borings, designated WT-1 and WT-3, were installed to construct "WT" wells, which are water table wells. Locations of remaining "WT" monitoring wells are indicated on Figure 2-2.

1985 EDI Phase II Hydrogeological Investigation. From December 5, 1985 to December 12, 1985, a total of twenty-five soil borings were installed at the facility by EDI. Soil borings were installed using 4-1/4 inch I.D. hollow stem augers, as follows (EDI 1986a):

- Eleven borings, designated 003-1 to 003-11, were installed in the vicinity of Outfall 003, as indicated on Figure 2-3, to evaluate the extent of PCB concentrations.
- Six soil borings, designated WT-10 to WT-15, were installed in the area
 of the IWT plant to provide additional information on the distribution of
 VOCs in ground water and oil and PCBs in soil. Shallow ground water
 monitoring wells were installed within these borings. Remaining ground
 water monitoring wells are shown on Figure 2-2.
- Eight soil borings, designated WT-6 to WT-9, WT-10-S, W-11-S, W-10-D, and W-11-D, were installed in the vicinity of the administration building after TCE was detected in this area during the 1985 Hydrogeological Investigation. Ground water monitoring wells were subsequently installed in the soil borings. Remaining ground water monitoring wells are shown on Figure 2-2.

29

1985-1986 EDI Solvent Spill Hydrogeological Investigation. During 1985 and 1986, a total of twenty-four soil borings were installed in the area of the former thinner tanks on the west side of the facility to evaluate the extent of thinner present in soil and ground water, as follows (EDI 1986b):

- From April 4, 1985 to April 9, 1985, EDI installed ten soil borings, designated T-1 to T-10, to evaluate the potential extent of thinner in the vicinity of three former underground thinner tanks and related piping. The borings were advanced using 3¾ inch I.D. hollow stem augers and were terminated at a depth of 10 ft below ground surface (bgs). Shallow ground water monitoring wells were subsequently installed within the soil borings. Locations of "T" borings/monitoring wells are indicated on Figures 2-2 and 2-3.
- From March 25, 1986 to March 31, 1986, EDI installed fourteen additional soil borings, designated T-11, T-13, T-15, T-16, T-18, T-21, T-23, T-24, T-25, T-26, T-29, T-30, T-33B and T-34, downgradient of the former thinner tanks. The borings were advanced using 4¼ inch I.D. hollow stem augers and were terminated at a depth of 15 ft bgs. Monitoring wells were installed within ten of the fourteen borings. The remaining four borings were backfilled to the surface with a mixture of natural soil and bentonite. Locations of "T" borings/monitoring wells are indicated on Figures 2-2 and 2-3.

1988-1989 O'Brien & Gere Surface Impoundment Post-Closure Ground Water Monitoring Program Ten soil borings, designated MW-1S to MW-5S and MW-1D to MW-5D, were installed in the vicinity of the surface impoundments in September 1985 for post-closure monitoring well construction. The borings were advanced using 3½ inch hollow stem auger drilling methods. Monitoring well locations are indicated on Figure 2-2 (O'Brien & Gere 1988, 1992c).

1990-1991 O'Brien & Gere Ley Creek Relief Interceptor Sewer Area IRM sampling program. A series of soil borings were installed along the Ley Creek Relief Interceptor Sewer pipeline route in 1990 to identify the limits of soil excavation and disposal efforts to be conducted as an IRM by GM at the facility. Sixteen borings, designated B-1 to B-16, were installed in April 1990. Two additional borings, B-17 and B-18, were installed on October 5, 1990 and December 20, 1990, respectively. Borings were installed using hollow stem auger drilling techniques as summarized in Table 2-1 (O'Brien & Gere 1990, 1991). Boring locations are indicated on Figure 2-3. Soil samples were collected from these borings, as discussed in Section 2.1.3.

1991 Onondaga County Ley Creek Relief Interceptor Sewer Area Sampling Program. As part of the installation of the Ley Creek Relief Interceptor Sewer in 1991, Onondaga County's contractor installed five soil borings (LC-3 to LC-7) along the pipeline route for collection of samples for analysis for PCBs (Onondaga County 1991). Boring locations are indicated on Figure 2-3. Logs for these borings were not available. Soil samples were collected from these borings, as discussed in Section 2.1.3.

1995-1996 CRA Phase II ESA. From August 3, 1995 to August 11, 1995, forty boreholes were installed by CRA at various locations at the facility. Soil boring locations corresponded with PAOCs identified during the Phase I ESA conducted by Entrix and by GM subsequent to the Phase I ESA, as outlined in Section 1.2.5. From April 1, 1996 to April 12, 1996, CRA installed thirty additional soil borings to address data gaps and better characterize the extent of contamination at certain PAOCs where the August 1995 Phase II ESA had indicated the presence of a contaminant release (i.e., abandoned underground oil sumps and tanks, sumps in former plating area, former paint shop, and storm water sewer trench). Soil borings were advanced by either hand auger or a trailer mounted drill rig utilizing a water-cooled core drill to core through the concrete floor, where appropriate. Soil sample collection is discussed in Section 2.1.3.

A summary of boring locations with respect to PAOCs is presented in Table 2-2. Boring locations are depicted on Figure 2-3, .

1996 NMPC Factory Avenue soil sampling program. A soil sampling program was performed on April 18 and 19, 1996 by NMPC. A total of thirty soil borings were installed adjacent to the north and south sides of Factory Avenue. Nine of the thirty borings were installed on the south side of Factory Avenue in the vicinity of the facility. Boring locations corresponded with five proposed utility pole locations, as well as 25 ft offsets on either side of two proposed locations. Borings were designated by proposed pole location numbers 35, 36E, 36C, 36W, 37E, 37C, 37W, 38 and 39. Borings were installed to a depth of 7 ft bgs. The borings were advanced using a Geoprobe® rig that inserted a hollow Geoprobe® push-rod into the soil to extract samples. Sampling was conducted as described in Section 2.1.3. Soil boring locations are indicated on Figure 2-3 (NMPC 1996).

1996 O'Brien & Gere utility pole location sampling program. On May 30, 1996, O'Brien & Gere installed three soil borings, designated S11, S12 and S13, along the facility's southern property boundary in order to evaluate soil quality prior to the proposed installation of three utility poles to convey a new electrical service to the IWT plant. The soil borings were installed at

160 ft intervals to depths of 5 ft bgs using a 2-3/4 inch outside diameter (O.D.) Geoprobe® sampler with an acetate tube liner. Samples were obtained as discussed in Section 2.1.3. Soil boring locations are depicted on Figures 2-3 and 2-4 (O'Brien & Gere 1996a).

1998/1999 O'Brien & Gere Supplemental RI sampling program. Between July 6 and 22, 1999 18 soil borings were completed, and between October 18 and October 25, 1999, 29 soil borings were completed. The locations of the soil borings are illustrated on Figure 2-3. Soil borings were installed using 4-1/4 inch I.D. hollow stem augers in accordance with the Final Supplemental RI/FS Work Plan, as follows:

- Six soil borings (OBG-TB-15, OBG-TB-14, OBG-TB-5, OBG-TB-19, OBG-TB-1, and OBG-TB-4) were installed in the manufacturing building downgradient of oil/water collection sumps 2, 3, 6, 7, and 8 and the fire protection line. These soil borings were installed to evaluate the nature and extent of soil contamination beneath the manufacturing building.
- Nine soil borings (OBG-TB-2, OBG-TB-3, OBG-TB-6, OBG-TB-7, OBG-TB-8, OBG-PZ-4, OBG-PZ-5, OBG-PZ-6, OBG-PZ-8) were installed in the manufacturing building along abandoned lines leading to oil/water collection sumps 1 and 5 to evaluate the potential presence of NAPL. Four of these borings were completed as piezometers.
- Four soil borings (OBG-TB-12, OBG-TB-13, OBG-TB-16, and OBG-TB-17) were installed in the manufacturing building in the vicinity of the former paint room to evaluate subsurface VOC concentrations that may have resulted from operations in this area.
- Two soil borings (OBG-TB-22 and OBG-TB-23) were installed in the parking lot in the southeast property area to evaluate clean subsurface conditions beneath the parking lot.
- Six soil borings (OBG-TB-30, OBG-TB-31, OBG-TB-32, OBG-TB-38, OBG-TB-43, and OBG-TB-44) were installed in the IWT plant area. Soil borings OBG-TB-30 and OBG-TB-38 were installed to evaluate subsurface soils in the former TCE storage area. Soil borings OBG-TB-31, OBG-TB-32, OBG-TB-43, and OBG-TB-44 were installed to evaluate subsurface soils in the former fuel tank area. Though only two soil borings were included in the Final Supplemental RI/FS Work Plan to evaluate the former fuel tank area, four borings were installed during soil boring installation activities, due to uncertainty of the location of the

tanks. Following installation of the borings, the tank closure report was located and showed that the tanks had been located east of the boring locations. The closure report also indicated that confirmatory samples showed no detections. The report is included as Exhibit F. OBG-TB-38 and well OBG-13 were also installed to evaluate NAPL in this area.

- Four soil borings (OBG-TB-20, OBG-TB-21, OBG-TB-39 and OBG-TB-40) were installed in the vicinity of the mold storage building, in the southwest property area. Soil borings OBG-TB-39 and OBG-TB-40 were installed to evaluate the potential presence of NAPL in the mold storage building area. Soil borings OBG-TB-20 and OBG-TB-21 were installed to evaluate the subsurface in the storage pad area.
- One soil boring (OBG-TB-33) was installed to evaluate background conditions. This boring was installed south of the mold storage area. Though the Final Supplemental RI Work Plan called for analysis of each 2-foot interval, inadvertently only one interval was analyzed from this boring.
- Three soil borings (OBG-TB-45, OBG-TB-46 and OBG-TB-47) were installed in the former thinner tanks area. These soil borings were installed to evaluate potential subsurface contamination in the transformer/switch house area.
- Three soil borings (OBG-TB-24, OBG-TB-36, and OBG-TB-37) were installed in the northeast property area to evaluate clean subsurface conditions beneath the parking lot and evaluate the potential presence of NAPL. Although not required by the Final Supplemental RI Work Plan, two soil borings, OBG-TB-34 and OBG-TB-35, were installed in the vicinity of oil/water collection sumps 1 and 4, respectively. These soil borings were screened for NAPL. Since these borings were not required by the Work Plan, samples from these locations were not analyzed.
- Seven soil borings (OBG-TB-25, OBG-TB-26, OBG-TB-27, OBG-TB-28, OBG-TB-29, OBG-TB-41 and OBG-TB-42) were installed in the northern property area. OBG-TB-25, OBG-TB-26, OBG-TB-27, and OBG-TB-28 were installed to evaluate subsurface conditions resulting from various fill activities in this area. These borings were screened for NAPL and VOCs at 2-foot intervals. Based on observations during field screening activities, and with NYSDEC concurrence, samples were not collected and submitted for analyses at 2-foot intervals as stated in the Final Supplemental RI/FS Work Plan. Instead, three samples were collected from each boring, one at the ground surface, a second immediately above the water table, and a third based on field screening

results. OBG-TB-41 and OBG-TB-42 were installed to evaluate NAPL in the vicinity of closed surface impoundment #1. OBG-TB-29 was installed to evaluate the presence of closed surface impoundment #1 beneath the building.

During the 1998/1999 Supplemental RI, soil borings were installed to the following depths, in accordance with the Final Supplemental RI/FS Work Plan: borings installed to evaluate NAPL were installed to the till; borings installed within the manufacturing building to evaluate NAPL were installed to approximately 1 ft below the sewer bedding; the other borings installed site-wide to evaluate subsurface soils were installed to approximately 2 feet into the native soil or to the water table.

Soil boring locations were surveyed in November 1999. The 1998/1999 Supplemental RI soil boring locations are depicted on Figure 2-3.

2.1.2. Trench excavation

1985 EDI Hydrogeological Investigation. On May 14, 1985, four trenches were excavated by backhoe into the edge of the berm between the north building addition and the parking lots on the north side of the facility. The locations are depicted on Figure 2-4. The four locations were selected based on information which indicated these trenches might potentially intercept oil which may have been present on the surface of the ground water and to provide information to assist in evaluating the source. The trenches, which were approximately 9 ft deep, were allowed to stand open for about 6 hrs and were then inspected and backfilled. During trenching activities, fine silt and clay layering in lacustrine sediments and varying ground water depths in each trench were also observed. Trench logs are presented in the 1997 Preliminary RI/FS Report(EDI 1985a).

1998/1999 O'Brien & Gere Supplemental RI Sampling program. On November 1 through 11, 1999, twelve test trenches were excavated by backhoe in the northern property area, in accordance with the Final Supplemental RI/FS Work Plan. Test trenches 1 through 4 were completed to evaluate the limits of the on-site landfill and characterize its contents. Test trenches 5 through 12 were completed to evaluate the location of the former drainage swale. The location of the former drainage swale, limits of the on-site landfill (both based on visual observations during trench installation), test trench locations, and associated samples are depicted on Figure 2-5. Trench logs are presented in Exhibit B.

Test trench soil samples T01-1, T01-2, T01-3, T01-4, T02-1, T02-2, T02-3, T02-4, T03-1, T03-2, T03-3, T03-4, T03-5, T03-6, T04-1, T04-2, and T04-3 were collected from the on-site landfill area using a stainless steel bowl and spoon. T02-1 and T03-2 were submitted to O'Brien & Gere Laboratories, Inc. in Syracuse, New York for a complete TCL/TAL analysis. The remaining soil samples collected from the on-site landfill area were analyzed for VOCs, SVOCs, PCBs, mercury, cyanide, and site-related metals.

Test trench soil samples T05-1, T05-2, T06-1, T07-1, T08-1, T08-2, T08-3, T09-1, T10-1, T11-1, T12-1, and T12-2 were collected from the trenches excavated in the vicinity of the former drainage swale using a stainless steel bowl and spoon. These samples were analyzed for VOCs, SVOCs, PCBs, cyanide and site-related metals by O'Brien & Gere Laboratories, Inc.

2.1.3. Soil sampling and analysis

A summary of soil sampling and analyses conducted during the soil boring activities is described below. Table 2-1 includes a summary of soil samples collected from borings.

1983 Thomsen Associates and Empire Soils Hydrogeologic Investigation. In each of the six soil borings, soil samples were collected at 2 ft intervals using split spoon sampling procedures. Soil samples were visually examined.

1985 EDI Hydrogeological Investigation. Soil sampling during soil boring/monitoring well installation was conducted as follows during EDI's 1985 Hydrogeological Investigation (EDI 1985a). During the "P" well soil boring process, continuous soil samples were obtained with split barrel samplers in accordance with ASTM Method D-1586-84. Fourteen selected "P" well soil samples were selected based on visual examination for the presence of oil and were submitted for analysis for PCBs using USEPA Method 608 by RECRA Environmental Laboratories. Sampled intervals are summarized in Table 2-1.

From the "W" well series, continuous soil samples were obtained in four of the deep borings (W-3D, W-4D, W-7D, and W-8D) and at 5-ft intervals in five of the borings (W-1D, W-2D, W-6D, W-8D, and W-9D). One thin walled tube sample was obtained in accordance with ASTM Method D 1578-83 from each of six deep borings for the purpose of performing undisturbed laboratory vertical permeability analysis (W-1D, W-2D, W-6D, W-7D, W-8D, and W-9D). Deep borings were terminated when the glacial till unit was encountered. In four of the borings, the glacial till was cored with an NX core barrel for the purpose of obtaining relatively undisturbed

samples for laboratory determinations of vertical permeability (W-2D, W-6D, W-7D, and W-9D). Vertical permeability testing was conducted according to the protocol presented in Exhibit C of the 1997 Supplemental RI Report by Empire Soils Investigations, Inc. - Thomsen Associates in Groton, New York.

Soil samples collected during the "U" series soil boring installation were obtained at 5-ft intervals in the deep borings; no soil samples were taken in the shallow borings. Samples were not submitted for laboratory analysis.

1985 EDI Phase II Hydrogeological Investigation. Thirty soil samples were collected from the eleven soil borings at various depths in the area of Outfall 003. These samples were analyzed for PCBs and four samples were analyzed for oil and grease using Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater (USEPA 1979). Sixteen soil samples were collected from the six soil borings in the area of the IWT plant at various depths. These samples were analyzed for PCBs and oil & grease. Based on information from the first phase of the 1985 EDI Hydrogeologic Investigation, there did not appear to be impacted soil in the area of the administration building. Therefore, no soil samples were collected from the eight soil borings installed in this area (EDI 1986a).

1985-1986 EDI Solvent Spill Hydrogeological Investigation. Soil samples were collected continuously from 1 to 15 ft bgs every 2 ft using a split barrel sampler for soil classification and possible chemical analysis. Soil samples from the initial borings were analyzed either at the facility or in EDI's laboratory by an EDI chemist using a gas chromatograph. Eighty-nine soil samples were analyzed for toluene, ethylbenzene and total xylenes. The results of these analyses were used to evaluate the positions for monitoring well placement (EDI 1986b).

1988-1989 Surface Impoundment Post-Closure Ground Water Monitoring Program During drilling of the ten soil borings, designated MW-1S to MW-5S and MW-1D to MW-5D, soil samples were collected at 5-ft intervals using split barrel sampling procedures according to ASTM Method D-1586-84. Split spoon samples were collected during drilling from the screen intervals of the monitoring wells and at changes in lithology, and were submitted for grain size analyses to Parratt Wolff, Inc., in East Syracuse, New York (O'Brien & Gere 1989a).

1990-1991 O'Brien & Gere Ley Creek Relief Interceptor Sewer Area IRM sampling program. Prior to the 1991 Ley Creek Relief Interceptor Sewer Area IRM, O'Brien & Gere conducted preliminary soil boring and sampling

activities. Soil samples were collected continuously from soil borings B-1 through B-16 from a 2 ft depth until native soil was encountered (10 to 12 ft) and submitted for PCB analyses using USEPA Method 8080 by OBG Laboratories, Inc., in Syracuse, New York (O'Brien & Gere 1990).

On October 5, 1990, one soil sample was collected from the 5-7 ft interval from boring B-17 for waste characterization analysis using USEPA SW-846 Methods and ASTM Methods by Aptus Environmental Services in Coffeyville, Kansas. Analyses included ash, heat of combustion, PCBs, total organic halogen, toxicity characteristic leaching procedure (TCLP) metals, SVOCs, and VOCs. An additional soil sample from the area of B-17 was collected on November 9, 1990 and analyzed for TCLP chromium. Finally, three soil samples from boring B-18 were collected from the 5-7 ft, 7-9 ft, and 9-11 ft intervals and analyzed for TCLP chromium (O'Brien & Gere 1991).

Confirmatory soil sampling was conducted from June 17, 1991 to June 26, 1991 by O'Brien & Gere as part of the Ley Creek Relief Interceptor Sewer Area IRM to evaluate if soil in the vicinity of Onondaga County's proposed 48-inch sewer pipeline met the IRM clean-up criterion for PCBs (10 mg/kg). Following excavation of soil above the proposed sewer pipeline location, confirmatory soil sampling was completed in accordance with the IRM Work Plan (O'Brien & Gere Technical Services 1991). Seven confirmatory soil samples were taken at the base of the excavation at 25 ft intervals using a trowel to dig 12 inches below the base of the pipeline excavation. In addition, four soil samples were collected at the location of borings B-10, B-11, B-12 and B-15. Four additional soil samples were obtained from below the base of the excavation (depths of approximately 16 ft from the road surface) at 50 ft intervals. Sample locations are indicated on Figure 2-3. A total of fifteen grab samples were analyzed for PCBs using USEPA Method 8080 by OBG Laboratories, Inc., in Syracuse, New York (O'Brien & Gere 1990).

1991 Onondaga County Ley Creek Relief Interceptor Sewer Area Sampling Program. In conjunction with installation of the Ley Creek Relief Interceptor Sewer, Onondaga County collected twenty-two soil samples from soil borings LC-3 to LC-7 from various depths up to 14.5 ft. Samples were analyzed for PCBs (Onondaga County 1991). Onondaga County also collected fifteen subsurface soil samples from the pipeline excavation during construction in the vicinity of the Former IFG Facility. Samples were analyzed for PCBs (Onondaga County 1991).

1993 O'Brien & Gere storage cell confirmation sampling program. On October 15, 1993, O'Brien & Gere collected ten confirmatory soil samples

from the former soil storage cell area (approximately 200 by 200 ft) located in the northwestern corner of the GM property. Collected with a hand trowel, these ten soil samples were analyzed for PCBs using USEPA Method 8080 by OBG Laboratories, Inc., in Syracuse, New York. Sample locations are indicated on Figure 2-3 (O'Brien & Gere 1994).

1995 - 1996 CRA Phase II ESA. From August 3, 1995 to August 11, 1995, a total of thirty-six soil samples were collected as part of the Phase II ESA. An additional thirty-two soil samples were collected during the April 1996 Phase II ESA activities. Soil samples collected from the borings were visually and texturally logged by a CRA geologist and sent to Galson Laboratories in Syracuse, New York, for specific analysis. Soil samples were analyzed for parameters associated with the PAOC at which they were collected. Soil samples collected and specific analyses conducted are summarized in the soil boring summary in Table 2-1.

1996 NMPC Factory Avenue Sampling Program. At each of the nine boring locations south of Factory Avenue during the NMPC sampling program, continuous soil samples were collected to a depth of 7 ft, with the exception of a 6 ft depth at pole location 37. Continuous soil cores were collected at each location using clear acetate liners inserted into a hollow Geoprobe® push-rod. One composite soil sample was prepared for each boring and analyzed for PCBs using USEPA Method 8080 by Kanti Technologies, Inc. in Amherst, New York. At each of the nine soil boring locations south of Factory Avenue, additional individual soil samples were collected at each 1 ft depth interval. Individual soil samples were visually examined by a geotechnical engineer at Kanti Technologies. Eighteen of the sixty two individual soil samples exhibited color other than brown or grayish brown, and were subsequently considered visually discolored and analyzed for PCBs using USEPA Method 8080 (NMPC 1996).

1996 O'Brien & Gere utility pole location sampling program. O'Brien & Gere collected soil samples from the three soil borings installed at proposed telephone pole locations using a 2¾ inch O.D. Geoprobe® sampler with an acetate tube liner. Samples were obtained in 1 ft intervals to a total depth of 5 ft bgs. Samples were visually examined, and characteristics were logged. A composite sample from each boring was analyzed for PCBs using USEPA Method 8080 by O'Brien & Gere Laboratories, Inc., in Syracuse, New York (O'Brien & Gere 1996a).

1998/1999 O'Brien & Gere Supplemental RI sampling. In accordance with the Final Supplemental RI/FS Work Plan, O'Brien & Gere collected a total of 143 soil samples were collected from 38 soil borings. The locations of the

soil borings are illustrated on Figure 2-3. Nine soil borings installed in the manufacturing building (OBG-TB-2, OBG-TB-3, OBG-TB-6, OBG-TB-7, OBG-TB-8, OBG-PZ-4, OBG-PZ-5, OBG-PZ-6, OBG-PZ-8) were used to evaluate the presence of NAPL beneath the manufacturing building using field screening with an ultraviolet lamp. These samples were not submitted for laboratory analyses.

Soil boring OBG-TB-4 was installed inside the manufacturing building to investigate the fire protection line. This sample was originally intended to be installed in the sewer line leading to oil/water collection sump #4, however, because it was clarified based on historical drawings that oil/water collection sump #4 was a blind sump with no sewer lines leading to it, the sample was installed to investigate potential constituent migration along the fire protection line bedding. Samples from this boring were screened for the presence of NAPL and not submitted for laboratory analysis.

Soil samples were collected from soil borings were collected using a 4.25-inch hollow stem auger and split spoon sampler. For soil borings installed in unpaved areas, three samples were selected and submitted to the laboratory for analyses. One sample was collected at the surface (0 to 1 ft), a second was collected immediately above the water table, and a third was collected based on field screening results.

For borings installed in paved areas, two subsurface soil samples were collected. One sample was selected immediately above the top of the water table, and a second sample was selected between the surface and the water table based on field screening results.

For soil samples collected adjacent to oil/water collection sumps #2, 3, 6, 7, and 8 (OBG-TB-15, OBG-TB-14, OBG-TB-5, OBG-TB-19, OBG-TB-1) soil samples were collected at 2-ft intervals down to 1-ft below the sewer backfill materials.

Subsurface soil samples were submitted to O'Brien & Gere Laboratories, Inc. and analyzed in accordance with the Final Supplemental RI/FS Work Plan for constituents including VOCs, SVOCs, PCBs, site-related metals, and cyanide. Samples collected adjacent to oil/water collection sumps (OBG-TB-15, OBG-TB-14, OBG-TB-5, OBG-TB-19, OBG-TB-1) were analyzed for VOCs, SVOCs, PCBs, and site-related metals.

In addition to the samples collected from the 0 to 1 ft sample interval of the soil borings, site surface soil was evaluated during the 1998/1999 O'Brien & Gere Engineers Supplemental RI sampling program, through the collection of surface soil samples. A total of 31 surface soil samples were

collected on October 26 and 27, 1999. Surface soil samples were collected using stainless steel spoons, bowls, and trowels, in accordance with the Final Supplemental RI/FS Work Plan. Surface sample locations are depicted in Figure 2-6. Surface soil samples were analyzed as follows:

- Four surface soil samples (SS-99-18, SS-99-19, SS-99-20, and SS-99-21)
 were collected from the southeast property area to evaluate potential
 surface soil contamination in this area. Surface soil samples collected
 from the southeast property area were analyzed for VOCs, PCBs,
 site-related metals, and cyanide. SS-99-21 was submitted for a complete
 TCL/TAL analysis.
- Ten surface soil samples (SS-99-22, SS-99-23, SS-99-24, SS-99-25, SS-99-26, SS-99-27, SS-99-28, SS-99-29, SS-99-30, and SS-99-31) were collected from the IWT Plant Area to evaluate potential conditions related to past operations of an incinerator and other waste treatment plant processes in this area. Surface soil samples collected from this area were analyzed for VOCs, SVOCs, PCBs, site-related metals, and cyanide. SS-99-24, SS-99-25, SS-99-26, SS-99-27, and SS-99-31 were also analyzed for chlorinated dioxins and furans. SS-99-24 was submitted for complete TCL/TAL analysis.
- One surface soil sample (SS-99-05) was collected from the former thinner tanks area to provide risk assessment data. This sample was submitted for complete TCL/TAL analysis.
- Four surface soil samples (SS-99-14, SS-99-15, SS-99-16, and SS-99-17) were collected from the northeast property area to obtain risk assessment data in the vicinity of the administration building. These samples were analyzed for VOCs, SVOCs, PCBs, site-related metals, and cyanide. SS-99-17 was submitted for complete TCL/TAL analysis.
- Eight surface soil samples (SS-99-06, SS-99-07, SS-99-08, SS-99-09, SS-99-10, SS-99-11, SS-99-12, and SS-99-13) were collected from the on-site landfill in the northern property area to characterize surface conditions for risk assessment purposes. These samples were analyzed for VOCs, PCBs, site-related metals, mercury and cyanide. SS-99-10 was submitted for complete TCL/TAL analysis.
- Four surface soil samples (SS-99-01, SS-99-02, SS-99-03, and SS-99-04)
 were collected from the Southwest Property Area to evaluate surface
 conditions in the vicinity of the hazardous waste storage area. Surface
 soil samples SS-99-01, SS-99-03, and SS-99-04 were analyzed for

VOCs, SVOCs, PCBs, site-related metals and cyanide. Surface soil sample SS-99-02 was submitted for complete TCL/TAL analysis.

Surface soil samples were analyzed by O'Brien & Gere Laboratories, Inc. in Syracuse, New York. Chlorinated dioxin/furan analyzes were completed by AXYS Analytical Services Ltd. in British Columbia, Canada.

2.2. Ground water

Site ground water has been evaluated during several investigative programs at the site. Ground water monitoring well installation, water level measurements, permeability measurements, in situ hydraulic conductivity measurements, and ground water sampling and analyses are discussed in the following subsections.

2.2.1. Monitoring well installations

A total of 121 ground water monitoring wells were installed in the vicinity of the Former IFG Facility and Ley Creek Deferred Media during the following investigations:

- 1983 coal pile area SPDES ground water monitoring program
- 1985 EDI Hydrogeological Investigation and Phase II Hydrogeological Investigation
- 1985-1986 EDI Solvent Spill Hydrogeological Investigation
- 1986-1987 Hydrogeologic Investigation of Fill Area Along Ley Creek
- 1988-1989 O'Brien & Gere Surface Impoundment Post-Closure Ground Water Monitoring Program
- 1988-1989 O'Brien & Gere Ley Creek Dredged Material Area Field Investigation
- 1992 O'Brien & Gere Ley Creek Dredged Material Area RI.
- 1998/1999 O'Brien & Gere Supplemental RI sampling event.

41

Investigations were generally performed between 1983 and 1999. A summary of the monitoring well installation during each investigation is described below. Monitoring well locations described herein are presented

on Figure 2-2. Except where specifically discussed below, monitoring well construction consisted of 2-inch diameter 0.010-inch slot stainless steel screens connected to 2-inch diameter stainless steel pipes. A filter pack of clean medium-grade silica sand was placed around the well screen and extended approximately 1 ft above the top of the screen. A 2 ft bentonite seal was placed above the filter sand, and the remaining annular space was backfilled with a cement-bentonite grout mixture. Locking caps were placed on the riser pipes and curb boxes were installed over the well tops, flush with the ground surface. A summary of monitoring well specifications, including well depth, screened interval, casing materials and other pertinent information, is provided as Table 2-3. Monitoring well construction diagrams for wells installed in 1999 are included in Exhibit A. Monitoring well construction diagrams for wells installed prior to 1999 are included in Exhibit A of the 1997 Preliminary RI/FS Report.

1983 Thomsen Associates and Empire Soils Hydrogeologic Investigation. In 1983, five monitoring wells were installed as part of the SPDES program to monitor ground water quality in the vicinity of the coal yard near the powerhouse. These monitoring wells were designated B-1, B-2, B-4, B-5 and B-6. Remaining well locations are indicated on Figure 2-2. These wells were constructed with a 10 ft length of 2-inch diameter 0.020-inch slot screen connected to a 2-inch Schedule 40 PVC pipe (Thomsen Associates and Empire Soils 1983).

1985 EDI Hydrogeological Investigation. From April 20, 1985 to June 4, 1985, EDI installed a total of thirty-seven monitoring wells at the facility, as follows (EDI 1985a):

- Three monitoring wells, designated U-1S, U-1D and U-2, were installed near the southern portion of the facility to evaluate ground water quality hydraulically upgradient of the Former IFG Facility. Monitoring well U-1S was positioned to intersect the water table, and monitoring well U-1D was positioned to screen the most permeable zone within the lacustrine deposits. Monitoring well U-2 fully penetrates the lacustrine deposits due to the shallow depth at which till was encountered. Screen lengths were 5 ft for U-1S and 10 ft for U-1D and U-2.
- Two shallow monitoring wells, designated WT-1 and WT-3, were installed to investigate shallow ground water quality near the IWT plant and the east side of the manufacturing building, respectively. The "WT" wells are positioned to intersect the water table, and were constructed with 5-ft lengths of screen.

- Fourteen monitoring wells, designated P-1 to P-14, were installed at various locations at the facility to evaluate ground water quality associated with the backfilled areas around the various facility storm sewers. The "P" wells are positioned to intersect the water table, and were constructed with 5-ft lengths of screen.
- Eighteen monitoring wells, designated W-1S to W-9S and W-1D to W-9D, were installed to investigate shallow and deep ground water across the facility. The shallow "W-S" monitoring wells are positioned to intersect the water table, and the deep "W-D" monitoring wells are positioned to screen the most permeable zone within the lacustrine deposits. Screen lengths were 5 ft for the shallow wells and 10 ft for the deep wells.

1985 EDI Phase II Hydrogeological Investigation. From December 5, 1985 to December 12, 1985, a total of fourteen ground water monitoring wells were installed at the facility by EDI, as follows (EDI 1986a):

- Eight monitoring wells, designated WT-6 to WT-9, and W-10-S, W-10-D, W-11-S and W-11-D, were installed in the vicinity of the administration building after TCE was detected during the 1985 Hydrogeological Investigation in this area. The shallow "WT" and "W-S" monitoring wells are positioned to intersect the water table, and the deep "W-D" monitoring wells are positioned to screen the most permeable zone within the lacustrine deposits.
- Six monitoring wells, designated WT-10 to WT-15, were installed in the
 area of the IWT plant to provide additional information on the
 distribution of VOCs in ground water, and oil and PCBs in soil. The
 shallow "WT" monitoring wells are positioned to intersect the water
 table.

The "WT" and "W" wells were constructed with 2-inch diameter, 0.010 inch slot stainless steel screens and 2-inch diameter galvanized steel casing. Screen lengths were 5 ft for the shallow wells and 10 ft for the deep wells. A filter pack of clean, medium-grade silica sand was placed around the well screen and extended approximately 1 ft above the top of the screen. A 2-ft bentonite pellet seal was placed above the filter sand, and the remaining annular space was backfilled with a bentonite and natural soil mixture. A flush-mount locking cap was placed on each well.

1985-86 EDI Solvent Spill Hydrogeological Investigation. During 1985 and 1986, a total of twenty monitoring wells were installed by EDI in an area on

the west side of the facility to evaluate the extent of thinner present in soil and ground water, as follows (EDI 1986b):

- From April 4, 1985 to April 9, 1985, EDI installed ten monitoring wells, designated T-1 to T-10, to evaluate the potential extent of thinner in the vicinity of three former underground thinner tanks and related piping.
 Well construction information for wells T-1 to T-10 could not be located.
- From March 25, 1986 to March 31, 1986, EDI installed ten additional monitoring wells, designated T-11, T-13, T-15, T-18, T-21, T-24, T-26, T-29, T-33B and T-34, downgradient of the former thinner tanks. The "T" wells are positioned to intersect the water table to allow for evaluation of the presence of floating product, and were constructed with 5-ft length screens.

1986-1987 O'Brien & Gere Hydrogeological Investigation of Fill Area Along Ley Creek. Nine ground water monitoring wells were installed to the south of Ley Creek between November 10 and November 24, 1986. Monitoring wells OBG-1, OBG-2, OBG-3, OBG-5, and OBG-6 were installed adjacent to Ley Creek at approximately 300 ft intervals. Monitoring wells OBG-4, OBG-7A, OBG-7B, and OBG-7C were located in the vicinity of the former drainage swale which drained the facility holding pond. Locations were selected based on a 1975 aerial photo which identified the location of this former drainage swale bisecting the study area. Monitoring well OBG-7A was installed in the approximate center of the former drainage ditch, while OBG-4, OBG-7B, and OBG-7C extended laterally away from OBG-7A and were installed at 50 ft intervals (O'Brien & Gere 1987a). Well locations are identified on Figure 2-2.

The wells were installed in the fill material immediately above the natural silty clay. The monitoring wells were installed to a depth of approximately 9 ft, with the exception of OBG-6, which was installed to a depth of 17 ft. The wells in the vicinity of the former drainage swale were installed using 4½ inch I.D. hollow stem auger drilling methods, and were constructed using a 3 ft length of 2 inch diameter, 0.020 inch slot, stainless steel screen connected to a 2 inch galvanized steel riser. The remaining wells were constructed using a 5 ft length of 2 inch diameter, 0.020 inch slot, stainless steel screen and galvanized riser (O'Brien & Gere 1987a).

1988-1989 O'Brien & Gere Surface Impoundment Post-Closure Ground Water Monitoring Program. During September 1988, ten monitoring wells were installed adjacent to the two surface impoundments located north of the manufacturing building. These wells, which consisted of five pairs of

shallow/deep nested wells, were installed as part of the surface impoundment post-closure monitoring program and were designated MW-1S to MW-5S and MW-1D to MW-5D. The shallow "MW-S" monitoring wells are screened at the water table interface, and the deep "MW-D" monitoring wells are screened immediately above the lacustrine/till interface. Shallow wells MW-1S, MW-2S, MW-4S, and MW-5S were positioned such that a portion of each well screen was not submerged in order to detect light nonaqueous phase liquids at the water table, if present. The "MW" wells were constructed with 2-inch diameter, 0.020 inch slot wire wound stainless steel screens and 2-inch diameter stainless steel well casings. Screen lengths were 5 ft for the deep wells and shallow wells MW-1S and MW-2S, and 10 ft for shallow wells MW-3S, MW-4S, and MW-5S. The annular space around the well screen was packed with a silica sand, and the annular space above the sand pack was sealed with a cement-bentonite grout. Protective steel casings and locks were placed on the riser pipes (O'Brien & Gere 1988, 1989a, 1992c).

1988-1989 O'Brien & Gere Ley Creek Dredged Material Area Field Investigation. During the 1988/1989 Ley Creek Dredged Material Area field investigation, six ground water monitoring wells were installed between Townline Road and the Town of Salina Garage, to the west of the monitoring wells installed during the 1986-1987 hydrogeologic investigation. Five of the wells, designated as MW-8 to MW-13, were installed along the south side of Ley Creek. One well, MW-11, was installed along the south side of Factory Avenue to serve as an upgradient monitoring point. Well locations are indicated on Figure 2-2. Wells were installed using 41/4-inch I.D. hollow stem auger drilling methods and were constructed using a 10 ft length of 2 inch diameter, 0.010 inch wire wound stainless steel screen connected to a 2 inch stainless steel riser pipe (O'Brien & Gere 1989b).

1992 O'Brien & Gere Ley Creek Dredged Material Area RI. From July 21 to July 24, 1992, two deep ground water monitoring wells were installed at the Ley Creek PCB Dredgings site to evaluate ground water quality and flow conditions at the top of bedrock. The wells, designated OBG-3D and MW-9D were installed using 4½ inch hollow stem augers and were constructed using a 5 ft length of 2 inch diameter, 0.01 inch stainless steel screen connected to a 2 inch stainless steel riser pipe (O'Brien & Gere 1993).

1998/1999 O'Brien & Gere Supplemental RI sampling. From July 6 through 22, 1999 and from September 28 through October 13, 1999, O'Brien & Gere installed 18 ground water monitoring wells in accordance with the Final Supplemental RI/FS Work Plan. The locations of the new monitoring wells are illustrated on Figure 2-2. Monitoring wells were

45

RACER0060368

constructed of two-inch PVC riser pipe and 0.010 inch slotted PVC screen. Shallow wells were constructed with 10 feet of screen and deep wells were constructed with 5 feet of screen, with one exception. OBG-15 was screened from 13.0 - 5.0 feet below grade due to the shallow depth of the glacial till unit. Monitoring wells were installed as follows:

- Three monitoring wells designated as MWI-1, MWI-2, and MWI-3 were installed in the manufacturing building. MWI-1 was installed downgradient of the mold storage building and upgradient of the paint room and administration building to evaluate the presence of a continuous solvent plume. MWI-2 was installed to evaluate elevated petroleum hydrocarbon concentrations in the vicinity of the abandoned storm sewer line leading to oil/water collection sump #5. MWI-3 was installed in the vicinity of the abandoned storm sewer line leading to oil/water collection sump #4, in the vicinity of the process sewer line leading to the acid/alkali bunker, and downgradient of the paint room. The Final Supplemental RI/FS Work Plan stated that these monitoring wells were to be installed as shallow/deep overburden wells nests. However, since till was encountered at a depth of approximately 15 ft below grade, only one well was installed at each location, with the concurrence of NYSDEC's representative in the field.
- Monitoring well WT-3R was installed outside the manufacturing building just downgradient of the abandoned storm sewer line leading to oil/water collection sump #5, and served as a replacement well for WT-3, which had not been installed to the top of till. The Final Supplemental RI/FS Work Plan stated that WT-3R was to be installed as a deep overburden well to be nested with WT-3. However, since till was encountered at a depth of approximately 15 ft below grade, WT-3R was considered a replacement well for WT-3, with the concurrence of NYSDEC's representative in the field.
- Two deep overburden monitoring wells (OBG-12, OBG-13) were installed in the vicinity of two shallow overburden monitoring wells in the IWT Plant Area. These wells were installed to evaluate potential ground water contamination which may have originated from operation of the IWT plant. In accordance with the Final Supplemental RI/FS Work Plan, these wells were to be installed as deep overburden wells nested with existing shallow overburden wells (WT-15 and P-14). However, because the glacial till unit was encountered at less than 15 ft, OBG-12 and OBG-13 served as replacement wells for WT-15 and P-14.

- Two monitoring wells (OBG-11 and OBG-15) were installed in the Southwest Property Area. Monitoring well OBG-15 was installed in the vicinity of the mold storage building and hazardous waste storage area in order to evaluate potential contamination resulting from storage of TCE and plating chemicals (mold storage building) and hazardous wastes including solvents and degreasers (storage area). OBG-11 was installed to evaluate upgradient ground water quality.
- One shallow/deep overburden well nest (OBG-10S, OBG-10D) was installed in the northeast property area north of the manufacturing building to evaluate potential ground water conditions that may be related to former operations in the manufacturing building.
- Four shallow/deep well nests (OBG-6S, OBG-6D, OBG-7S, OBG-7D, OBG-8S, OBG-8D, OBG-9S, OBG-9D) were installed in the northern property area to evaluate ground water conditions.
- As stated in the Final Supplemental RI/FS Work Plan, two top of bedrock monitoring wells were to be installed to evaluate background ground water conditions in different ground water zones. However, the two borings (OBG-11R and OBG-14R) were not completed as top of bedrock ground water monitoring wells due to the thickness of the glacial till unit encountered during advancement of OBG-11R. With concurrence of NYSDEC, the boreholes were abandoned and grouted, and top of bedrock wells were not installed.

Current monitoring well status. Certain ground water monitoring wells at the site installed during the various investigations described in this section have been destroyed during construction activities or buried during filling activities. O'Brien & Gere performed a well location survey on September 20, 1996 to identify which monitoring wells were still accessible at the site. Of the 103 wells located at the site at that time, the following 19 wells were not located during this investigation or in the subsequent 1998 site survey: P-4, P-6, P-7, P-8, P-10, P-11, W-3S, W-4S, W-4D, W-5S, W-5D, W-7S, W-7D, WT-1, WT-7, B-1, B-2, B-4, and B-5.

Since the Supplemental RI sampling event, monitoring wells OBG-3 and OBG-7A have been removed as part of the Ley Creek Remedial Action. In addition, monitoring wells OBG-3, OBG-4, OBG-5, OBG-6, and OBG-7B, located at the Ley Creek PCB Dredgings site were also abandoned as part of the Ley Creek Remedial Action.

47

RACER0060370

2.2.2. Water level measurements

In accordance with the Final Supplemental RI/FS Work Plan, ground water elevation measurements were obtained from 64 monitoring wells and six piezometers on November 1, 1999. Casing and ground water elevations are summarized on Table 3-1. Shallow and deep ground water elevation maps prepared using data collected on November 1, 1999 are included as Figures 3-3 and 3-4, respectively. A discussion of ground water elevation data is presented in Section 3.

In November 1999, 18 new wells and 6 piezometers were surveyed. In addition, 11 existing wells were surveyed at that time. The sources of survey data are also summarized on Table 3-1.

2.2.3. Permeability measurements

1985 EDI Hydrogeological Investigation. Vertical permeability values were measured in the laboratory on four undisturbed core samples of lacustrine deposits (from W-1D, W-2D, W-7D and W-9D) and three relatively undisturbed core samples of lodgement till (W-2D, W-6D, and W-9D). Vertical permeability testing was performed using a triaxial testing apparatus according to the protocol presented in Exhibit C of the 1997 Preliminary RI/FS Report by Empire Soils Investigations, Inc. - Thomsen Associates in Groton, New York (EDI 1985a).

2.2.4. In situ hydraulic conductivity measurements

In situ hydraulic conductivity testing was conducted for various monitoring wells in the vicinity of the site during different investigations to collect data to estimate ground water flow volumes and velocities. Tests were performed by evacuating a volume of water from the well, thus creating a hydraulic head difference between the well and the surrounding aquifer. The rate of recovery of the water level was then measured in the well. This recovery rate is a function of the hydraulic conductivity of the aquifer. Hydraulic conductivity testing efforts are discussed as follows, and field logs for testing efforts conducted for the 1998/1999 Supplemental RI are included in Exhibit C. Hydraulic conductivity field logs for testing efforts conducted prior to 1999 are included in Exhibit C of the 1997 Preliminary RI/FS Report. Hydraulic conductivity data are discussed in Section 3.

1983 Thomsen Associates and Empire Soils Hydrogeologic Investigation. On July 11, 1983, falling and rising head slug tests were performed on wells B-1, B-2 and B-4, in accordance with Bouwer and Rice methodology (Bouwer and Rice 1976) (Thomsen Associates and Empire Soils 1983).

1985 EDI Hydrogeological Investigation. Field slug tests were performed on monitoring wells U-1D, W-1D, W-2D, W-3D, W-4D, W-5D, W-7D, W-8D and W-9D to measure horizontal permeability of the deeper lacustrine deposits. Falling and rising head slug tests were performed in accordance with Bouwer and Rice methodology (Bouwer and Rice 1976) (EDI 1985a).

1986-1987 O'Brien & Gere Hydrogeologic Investigation of Fill Area Along Ley Creek. O'Brien & Gere completed in situ hydraulic conductivity tests in November 1986 at nine wells installed during the hydrogeologic investigation (OBG-1 to OBG-6, OBG-7A, OBG-7B, and OBG-7C). The collected data were interpreted using Hyorslev's formula to evaluate the hydraulic conductivity of the aquifer material at each well location (O'Brien & Gere 1987a).

1988-1989 O'Brien & Gere Surface Impoundment Post-Closure Monitoring Program. In situ hydraulic conductivity tests were performed on monitoring wells installed as part of the surface impoundment post-closure monitoring program. The tests were performed on monitoring wells MW-1S to MW-5S and MW-1D to MW-5D in November 1988. The collected data were interpreted using Hvorslev's formula to evaluate the hydraulic conductivity of the aquifer material at each well location (O'Brien & Gere 1989a).

1988-1989 O'Brien & Gere Ley Creek Dredged Material Area Field Investigation. O'Brien & Gere completed in situ hydraulic conductivity tests in April 1989 at the six wells installed during the field investigation (MW-8 to MW-13). The collected data were interpreted using Hvorslev's formula to evaluate the hydraulic conductivity of the aquifer material at each well location (O'Brien & Gere 1989b).

1998/1999 O'Brien & Gere Supplemental RI sampling. O'Brien & Gere conducted in situ hydraulic conductivity tests at six wells installed during the 1998/1999 Supplemental RI sampling program (OBG-7S, OBG-7D, OBG-9S, OBG-11, MWI-2, MWI-3S). The collected data were interpreted using the Bouwer-Rice formula to estimate the hydraulic conductivity of the aquifer material at each well location. Hydraulic conductivity data are included in Table 3-2. Permeability field logs are presented in Exhibit C.

2.2.5. Ground water sampling and analysis

Ground water sampling and analysis activities were performed in the vicinity of the Former IFG Facility and the Ley Creek Deferred Media during the course of various investigations conducted between 1983 and 1999. In order to provide the most current and complete ground water conditions, sampling conducted as part of the 1998/1999 Supplemental RI is included in this

report. Investigations conducted prior to 1999 are documented in the 1997 Preliminary RI/FS Report.

As part of O'Brien & Gere Supplemental RI sampling efforts, ground water sampling and analysis activities were performed at the Former IFG Facility and Ley Creek Deferred Media Site on July 8 and 19, 1999, August 17 and 18, 1999, and November 2 through 11, 1999 to evaluate the nature and extent of ground water contamination. Ground water samples were collected in accordance with the Final Supplemental RI/FS Work Plan.

During the July 8, 1999 sampling event, ground water samples were collected from piezometers OBG-PZ-1, OBG-PZ-2, and OBG-PZ-3. Piezometer OBG-PZ-7 was sampled on July 19, 1999. Monitoring wells MWI-1, MWI-2, MWI-3, and WT-3R were sampled on August 18, 1999. Between November 2 and 11, 1999, 54 monitoring wells, including 14 new wells and 40 existing wells, were sampled. Ground water sampling logs for the Supplemental RI sampling program are included in Appendix B.

Ground water samples were collected using the low flow purging protocol. Low flow purging techniques were used in order to minimize turbidity in the ground water samples. In instances where the wells were pumped dry, samples were collected the following day, with the exception of monitoring wells T-18, T-33B, and P-5 that exhibited insufficient quantities of water for sample collection. The low flow purging techniques were unsuccessful for monitoring wells OBG-13 and OBG-15. These wells were purged on November 10, 1999 and on November 11, 1999, samples were collected. In OBG-13, turbidity increased prior to the collection of the metals sample. Therefore, filtered and unfiltered metals samples were submitted for analysis. Monitoring well OBG-15 remained turbid during purging and sampling. Therefore, samples for analyses that are affected by turbidity, (i.e., PCBs, metals, and cyanide) were filtered. Filtered and unfiltered PCBs, metals, and cyanide samples from OBG-15 were submitted for analysis.

With NYSDEC concurrence, the low flow purging protocol was not used for monitoring wells MWI-1, MWI-2, MWI-3, and WT-3R due to a low ground water recovery rate. Instead of the low flow purging method, these wells were purged dry, allowed to recharge, and samples were collected within a 24-hour period.

Ground water samples were not obtained from monitoring wells WT-15, P-14, and WT-3 because new wells (OBG-12, OBG-13, and WT-3R) served as replacements for these wells.

Samples collected from the monitoring wells were submitted to O'Brien & Gere Laboratories, Inc. in Syracuse, New York and analyzed as follows:

- Fourteen wells from the thinner spill area (T-1, T-2, T-3, T-4, T-5, T-10, T-13, T-15, T-18, T-21, T-24, T-26, T-29, and T-33B) were analyzed for ethylbenzene, toluene, and xylene using EPA Method 8021. These wells were sampled as part of the routine quarterly thinner area monitoring program that was scheduled to coincide with the Supplemental RI sampling activities.
- One well from the thinner spill area (P-9) was analyzed for VOCs, SVOCs, PCBs, site-related metals, and cyanide.
- Ten wells from the surface impoundment area (MW-1S, MW-1D, MW-2S, MW-2D, MW-3S, MW-3D, MW-4S, MW-4D, MW-5S, MW-5D) were analyzed for VOCs and PCBs. These wells were sampled as part of the routine semi-annual surface impoundment monitoring program that was scheduled to coincide with the Supplemental RI sampling activities.
- Four piezometers located inside the manufacturing building, in the thinner spill area, (OBG-PZ-1, OBG-PZ-2, OBG-PZ-3, OBG-PZ-7) were analyzed for VOCs using EPA Method 8260.
- Thirty-three site wide wells (U-1S, U-1D, P-2, W-11S, W-11D, W-6S, W-6D, P-5, W-1S, W-1D, OBG-2, OBG-3, OBG-3D, OBG-5, OBG-7A, OBG-6S, OBG-6D, OBG-7S, OBG-7D, OBG-8S, OBG-8D, OBG-9S, OBG-9D, OBG-10S, OBG-10D, OBG-11, OBG-12, OBG-13, OBG-15, MWI-1, MWI-2, MWI-3, and WT-3R) were analyzed for VOCs, SVOCs, PCBs, site-related metals, and cyanide. Monitoring wells OBG-2, OBG-3, OBG-3D, OBG-5, and OBG-7A are located at the Ley Creek PCB Dredgings Site. Since the Supplemental RI sampling event, monitoring wells OBG-3 and OBG-7A have been removed as part of the Ley Creek Remedial Action. In addition, monitoring wells OBG-3, OBG-4, OBG-5, OBG-6, and OBG-7B were also abandoned as part of the Ley Creek Remedial Action.

Ground water monitoring well locations are presented on Figure 2-2. Ground water analytical data are discussed in Section 3.3.

2.3. Storm water

Facility storm water has been evaluated as part of various investigations. Storm sewer televising and storm water sampling and analysis are discussed in the following sections.

2.3.1. Sewer televising

From September 8 to 11, 1992, a sewer televising program was performed on the facility storm sewer system associated with Outfall 004. This storm sewer runs from the southeast portion of the GM property, through mainly parking lots, and exits the property on the northern property boundary at approximately the corner of Townline Road/Factory Avenue/GM Circle. This location is know as Outfall 004. The sewer, reportedly owned by Onondaga County, conveys storm water flow from off-site sources located south of the GM property. The sewer also drains the parking lots located on the east side of the GM property. No connections from the facility to this sewer are known to exist. The sewer is constructed of concrete and ranges from 8 to 36 inches in diameter. The specific age of the sewer is unknown. The location of the storm sewer is depicted on Figure 1-9.

The sewer televising program was conducted to inspect the inside of the sewer pipe for integrity and to assess if unknown connections originating from the facility side of the sewer existed. The televising program was performed by O'Brien & Gere and Scan-n-Seal Environmental Services of Syracuse, New York. Televising activities were performed from upstream to downstream by a towed camera. The camera was towed through each reach of sewer pipe by a cable and winch. The cable was pulled through each reach of sewer by a hydraulically driven apparatus. The camera was used to prepare a video tape and written log of the inspection.

2.3.2. Storm water sampling and analysis

1985 EDI Hydrogeological Investigation. Storm water sampling and analysis activities were performed by EDI on June 7, 1985, which included the collection and analysis of four storm water samples, designated S-1, S-2, S-3 and S-4. These samples were collected from the storm sewers located along the facility's southern property boundary in order to evaluate the quality of storm water flowing onto the facility property. Sample locations are indicated on Figure 1-8. Samples were collected with decontaminated stainless steel bailers, with the exception of S-4, where sample bottles were submerged directly into the flow and filled. The samples were analyzed by EDI's laboratory in Grand Rapids, Michigan, for priority pollutant volatiles

(USEPA Method 624 or 601) and base neutrals, acid extractables, and pesticides (USEPA Method 625) (EDI 1985a).

1987 O'Brien & Gere Storm Outfall Assessment. Storm water sampling and analysis activities were performed by O'Brien & Gere in late May and early June 1987. These activities were performed to assess the relationship between rain events and concentrations of certain constituents within storm sewer outfalls at the facility. Rainfall characteristics such as storm frequency, duration, intensity and total rainfall were measured for later comparison against the concentrations of constituents detected in the storm water.

The sampling activities were originally scheduled to be performed in April 1987; however, due to unusually dry conditions, the samples were collected during storm events on May 22, May 28, June 3 and June 8, 1987. Storm water samples were collected from the following four locations, depicted on Figure 1-8, to characterize the storm water flows entering and leaving the property, as described below:

- Site 1 consisted of a manhole located just upstream of Outfall 004. This
 outfall discharges into Ley Creek near the intersection of Townline Road
 and Factory Avenue, and drains the eastern side of the facility, which
 consists mainly of paved parking areas.
- Site 2 consisted of a manhole located upstream of Outfall 003. Outfall 003 is located approximately 500 ft west of Outfall 004 along the facility's northern property boundary. The selected sampling location was a manhole located upstream of the outfall at the location where two 42-inch sewers converge.
- Site 3 consisted of the upstream-most sampling location on the storm sewer system tributary to Outfall 003, and sampling site 2. Site 3 was a manhole located just north of the railroad tracks which run along the facility's southern property boundary. This location did not contain flows or storm water inputs from the facility; therefore, this was considered to be a baseline for comparison to other sites.
- Site 4 consisted of a manhole located at the upstream extent of the storm sewer system tributary to Outfall 004, and sampling site 1. Site 4 was a manhole located near the southeastern portion of the property. As with Site 3, none of the flows entering this manhole contained inputs from the facility. However, the upstream portion of this sewer does serve a highly industrialized area south of the facility property.

The sampling methodology used during the sampling events was designed to retrieve grab samples over the duration of the storm with the emphasis on first flush conditions. To achieve the objective of collecting time-varied discrete samples at each site, a schedule was established, which was used for the duration of each storm, as follows:

Table 2-4. Storm outfall assessment sampling schedule.

Time (hr)	Sample #		
0	1		
0.5	2		
1	3		
2	4		
3	5		
4	6		

Source: O'Brien & Gere Engineers, Inc. 1987b

This schedule was used at the four sampling sites for the duration of the storm events, except that none of the storm events lasted as long as the 4 hr duration identified in the sampling schedule. For each event, sampling was terminated when flows in the sewers returned to near-dry weather flow conditions. A summary of the total number of samples collected follows:

Table 2-5. Storm outfall assessment sampling summary.

Date	Site 1	Site 2	Site 3	Site 4	Total
05/22/87	3	3	3	3	12
05/28/87	5	5	4	4	18
06/03/87	3	3	3	3	12
06/08/87	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>12</u>
Total	14	14	13	13	54

Source: O'Brien & Gere Engineers, Inc., 1987b.

The storm water samples were collected and transported to OBG Laboratories, Inc. (currently O'Brien & Gere Laboratories), in Syracuse, New York for laboratory analysis. Laboratory analysis consisted of a phased approach, with a broad list of analytes during the first sampling event and a focused list during subsequent storm events. Analytes (including metals) chosen for analysis during subsequent storm events were based on the detections during the first event, historic detections, and constituents potentially discharged as part of operations at the Former IFG Facility. Analyses are described as follows (O'Brien & Gere 1987b).

- Samples collected during the first storm event (May 22, 1987) were analyzed for PCBs/pesticides, metals (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium and zinc), cyanide, VOCs by USEPA Method 601, acid extractables/base neutrals and phenols. Unless otherwise specified, laboratory analysis was completed using methodology described in 40 CFR Part 136 dated October 26, 1984.
- Samples collected during the second, third and fourth storm events (May 28, 1987, June 3, 1987, and June 8, 1987, respectively) were analyzed for PCBs, lead, copper, zinc, cyanide, VOCs by USEPA Method 503 and acid extractables/base neutrals. Unless otherwise specified, laboratory analysis was completed using methodology described in 40 CFR Part 136 dated October 26, 1984.

In general, the sampling parameters were selected based on either the potential for historic impacts to storm water quality from facility operations or their presence in the first sample event or previous facility investigations.

Rainfall data were obtained form the National Weather Service for a rain gauge station at Hancock Field north of Syracuse. Based on rainfall data, storm water flows were calculated using the Rational Method, and discharge hydrographs were developed for each of the storm events sampled. Using this information as well as the analytical data obtained from the laboratory, pollution loading graphs were developed (O'Brien & Gere 1987b). Results of these efforts are discussed in Section 3.

1989 O'Brien & Gere Storm Sewer Sampling Summary. During the summer of 1989, additional storm sewer sampling activities were performed at the facility to evaluate potential sources of PCBs and TCE within the recently modified storm sewers. The storm sewer system at the facility was modified in 1988 following the 1987 storm outfall assessment, which identified the presence of storm water impacted by PCBs and other constituents. Modifications included rehabilitation of sewers outside the facility by either sliplining, installation of a cured in place liner (Insituform®) or installation of sections of new storm sewer. The sampling locations, indicated on Figure 1-8, were as follows (O'Brien & Gere 1989c):

- Site A1A was a manhole located upstream of Outfall 003, just downstream of the point where two 42-inch sewers converge.
- Site A3 was a manhole located on the west side of the facility in a tributary to Outfall 003. This manhole represents the western portion of the storm sewer system, downstream of a section of 40 inch diameter concrete pipe which had been rehabilitated using resin liner. This manhole is also downstream of a line which discharges roof drainage form the 1975 building addition.
- Site BA1 was a manhole located upstream of Outfall 003 in the part of the storm water system which serves the middle portion of the facility, including many of the roof drains in the manufacturing building.
- Site B2 was a manhole located upstream of Outfall 003 on the section of sewer serving the eastern side of the facility.
- Manholes located on the western and southwestern sides of the facility, generally designated A1 through A13.

The sampling events are described as follows (O'Brien & Gere 1989c):

Sampling event 1 was performed on March 17, 1989, during dry weather.
 Grab samples of dry weather flow were collected from four sampling

- locations (Sites A1A, A3, BA1, and B2) and transported to OBG Laboratories in Syracuse, New York for laboratory analysis of PCBs.
- Sampling event 2 was performed on May 2, 1989, during a light rain. Nine samples were collected from the portion of the storm sewer system located at the southwestern corner and west side of the facility (manholes A3 to A11), as indicated on Figure 1-8. The intent of this sampling was to attempt to identify the potential source of PCBs from the southwestern corner of the facility. Two samples (A8 and A9) were submitted for analysis for PCBs by OBG Laboratories in Syracuse, New York.
- Sampling event 3 was performed on May 17, 1989, during dry weather. Five samples were collected from the portion of the storm sewer system located at the southwestern corner and west side of the facility. Samples were collected from manholes A4, A8, and A9, as well as from the western influent to A1 (A1-W) and the eastern influent to A1 (A1-E), as indicated on Figure 1-8. The intent of this sampling was to evaluate the potential source of TCE. The five samples were submitted for analysis of VOCs by USEPA Method 601/602 by OBG Laboratories in Syracuse, New York.
- Sampling event 4 was performed over a three day period (June 9, 12 and 13, 1989). The first two days were dry, however, the third was rainy. The target sampling areas consisted of an area west of the manufacturing building near the paint mix room and the southwestern corner of the facility. On June 9, 1989, ten samples were collected from manholes A4, A5, A7, A8A, A8B, and A9; an abandoned section of sewer upgradient of A4; a catch basin which connects into A4; and oil/water collection sump #7. Sampling locations are depicted on Figure 1-8. The samples were submitted for analysis of PCBs, VOCs by USEPA Method 601/602, total suspended solids (TSS) and oil and grease by OBG Laboratories, Inc, in Syracuse, New York. Field measurements of pH were also obtained from each location. On June 12 and June 13, 1989, the storm sewers at the southwestern corner of the facility were again targeted for the purpose of further isolating PCB impacts. Manholes A8, A8A, A8B and A9 were sampled on both occasions, and samples were analyzed by OBG Laboratories, Inc., in Syracuse, New York for PCBs.
- Sampling event 5 was performed on July 24, 1989, during dry conditions. The intent of this sampling was to further evaluate the source of PCBs in the storm sewer. Four samples were collected from manholes A9, A10, A11, and A12, and submitted for analysis of PCBs by OBG Laboratories in Syracuse, New York. Sampling locations are depicted on Figure 1-8.

Sampling event 6 was performed on August 25, 1989. This sampling
event was performed to obtain further information of the potential source
of TCE impacts to storm water on the western side of the facility. Three
samples were collected from manholes A5, A6 and A7, and submitted to
O'Brien & Gere Laboratories in Syracuse, New York, for analysis of
VOCs by USEPA Method 601/602. Sampling locations are depicted on
Figure 1-8.

1992 O'Brien & Gere Ley Creek Dredged Material Area RI. On August 13, 1992, sampling was performed on Outfall 003 as part of the Ley Creek Dredged Material Area RI. The sampling program consisted of the collection of four outfall discharge water samples during the course of a rain event. The intent of the sampling event was to evaluate potential contributions of PCBs to Ley Creek from storm events. A sediment sample was also obtained from the outfall pipe itself.

The discharge samples were collected over the course of a 2 hr period during a rain event on August 13, 1992, and were collected from the end of the metal erosion plates, approximately 15 to 20 ft from the concrete discharge pipe protruding from the north side of Factory Avenue. The sediment sample was collected from the first metal erosion plate located where the concrete discharge pipe discharges from beneath Factory Avenue. Field measurements were performed for temperature, pH and specific conductance for each water sample. The samples were submitted to H2M Laboratories in Melville, New York for analysis of PCBs by NYSDEC ASP Method 91-3. Quality assurance/quality control (QA/QC) sample collection and analyses were performed in accordance with the ASP (O'Brien & Gere 1993).

1995-1996 Outfall 004 sewer line sampling program. During 1995 and 1996, a sampling program of the storm sewer line associated with Outfall 004 was performed. This program was prompted by detections of PCBs in routine water sampling performed at Outfall 004. The sampling program consisted of collection and analysis of storm water samples using a phased approach, as described below. Sample locations are indicated on Figure 1-8.

On November 21, 1995, a sample of the influent water at the facility's southeastern property boundary (manhole C10) was collected. A sample of the discharge at Outfall 004 was then collected. The samples were submitted to O'Brien & Gere Laboratories in Syracuse, New York for analysis of PCBs by USEPA Method 8080;

On April 12, 1996, samples were collected from manholes C-10, C-9, CC1, C6, C6 inlet, C3, CA1, and C2 and Outfall 004. The samples were submitted to O'Brien & Gere Laboratories in Syracuse, New York for analysis of PCBs by USEPA Method 8080.

Outfalls 003 and 004 SPDES discharge monitoring. An ongoing discharge monitoring program is conducted on the discharges associated with Outfalls 003 and 004 under SPDES. From 1985 until the effective date of the current SPDES permit, September 25, 1997, samples were collected and analyzed by Certified Environmental Services, Inc. (CES) as follows:

- Outfall 003 was sampled on a monthly basis. A 24 hr composite sample
 was collected and analyzed for TSS, and total iron. A grab sample was
 also collected and analyzed for PCBs, VOCs, 5-day biochemical oxygen
 demand, pH, oil and grease, total Kjeldahl nitrogen, total recoverable
 phenolics, and total chlorine residual.
- Outfalls 003 and 004 were sampled on a semi-annual basis (April and October of each year) for a variety of parameters. Outfall 003 semiannual parameters included total nitrite nitrogen, total mercury and xylene. Outfall 004 semi-annual parameters included PCBs, total magnesium, sulfate, fluoride, arsenic, manganese, zinc, nitrogen, and mercury, and VOCs.

The results of the monthly Outfall 003 sampling program were reported to the NYSDEC Division of Water in Albany and Syracuse monthly, and the results of the semi-annual sampling were reported semi-annually.

The September 1997 SPDES permit requires the following sampling and analysis of Outfalls 003 and 004, as well as Outfall 03B, the IWT plant discharge, and Outfall 04I, the point at which the storm sewers leading to Outfall 004 enter the facility property:

- Outfall 003 is sampled semi-annually for arsenic, mercury, and zinc; quarterly for 5-day biochemical oxygen demand, copper, nickel, bis(2-ethylhexyl)phthalate, di-n-octyl phthalate, and naphthalene; twice per month for oil and grease and total suspended solids; monthly for pH, aluminum, cyanide, lead, iron, total phenolics, TCE, 1,1,1-trichloroethane(1,1,1-TCA), toluene, 1,2-dichloroethene(1,2-DCE), and xylenes; and weekly for PCBs and flow.
- Outfall 004 is sampled semi-annually for arsenic and mercury; quarterly for antimony, copper, nickel, bis (2-ethylhexyl) phthalate, di-n-octyl

phthalate, and naphthalene; monthly for TCE, 1,1,1-TCA, toluene, and total phenolics; and weekly for PCBs and flow.

- Outfall 03B is sampled twice per month for oil and grease and total suspended solids; monthly for pH, methylene chloride, 1,1dichloroethane (1,1-DCA), ethylbenzene, chloroform, carbon tetrachloride; and weekly for PCBs, xylenes, toluene, TCE, and 1,1,1-TCA; and will be continuously monitored for flow.
- Outfall 04I is sampled semi-annually for arsenic and mercury; quarterly
 for antimony, copper, nickel, bis (2-ethylhexyl) phthalate, di-n-octyl
 phthalate, and naphthalene; monthly for TCE, 1,1,1-TCA, toluene, and
 total phenolics; and weekly for PCBs and flow.

In November 1999, GM requested modifications to the SPDES permit monitoring requirements based on monitoring frequencies and patterns of non-detections. Proposed modifications to the September 25, 1997 SPDES permit monitoring requirements were as followings:

Outfall 003

- Semi-annual monitoring of 1,1,1-TCA, toluene, trans-1,2-DCE, antimony, copper, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, and naphthalene
- No monitoring of cyanide and lead

Outfall 004

- Semi-annual monitoring of TCE, I,1,1-TCA, toluene, antimony, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, and naphthalene
- Addition of semi-annual monitoring for tetrachloroethene (PCE)

Outfall 03B

- Monthly monitoring of 1,1,1-TCA and ethylbenzene
- No monitoring for carbon tetrachloride and 1,1,2-trichloroethane

Outfall 04I

- Semi-annual monitoring of TCE, I,I,1-TCA, toluene, antimony, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, and naphthalene
- Addition of semi-annual monitoring of PCE

2.4. Ley Creek

Ley Creek surface water and sediment are included in the Ley Creek Deferred Media. Ley Creek surface water, sediment, and fish were sampled as part of previous investigations. Ley Creek Deferred Media are included as part of this site because NYSDEC deferred to this Order the evaluation of these media, from the RI/FS completed for the Ley Creek PCB Dredgings site. Sampling and analysis efforts conducted related to Ley Creek surface water, sediment, and fish are described in the following subsections. In order to provide the most current but complete environmental conditions for surface water and sediment, analytical data resulting from the 1996 NYSDEC sampling event and the 1998/1999 sampling events associated with the Supplemental RI are included in this report. Historical data is presented in the 1997 Preliminary RI/FS Report.

2.4. 1. Surface water sampling and analysis

1996 NYSDEC Sampling - NYSDEC collected surface water samples from two locations in the south branch of Ley Creek in 1996 for analysis for PCBs, VOCs, SVOCs, and inorganic parameters. Sample locations are described in Exhibit D and are presented on Figure 2-7.

1998/1999 O'Brien & Gere Supplemental RI sampling. Ley Creek surface water samples were collected during high and low flow conditions. Prior to sampling, the flow conditions of Ley Creek were evaluated by reviewing flow data from a United States Geological Survey (USGS) gaging station located on Ley Creek near Park Street, downgradient of the site. On November 16, 1998, the flowrate in Ley Creek at Park Street was 12.83 cubic feet per second (cfs); NYSDEC approved the condition as low flow, and low flow sampling was initiated. On October 14, 1999, the flowrate in Ley Creek was observed to be 150 cfs; NYSDEC approved the condition as high flow, and high flow sampling was initiated. The flow rate on October 15, 1999, when the high flow sampling event was completed, had decreased to 22 cfs. NYSDEC agreed that the sampling event should be completed, despite the decreased flow rate.

Surface water sampling began at the furthest downstream sample location and proceeded upstream. Surface water sampling locations are presented on Figure 2-8. Samples were collected from the approximate center of the channel at the surface of the creek. Samples were submitted to O'Brien & Gere Laboratories, Inc. and analyzed for VOCs, SVOCs, PCBs, heavy

metals, and cyanide. Surface water samples GM98-SW1 and GM99-SW-1 were also submitted for complete TCL/TAL analysis.

Surface water sample locations were surveyed in November 1998. Surface water sample locations are depicted on Figure 2-8. Surface water sample locations and associated analyses are summarized in Table 2-6.

2.4.2. Sediment sampling and analysis

1996 NYSDEC Sampling - NYSDEC collected sediment samples from 26 locations in Ley Creek in 1996 for analysis for PCBs, VOCs, SVOCs, and inorganic parameters. Four sediment samples were also analyzed for TOC. Sample locations are indicated and described in Exhibit D, as well as on Figure 2-7. Sediment samples were collected in Lexan®tubes inserted to a 2 ft depth or to refusal (Benjamin 1997).

1998/1999 O'Brien & Gere Supplemental RI sampling. Ley Creek sediment probing was performed on November 17 and 18, 1998 by O'Brien & Gere and NYSDEC. Probing was performed to locate sediment depositional areas for subsequent sampling events. Probing was performed by evaluating the penetration depth of a metal or wooden rod into the sediment. The majority of the specific sample locations were selected by NYSDEC, including the locations for 6 inch to 12 inch interval samples and the sample location for expanded analyses (TCL/TAL). No sediment sample locations were selected in the main channel of Ley Creek due to a primarily hard substrate and lack of depositional areas. Sediment sample locations are described in Table 2-7.

Sediment sampling efforts were conducted in Ley Creek from November 17 through 20, 1998. Surface sediment (0 to 6 inches) samples were collected from twenty-six locations in Ley Creek selected during probing efforts. Subsurface sediment (6 to 12 inches) samples were also collected at five of the sample locations. Surveyed sample locations are shown on Figure 2-8.

Samples were collected using either dedicated polycarbonate tubing or a decontaminated shovel, pushed into the sediment until refusal. Sediment intervals were placed in separate stainless steel bowls prior to placement in laboratory jars. Samples were submitted to O'Brien & Gere Laboratories, Inc. for VOCs, SVOCs, PCBs, pesticides, heavy metals, and cyanide analyses. Twelve samples (GM98-SED1, GM98-SED7A, GM98-SED11A, GM98-SED16, GM98-SED17, GM98-SED18A, GM98-SED19, GM98-SED20A, GM98-IB, GM98-SED11B, GM98-SED18B, GM98-SED20B) were shipped to AXYS Analytical Services Ltd. for chlorinated dioxin/furan

analyses. All upstream and downstream surface and subsurface sediment samples were submitted to H2M Labs, Inc. for total organic carbon analysis.

Sediment sample locations were surveyed in November 1998. Sediment sample locations are depicted on Figure 2-8. Sediment sample locations and associated analyses are summarized in Table 2-7.

2.4.3. Fish sampling and analysis

1985 EDI Ley Creek sampling program. Fourteen fish were collected from Ley Creek on June 13 and 14, 1985 from a 4000 ft length of the creek extending from 1000 ft upgradient of Outfall 003 to 3000 ft downgradient of Outfall 003. Electroshocking and seining methods were utilized to collect the fish. The fish collected included 5 bluegills, 3 shiners, 1 brown bullhead, 1 pumpkinseed, and 4 carp. Fish were submitted to RECRA Environmental Laboratories for analysis for PCBs, lipid content, and moisture content on a whole fish basis. Samples were qualitatively screened for the presence of Aroclors 1016, 1221, 1232, 1242, 1248, 1252, 1260, and 1268, and quantitative analyses were done on Aroclors detected by the qualitative screening (EDI 1985b).

1992 O'Brien & Gere Ley Creek Dredged Material Area RI. Fish were collected on July 16, 1992 from three locations in Ley Creek: approximately ½ mi upstream of Outfall 003 (immediately downstream of the confluence of the north and south branches of Ley Creek), directly downstream of Outfall 003, and approximately ½ mi downstream of Outfall 003 (in the vicinity of a NYS Thruway runoff inflow into Ley Creek). These activities were conducted to comply with NYSDEC's requirement that fish sampling and analyses be performed to verify historic data and to generate data for use in the risk assessment (Kelly 1989).

Average water depth in Ley Creek during fish sampling efforts was approximately 3.5 ft, and the average width of the creek was approximately 25 ft. The visually estimated velocity of the creek during sampling was 3 ft/sec. High turbidity, likely the result of recent heavy rains, resulted in vertical visibility of approximately 6 inches. The streambed consisted primarily of fine sand and gravel sediment over a dense clay. Very little submerged vegetation was observed. Dense stands of reed grass covered the north and south banks of Ley Creek, and the banks dropped sharply at the water's edge. A submerged delta was formed from the buildup of coarse sediment where the outfall entered the creek; water depth above the delta was approximately 1.5 to 2 ft. At the upstream sampling location, shoreline vegetation included a greater number of hardwood trees mixed with the

grasses. The north branch of Ley Creek was brown in color as it merged with the south branch, which exhibited a whitish color.

Sampling locations were accessed by way of a 12-ft shallow draft aluminum boat equipped with an outboard motor. Electroshocking was performed in approximately 50 ft segments over an approximate 150 ft length of Ley Creek at each sampling location. A gill net was set up at the downstream end of the sampling area for the outfall and downstream locations. Fish were collected with dip nets as they appeared, placed in plastic bags, and stored in coolers on ice. Fish were identified to species, weighed, measured, labeled, wrapped in aluminum foil, and frozen for two weeks prior to submission to H2M Labs, Inc. for analysis.

Fish species collected from the upstream sampling location included pumpkinseed, mudminnow, stickleback, banded killifish, dace, white sucker, and golden shiner. Fish species collected from the outfall sampling location included white sucker, golden shiner, creek chub, dace, and stickleback. Carp, white sucker, pumpkinseed, banded killifish, and dace were the fish species collected from the downstream sampling location. Quantities of each species collected and associated length and mass measurements are presented in Table 2-8.

Fish were selected for analyses based on the objectives and rationale presented in the RI/FS Work Plan (O'Brien & Gere Engineers 1992a) and with the concurrence of NYSDEC personnel (Cooper 1992). Species selected for whole fish analysis included species previously collected by EDI in 1985, for comparison with previous data, and species which were collected at each of the three sampling locations, for use in the fish and wildlife impact analysis. Species selected for filet or edible portion (gutted fish with head and tail removed) analysis were edible species for use in the risk assessment. Edible portion analysis was specified for edible species which were too small to be filleted for analysis. The specific species selected for analysis at each sampling location are indicated on Table 2-8. Fish samples were submitted to H2M Laboratories, Inc. for analysis for PCBs using Method 91-3 in accordance with NYSDEC ASP (NYSDEC 1991). For fish samples with sufficient mass, percent moisture and percent lipids were also measured (O'Brien & Gere 1993).

3. Results of investigative activities

Data generated as part of the investigative efforts described in Section 2 are summarized in the following subsections. Data evaluation is also presented in this section, as well as a description of site hydrogeologic conditions.

3.1. Hydrogeologic conditions

3.1.1. Geologic setting

The site lies within the Erie-Ontario Lowlands Physiographic Province (Ontario Lowland) of New York State (Thompson 1966). The Ontario Lowland lies between Lake Ontario to the north and the Appalachian Upland Physiographic Province to the south, and is characterized by generally flat topography. The Ontario Lowland in Onondaga County consists of a lake plain covered with glaciolacustrine sediment, and drumlin fields underlain by molded lodgement till. The glaciolacustrine sediments consist of varved silt and clay and fine to medium sand. The lodgement till is generally a poorly-sorted mixture of rounded to sub-rounded cobbles and boulders embedded within a silt/clay matrix. The lake plain lies below an elevation of 450 ft above mean sea level (Winkley 1989).

Bedrock geology is characterized by the Vernon Shale that underlies much of the Ontario Lowland (Winkley 1989). The Vernon Shale is the oldest member of the Salina Group and was formed during the Upper Silurian period (approximately 400 million yrs ago). The Vernon Shale measures 500 to 600 ft thick and consists of predominantly red and green shale beds, although minor beds of dolostone, limestone, and sandstone occur locally (Mozola 1938). The Vernon shale reportedly dips southward at a rate of 40 to 50 ft per mile (Winkley, 1989).

3.1.2. Site geology

Site geology has been characterized by soil borings, trenches, and monitoring well borings. Materials encountered are consistent with the geologic setting of the site. The site unconsolidated (overburden) geology consists of fill, glaciolacustrine deposits, and lodgement till underlain by red

shale bedrock. Figure 3-2 is a generalized hydrogeologic cross section that illustrates the site geology. The areal location of the cross section is depicted on Figure 2-2.

Fill at the site consists of a mixture of reworked native silt and fine sand (glaciolacustrine deposits), gravel backfill, organic matter, and anthropogenic debris (coal, wood, cinders, concrete, refuse, etc.). The fill is loose to dense and ranges in thickness from approximately 1 ft at boring OBG-13 inside the manufacturing building to greater than 16 ft at the on-site landfill area in the northwestern portion of the site.

Glaciolacustrine deposits at the site underlie the fill. These materials are predominantly soft to stiff, brown-gray silt with varying amounts of fine sand and clay. Fine layering (or varves) of the silt, fine sand and clay were clearly observed. The thickness of the glaciolacustrine deposits increase to the northeast across the site (EDI 1985a). The deposit ranges in thickness from 7 ft at well U-2D to 28 ft at well OBG-6D.

A detailed review of the boring logs indicates that in the northern portion of the site the glaciolacustrine deposits can be divided into an upper, middle and lower unit. The upper unit consists predominantly of silt and fine sand and varies in thickness from approximately 4 to 14 ft. The middle unit consists predominantly of silt and clay. The middle unit originates near the northern edge of the manufacturing building and is continuous in northern portion of the site. The middle unit varies in thickness from approximately 5 to 15 ft. The deeper portion consists of silt and fine sand. Sand and gravel lenses were noted at isolated locations at the interface between the glaciolacustrine deposits and the till. The thickness of this layer varies from 5 to 11 ft.

In the southern portion of the site, the glaciolacustrine deposits consist primarily of silt and fine sand to depths of 13 to 17 ft.

Lodgement till underlies the glaciolacustrine deposits and overlies the bedrock at the site. The till consists of a very dense to hard, red clayey silt with embedded fine to medium sub-rounded gravel. Although not fully penetrated, the till thickness was at least 45.5 ft at boring MW-11R in the northwest portion of the site. The till was reportedly fully penetrated at well W-6D, in the northwest property area where the thickness was approximately 4 ft. Although not fully penetrated, till thickness was at least 9 ft at well W-7D located in the northern portion of the facility that is consistent with findings at the adjacent Ley Creek PCB Dredgings site. Till thickness in

monitoring well OBG- 3D at the adjacent Ley Creek PCB Dredgings site was 7 ft.

A contour map illustrating the top of the lodgement till is presented as Figure 3-1. The figure illustrates that the surface of the till slopes downward to the northeast toward well OBG-6D. The top of till elevation ranges from approximately 385 ft at OBG-11 in the southwest portion of the site to 346 ft at OBG-6D located near the northeast property line. The figure illustrates that the downward slope of the till is the greatest in the vicinity of monitoring well MWI-3 and OBG-10D located in the central portion of the property. The configuration of the top of till may influence the direction of migration of contaminants.

3.1.3. Site hydrogeology

The depth to ground water at the site and the downgradient Ley Creek Dredged Material Area site varies from approximately 3 to 13 ft below ground surface in the October/November 1999 monitoring event. The saturated portions of the fill and glaciolacustrine deposit comprise the unconfined overburden aquifer. The overburden aquifer is underlain by the lodgement till unit which limits hydraulic connection between the overburden and bedrock. Based on the geology at the site the overburden aquifer was divided into a shallow and a deep zone. The classifications were developed to evaluate ground water quality in the two zones and to discuss variations in ground water flow regimes.

The upper approximate 15 ft of the saturated overburden has been designated the shallow overburden aquifer zone. This zone encompasses the entire site and contains the saturated portion of fill and the upper and middle glaciolacustrine unit.

Beginning near the northern boundary of the manufacturing building, the depth to till increases. As a result, the aquifer thickness increases, and both shallow and deep ground water zones are present. The deep overburden aquifer zone encompasses the 10 ft immediately above the lodgement till (Figure 3-1). The deep overburden aquifer zone is not present in the southwestern property area, IWT Plant area, and manufacturing building area, as the till layer was encountered at a depth of approximately between 14 and 18 ft bgs.

Ground water elevation data have been collected since 1985. Appendix F includes a summary of historic ground water elevation data measured in conjunction with well installations, wells routinely monitored in the coal pile area, former thinner tanks area, and surface impoundment area. A

comparison of elevation data from numerous sampling events shows similar trends. The variations in the data are a result of seasonal fluctuations.

As part of this Supplemental RI, ground water elevations were collected on October 27, 1999 from 70 monitoring wells/piezometers. These data are presented on Table 3-1. A comparison of the ground water elevation data collected on October 27, 1999 to historical data indicate that the ground water elevations were low, but consistent with other elevation data in the fall of the year.

Shallow overburden zone. A ground water elevation map (Figure 3-3) was developed from ground water elevation data measured on October 27, 1999. The shallow ground water flow direction is generally northeast across the site toward Ley Creek under an average hydraulic gradient of 0.009 ft/ft.

Review of ground water elevation data, on the western side of the site at the former thinner tank area, indicates that flow is influenced by subsurface utilities and the recovery trench. The subsurface utilities in the former thinner tank area include a 42-inch diameter storm drain, a 24-inch diameter abandoned storm sewer, and a water line associated with fire protection. Furthermore, the ground water recovery trenches which have a combined yield of approximately 0.2 gpm may locally influence the flow direction. As a result P-9, located south of the former thinner tank area, and T-26, located north of the former thinner tank area were used to develop the site wide shallow ground water flow map.

In addition to the western area of the site, the shallow zone ground water elevation contours show apparent troughs located in the southwest property area and in the northern property boundary area. The troughs are in the vicinity where the facility storm drains are routed. The trough suggests that shallow ground water flow direction locally converges due to the storm drain effects on the shallow aquifer zone.

Horizontal hydraulic conductivity values in the shallow overburden aquifer zone, presented in Table 3-2, range from 7.51×10^{-3} ft/day to 1.76 ft/day.

The ground water velocity in the shallow ground water has been calculated using the range of hydraulic conductivity values, the hydraulic gradient and assumed porosity as follows:

Ground water velocity V= KI/n

where:

V= Velocity (ft/day)
K=Hydraulic Conductivity = (7.51 x 10⁻³ to 1.76 ft/day)
I= Hydraulic gradient = 0.009 ft/ft.
n= porosity = 0. 35 assumed (Fetter, 1980)

 $V = 1.9 \times 10^{-4}$ ft/day to 4.5 x 10^{-2} ft/day (0.07 to 16.4 ft/year).

An approximation of ground water discharge at the site boundary is presented based on the existing hydrogeologic data. Assuming the horizontal extent of the downgradient property boundary is 2000 ft, and an average saturated thickness of the shallow glaciolacustrine unit is 15 ft, the shallow ground water discharge at the property boundary has been calculated as follows:

Ground water discharge rate Q = KIA

where:

Q = Discharge (ft³/day)

K = Horizontal Hydraulic Conductivity 7.51 x 10⁻³ to 1.76 ft/day

I= Hydraulic Gradient (10/27/99) = 0.009 ft/ft

A = cross sectional area (2000 ft (horizontal distance)

multiplied by 15 (saturated thickness)

 $Q = 2.0 \text{ to } 475 \text{ ft}^3/\text{day} (15 \text{ to } 3553 \text{ gal/day}).$

Vertical flow potential between the shallow and deep ground water zones is generally downward. Vertical gradients range from 0.01 ft/ft to 0.18 ft/ft with no apparent pattern in the variations. Well nests OBG-9S/9D and OBG-3S/3D exhibited upward flow potentials. The deep well in both of these nested pairs is either partially or fully screened in the glacial till. The lower hydraulic conductivity of the glacial till is likely responsible for this variation in the observed ground water elevations.

Tri-axial permeability tests were completed of the glaciolacustrine unit to assess the vertical permeability of this deposit. The vertical permeability of the upper and glaciolacustrine unit ranged from 2.4×10^4 to 3.9×10^4 ft/day (EDI 1985a). This is approximately 1 to 3 orders of magnitude less than the horizontal hydraulic conductivity. This trend is consistent with the varved and fine grained nature of the glaciolacustrine deposits and suggests that horizontal ground water flow is the preferential flow path.

Deep overburden zone. A ground water elevation map (Figure 3-4) was developed from ground water elevation data measured on October 27, 1999. As previously discussed, the deep overburden zone is not present in the southern portion of the property due to the limited saturated thickness as a result of the shallow depth to the till. Similar to the shallow zone, the deep ground water flow direction is generally to the north toward Ley Creek under an average hydraulic gradient of 0.01 ft/ft.

Horizontal hydraulic conductivity values in the deep overburden aquifer zone, presented in Table 3-2, range from 4.25 x 10⁻² ft/day to 3.12 ft/day (O'Brien & Gere 1989a, EDI 1985a).

The ground water velocity in the deep ground water has been calculated using the range of hydraulic conductivity values, hydraulic gradient and porosity as follows:

Ground water velocity V= KI/n where:

V= Velocity (ft/day)
K=Hydraulic Conductivity (4.25 x 10-2 to 3.12 ft/day)1
I= Hydraulic gradient = 0.01 ft/ft.
n= porosity = 0.35 assumed (Fetter, 1980)

 $V= 1.21 \times 10^{-3}$ ft/day to 8.9 x 10^{-2} ft/day (0.44 ft/year to 32.5 ft/year)

An approximation of ground water discharge at the site boundary is presented based on the existing hydrogeologic data. Assuming the horizontal extent of the downgradient property boundary is 2000 ft, and an average saturated thickness of the deeper ground water zone is 10 ft, the ground water discharge at the property boundary has been calculated as follows:

Ground water discharge rate Q = KIA

where:

 $Q = discharge (ft^3/day)$

 $K = Horizontal Hydraulic Conductivity = 4.25 \times 10^{-2} to 3.12 ft/day$

I= Hydraulic Gradient (10/27/99) = 0.009 ft/ft

A = cross sectional area (2000 ft (horizontal distance)

multiplied by 10 (saturated thickness)

Q = 8.5 to 624 ft³/day (64 to 4667 gal/day).

Lodgement till. Lodgement till vertical permeability was evaluated by laboratory tri-axial testing of three samples. Vertical permeability values presented in Table 3-2 ranged from 1.42 x 10⁻⁴ ft/day to 7.09 x 10⁻⁵ ft/day (EDI 1985a). The results are less than the vertical permeabilities of the glaciolacustrine deposits.

At the Ley Creek PCB Dredgings site, monitoring wells OBG-3D and MW-9D were installed atop bedrock within the lodgement till. The wells were sealed from the overlying glaciolacustrine unit. Historical data indicate these wells exhibited an upward flow potential with the hydraulic head in OBG-3D approximately 5 ft higher than in the adjacent shallow monitoring well OBG-3. Well MW-9D exhibited artesian conditions with water flowing from the top of the well casing. These conditions further corroborate the assessment that the lodgement till layer observed at the Ley Creek PCB Dredgings site behaves as an aquitard.

3.2. Soil

Data generated during soil investigative efforts described in Section 2 are summarized in this section. Soil data are described with respect to the following areas at the facility: manufacturing building subsurface, southeast property area, IWT plant area, former thinner tanks area, northeast property area, the northern property area, and southwest property area. Comprehensive summaries of soil data for detected constituents are presented in Tables 3-5 (PCBs), 3-6 (oil & grease and detected petroleum hydrocarbons), 3-7 (inorganics), 3-8 (VOCs), 3-9 (SVOCs), 3-10 (dioxin/furans), 3-11 (dioxin/furan toxicity equivalent quotient), and on figures included in Appendix C. NYS soil cleanup objectives presented in NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) 4046, Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC 1995), were used as screening values for comparison to soil concentrations, and are also included on Tables 3-5 through 3-9. A summary of constituents detected above screening levels, as well as soil sample locations, for each of the areas of the facility is provided in Table 3-4. Historic analytical data are included in Exhibit E of the 1997 Preliminary RI/FS Report. Additionally, the Analytical Data Assessment and Validation

Report for CRA data is presented in Exhibit F of the 1997 Preliminary RI/FS Report.

3.2.1. Background soils

During the 1998/1999 Supplemental RI, soil boring OBG-TB-33 was installed for the purpose of collecting background data. Methylene chloride (1 N mg/kg), bis(2-ethylhexyl)phthalate (59 J mg/kg) and PCB Aroclor 1242 (0.04 J mg/kg) was detected in this sample. Site related metals including arsenic (2.4 mg/kg), chromium (13.7 J mg/kg), copper (11.8 mg/kg), lead (4.9 mg/kg), nickel (11.5 mg/kg), and zinc (28.4 mg/kg), were detected in this location. The detected zinc concentration was greater than the NYSDEC TAGM 4046 screening level. Cyanide was not detected in this location.

3.2.2. Manufacturing building subsurface

Soil beneath and in the vicinity of the manufacturing building was evaluated by CRA during the 1995 Phase II ESA and by O'Brien & Gere during the 1998/1999 Supplemental RI, as discussed in Section 2. These evaluations consisted of the installation of a series of soil borings beneath the building floor, summarized by area as follows:

Abandoned underground oil sumps and tanks. During the August 1995 investigation described in Section 2, fourteen soil borings (BH-11, BH-12, BH-13, BH-14, BH-15, BH-16, BH-17, BH-18, BH-19, BH-20, BH-21, BH-22, BH-23, and BH-24) were installed adjacent to the abandoned oil collection sumps (hydraulic oil sumps A, C, D, E, F, G, H, I, J, and K) and tanks (hydraulic oil underground tanks N, O, P, Q, and R). Hydraulic oil sump and tank depths are presented in Attachment 1 of Appendix G. Soil borings were installed within 3 ft of the sump or tank in an attempt to examine soil conditions within the bedding material areas around the sumps. Borings were installed to the approximate depth of the bottom of the sump or tank, and one soil sample was collected from each boring from near the base of the bedding material. Detectable concentrations of PCBs, ranging from 0.061 to 47 mg/kg, were found at thirteen of fourteen locations. The samples were also analyzed for a petroleum hydrocarbon scan, and SAE 30w oil was detected at concentrations ranging from 280 to 80,000 mg/kg.

During the April 1996 CRA investigation, fifteen additional soil borings (BH-25, BH-26, BH-27, BH-28, BH-29, BH-30, BH-39, BH-40, BH-41, BH-42, BH-43, BH-45, BH-49, BH-50, and BH-51) were installed adjacent to sumps (hydraulic oil sumps B and L) not investigated during the earlier

phase and adjacent to certain sumps (hydraulic oil sumps H, I, K, M) with August 1995 PCB detections above the NYSDEC TAGM 4046 soil screening level. PCB Aroclor 1248 was detected in fourteen of fifteen locations, at concentrations ranging from 0.061 to 25 mg/kg. SAE 30w oil was detected in the samples collected from thirteen of the fifteen borings, at concentrations ranging from 280 to 48,000 mg/kg.

Data collected to date in this area show that PCBs were detected at concentrations greater than the NYSDEC TAGM 4046 screening levels in samples BH-11, BH-13, BH-15, BH-20, BH-35 and BH-41, installed in the vicinity of hydraulic oil sumps H, I, J and K, and the former hydraulic oil tank O (removed). PCBs were generally present in samples from these locations between 7 and 13.5 ft below surface. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-5A, B, and C.

Former electroplating sumps. During the August 1995 investigation, six soil borings (BH-4, BH-5, BH-6, BH-7, BH-9, and BH-10) were installed adjacent to the suspected locations of former electroplating sumps. Chromium (10 to 120 mg/kg), copper (8 to 43 mg/kg), and nickel (8.3 to 4000 mg/kg) were detected in each of the samples. Cyanide was detected in samples from borings BH-4 (3.1 mg/kg) and BH-7 (11 mg/kg). VOCs were detected in three of the borings in the vicinity of the paint room, as discussed below.

During the April 1996 investigation, two additional soil borings (BH-46 and BH-47) were installed east and west of former sump #3. Samples obtained from these borings were analyzed for RCRA metals and nickel, with the results indicating detectable concentrations of arsenic (2.9 and 4.9 mg/kg), barium (64.2 and 69.0 mg/kg), cadmium (0.28 and 0.29 mg/kg), chromium (15.2 and 18.1 mg/kg), lead (7.7 and 8.1 mg/kg), nickel (16.8 and 19.9 mg/kg) and selenium (0.49 and 0.56 mg/kg).

As discussed below, during the 1998/1999 Supplemental RI, four soil borings (OBG-TB-12, OBG-TB-13, OBG-TB-16 and OBG-TB-17) were installed in the vicinity of the paint room. These locations are also in the vicinity of the former electroplating sumps. Detected concentrations of site-related metals included arsenic (2.5 mg/kg to 5.8 mg/kg), chromium (10.2 J mg/kg to 74.5 mg/kg), copper (14.6 mg/kg to 689 mg/kg), lead (3.6 mg/kg to 8.9 mg/kg), nickel (13.7 mg/kg to 145 mg/kg), and zinc (25 mg/kg to 52.2 mg/kg). In addition to site-related metals, samples were analyzed for cyanide, which was detected at concentrations ranging from 2.2 J mg/kg to 614 J mg/kg. Detected concentrations are depicted in Appendix C.

Data collected to date in this area show that concentrations of the site-related metal copper (in BH-4, BH-7, BH-9, OBG-TB-13, OBG-TB-16 and OBG-TB-17, down to a depth of 17 ft) were detected above the NYSDEC TAGM 4046 screening level of 25 mg/kg. These detections were in the vicinity of chrome sumps 4 and 5, acid-alkali sump 7, and the paint room. Chromium was detected in samples BH-7 and OBG-TB-16 in the vicinity of cyanide sump 2 and chrome sump 5, at concentrations greater than the NYSDEC TAGM 4046 screening levels, down to a depth of 17 ft. Nickel was detected at concentrations greater than the NYSDEC TAGM 4046 screening levels in samples from all locations in this area, to a depth of 17 ft below surface. Zinc was detected above the NYSDEC TAGM 4046 screening levels in samples from OBG-TB-12, OBG-TB-13, OBG-16, and OBG-TB-17, collected from the vicinity of chrome sumps 5, acid-alkali sump 7 and the paint room, to a depth of 17 ft below surface. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-5A, B, and C.

Former PCB oil USTs. One soil boring (HA-6) was installed at the suspected location of a former PCB oil UST located beneath the manufacturing building floor. A soil sample was collected below the approximate depth of the UST, 5 ft bgs. This soil sample yielded a PCB concentration of 0.41 mg/kg, which is below the screening level for PCBs. Boring HA-5 was installed at the suspected location of another former PCB oil UST outside the manufacturing building on the east side. PCBs were not detected in this sample. Petroleum hydrocarbons were not detected in either sample. Detected concentrations are depicted in Appendix C.

Paint room area. Three soil borings (BH-6, BH-7, and BH-9) were installed in the vicinity of the paint room during the April 1996 investigations in order to further evaluate VOCs which were detected in soil samples obtained during the August 1995 investigation. During the August 1995 investigation, VOCs were detected in samples from BH-6, BH-7 and BH-9 in the following ranges: TCE (0.28 to 73 mg/kg) and toluene (less than detectable to 0.21 mg/kg). VOCs detected in the three additional borings installed in April 1996 (BH-46, BH-47 and BH-48) included acetone (0.014 to 0.021 mg/kg), TCE (6 to 150 mg/kg) and 1,2-DCE (0.14 to 1 mg/kg). Elevated PID readings were noted during installation of these borings, which is consistent with the detection of VOCs in the samples.

During the 1998/1999 Supplemental RI, four soil borings (OBG-TB-12, OBG-TB-13, OBG-TB-16 and OBG-TB-17) were installed in the vicinity of the paint room. PCB Aroclor 1248 was detected in one of the four soil sample locations (OBG-TB-17) at 0.002 J mg/kg. VOCs were detected in

each of the soil borings. Detected VOCs, at the following concentration ranges, included: cis-1,2-DCE (0.017 mg/kg to 4.1 mg/kg), trans-1,2-DCE (0.065 J mg/kg to 0.087 mg/kg), and TCE (0.032 mg/kg to 22 mg/kg). SVOCs were not detected in any of these samples. Site-related metals were detected in each of the soil borings, at the following concentrations: arsenic (2.5 mg/kg to 6.5 mg/kg), chromium (10.2 J mg/kg to 74.5 J mg/kg), copper (14.6 mg/kg to 689 mg/kg), lead (3.6 mg/kg to 8.9 mg/kg), nickel (13.7 mg/kg to 145 mg/kg), and zinc (25 mg/kg to 52.2 mg/kg). Detected concentrations are depicted in Appendix C.

Data collected to date show detections of TCE in subsurface soil in the vicinity of the paint room at concentrations above NYSDEC TAGM 4046 screening levels in eight of the ten locations sampled to date (BH-7, BH-9, BH-46, BH-47, BH-48, OBG-TB-12, OBG-TB-13, and OBG-TB-16) at concentrations ranging from 0.032 mg/kg to 150 mg/kg, down to a depth of 16 ft. In addition, cis-1,2-DEC was detected above the NYSDEC TAGM 4046 screening level in four of the ten locations sampled to date (BH-47, BH-48, OBG-TB-12, and OBG-TB-17) at concentrations ranging from 2.8 mg/kg to 42 mg/kg, down to a depth of 16 ft. Methylene chloride was detected above the NYSDEC TAGM 4046 screening level in one location (OBG-TB-17). Site-related metals nickel and zinc were detected above the NYSDEC TAGM 4046 screening levels in each of the samples collected in 1999, down to a depth of 17 ft. The site-related metal copper was detected above the NYSDEC TAGM 4046 screening level in three of the four soil borings collected in 1999, down to a depth of 17 ft. As discussed above in relation to the former electroplating sumps, chromium, nickel, and copper were also detected in 1996 at concentrations greater than the corresponding NYSDEC TAGM 4046 screening levels. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-5A, B, and C.

Abandoned storm sewer trenches. Evaluation of the soil adjacent to the abandoned storm sewer trenches beneath the facility floor involved the installation of twelve soil borings (BH-31, BH-32, BH-33, BH-34, BH-35, BH-36, BH-37, BH-38, BH-51, BH-52, BH-53, and BH-54) installed by CRA in 1996 along the line leading to oil/water collection sump 5. The soil sample data indicated the presence of PCBs (0.036 to 4300 mg/kg) in nine of the samples and SAE 30w oil (320 to 55,000 mg/kg) in eight of the samples.

During the 1998/1999 Supplemental RI, six soil borings (OBG-TB-1, OBG-TB-4, OBG-TB-5, OBG-TB-14, OBG-15, and OBG-TB-19) were installed adjacent to oil/water collection sumps 2, 3, 6, 7 and 8 and along the fire protection line. The borings were installed to between 11 and 13 ft below

grade. As described in Section 2.1, samples from OBG-TB-4 were screened for NAPL, but not submitted for laboratory analysis. PCB Aroclor 1248 was detected in samples collected at each depth interval in these soil borings at concentrations ranging from 0.003 J to 140 mg/kg. Chlorinated VOCs, mainly TCE and cis-1,2-DCE, were detected in the samples in the vicinity of oil/water collection sumps 3, 6, and 7. Methylene chloride was tentatively identified in samples collected from the vicinity of oil/water collection sumps 3, 6, 7, and 8 and chloroform was tentatively identified in the vicinity of oil/water collection sump 3. Xylene was tentatively detected in one sample in the vicinity of oil/water collection sump 7, and was detected in the vicinity of oil/water collection sump 8. Ethylbenzene was detected twice in samples in the vicinity of oil/water collection sumps 7 and 8. Detected VOCs, and the respective range of detections, included: chloroform (0.041 NJ mg/kg), cis-1,2-DCE (0.001 mg/kg to 0.027 mg/kg), ethylbenzene (0.009 mg/kg to $0.053~\mathrm{N}$ mg/kg), methylene chloride ($0.002~\mathrm{N}$ mg/kg to $0.025~\mathrm{N}$ mg/kg), PCE (0.001 mg/kg), TCE (0.003 mg/kg to 3.3 mg/kg), and xylene (0.068 mg/kg to 0.26 N mg/kg).

Several SVOCs were detected during the 1998/1999 Supplemental RI in samples collected from the vicinity of oil/water collection sumps 2, 3, and 8. Butyl benzyl phthalate was the only SVOC detected in samples collected from the vicinity of oil/water collection sump 7. Detected SVOCs and their respective concentrations ranges included: benzo(a)anthracene (0.036 J mg/kg to 0.084 J mg/kg), benzo(a)pyrene (0.035 J mg/kg to 0.078 J mg/kg), benzo(b)fluoranthene (0.047 J mg/kg to 0.11 J mg/kg), benzo(g,h,i)perylene (0.039 J mg/kg), butyl benzyl phthalate (0.048 J mg/kg), chrysene (0.046 J mg/kg to 0.1 J mg/kg), fluoranthene (0.038 J mg/kg to 0.19 J mg/kg), phenanthrene (0.037 J mg/kg to 0.16 J mg/kg), and pyrene (0.04 J mg/kg to 0.25 J mg/kg).

Site-related metals detected during the 1998/1999 Supplemental RI include arsenic (1.6 mg/kg to 7.2 mg/kg), chromium (7.1 mg/kg to 34.6 mg/kg), copper (4.8 mg/kg to 30.7 mg/kg), lead (3 mg/kg to 32.5 mg/kg), nickel (5.9 J mg/kg to 34.1 mg/kg), and zinc (11.2 mg/kg to 67 mg/kg). Detected concentrations are depicted in Appendix C.

During the 1998/1999 Supplemental RI, the eight soil borings (OBG-TB-2, OBG-TB-3, OBG-TB-6, OBG-TB-7, OBG-TB-8, OBG-PZ-4, OBG-PZ-5, and OBG-PZ-6) were installed the along abandoned lines leading to oil/water collection sumps 1 and 5 were also used to assess the presence of NAPL. The results of the NAPL screening are included in Table 3-3. Soil borings installed along abandoned lines leading to oil/water collection sump 1 (OBG-TB-2 and OBG-TB-3) showed no presence of NAPL. Field

screening of soil from three of the soil borings installed along abandoned line leading to oil/water collection sump 5 (OBG-PZ-4, OBG-PZ-5, and OBG-PZ-6) showed ultraviolet fluorescence, indicating the presence of residual NAPL. The PID readings ranged from 0.6 to 220 ppm, as indicated in Table 3-3. In accordance with the Final Supplemental RI/FS Work Plan, these borings were completed as piezometers. An oil/water interface probe was used to evaluate the presence of NAPL. No accumulated NAPL was measured. The remaining three soil borings installed along the abandoned line leading to oil/water collection sump 5 (OBG-TB-6, OBG-TB-7, and OBG-TB-8) showed no presence of NAPL.

To date, concentrations of PCBs above the screening criteria were detected in four of the borings (BH-34, BH-35, BH-37, and OBG-TB-19) along the abandoned lines leading to oil/water collection sumps 5 and $\bar{7}$, at concentrations ranging from 32 mg/kg to 4,300 mg/kg as deep as the 10 to 12-ft sampling interval. TCE was the only VOC detected above the NYSDEC TAGM 4046 screening level, near oil/water collection sump 3 (OBG-TB-14). Benzo(a)pyrene was the only SVOC detection greater than the NYSDEC TAGM 4046 screening levels, near oil/water collection sump 8 (OBG-TB-01). Site-related metals nickel and zinc were present at concentrations greater than the NYSDEC TAGM 4046 screening levels in samples collected from the vicinity of oil/water collection sumps 2, 3, 6, 7, and 8 (OBG-TB-15, OBG-TB-14, OBG-TB-5, OBG-TB-19, and OBG-TB-1, respectively). Copper, also a site-related metal, was only detected in the vicinity of oil/water collection sumps 7 and 8 at concentrations greater than the NYSDEC TAGM 4046 screening level. Detected concentrations are depicted in Appendix C. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-5A, B, and C.

Loading dock leveler sumps. Two soil borings (HA-3 and HA-4) were installed in the vicinity of the former dock leveler sumps by CRA in August 1995, and one sample from each location was collected and submitted for petroleum hydrocarbon scan (PHS) and PCB analyses. Petroleum hydrocarbons were not detected in either sample, and PCBs were not detected in the soil sample from soil boring HA-3. PCBs were detected at a concentration (0.390 mg/kg) below the NYSDEC TAGM 4046 screening level at the HA-4 location. Detected concentrations are depicted in Appendix C.

Compactor area. One soil boring (HA-1) was installed in the former compactor area by CRA in August 1995, and one soil sample was collected and submitted for analyses of PHS, PCBs, and VOCs. Only toluene and xylene were detected at concentrations of 720 and 1.9 mg/kg, respectively, which are above the NYSDEC TAGM 4046 screening levels (1.5 and 1.2

mg/kg, respectively). Detected concentrations are depicted in Appendix C. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-5A, B, and C.

Summary. The sampling activities and associated results from various investigations conducted in the manufacturing building to date indicate that soil in certain locations beneath the manufacturing building contains PCBs, VOCs, SVOCs and site-related metals. PCB concentrations above the screening levels generally ranged from 13 to 47 mg/kg, with the exception of three samples, OBG-TB-19, BH-35, and BH-37. Sample OBG-TB-19, located in the vicinity of sump 7 (near the paint storage room), contained PCBs at 140 mg/kg. Samples BH-35 and BH-37 contained 2700 mg/kg and 4300 mg/kg, respectively. The results in samples BH-53, BH-54, BH-38, and HA-6 show that the PCB concentration in BH-37 is localized. Similarly, results in samples BH-18, BH-32 and BH-36 indicate that the PCB concentration in BH-35 is also localized. NAPL field screening was positive in three sample locations along the abandoned line leading to oil/water collection sump 5; however, no NAPL was measured using oil/water interface probes in piezometers completed at these locations.

TCE detections above screening levels generally ranged from 0.73 to 14 mg/kg, with the exception of three samples, BH-46, BH-9 and BH-47. At these locations, TCE was detected at concentrations ranging from 47 to 150 mg/kg. These higher concentrations were located between the paint room and the abandoned line leading to oil/water collection sump 6, located south of the paint room. SVOC detections above screening levels were limited to benzo(a)pyrene and phenol in soil beneath the manufacturing building in the vicinity of oil/water collection sump 8.

Chromium, nickel, copper, and zinc were detected at concentrations above the screening levels in soil beneath the manufacturing building at locations adjacent to former electroplating sumps. Copper, nickel, and zinc were detected at concentrations above the screening levels in the vicinity of the former oil/water collection sumps.

The specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4 and as follows:

PCBs

- abandoned hydraulic oil sumps H, I, J, K and the former hydraulic oil tank O
- paint room (one of ten samples from the center of paint room)

- abandoned line leading to oil/water collection sump 5
- oil/water collection sump 7.

VOCs

- oil/water collection sump 3 (TCE only)
- paint room (TCE and cis-1,2-DCE)
- former compactor area (toluene and xylene)

SVOCs

oil/water collection sump 8 (benzo(a)pyrene and phenol).

Metals

- former electroplating sumps (chromium, copper, nickel and zinc)
- oil/water collection sumps (copper, nickel, zinc).

3.2.3. Southeast property area

Soil in the general storage area in the southeast property area was evaluated by CRA in the 1995 Phase II ESA. Two soil borings (HA-7 and HA-8) were installed by CRA within the general storage area in August 1995, and one sample from each boring was collected and submitted for analyses of VOCs, SVOCs, PCBs, and RCRA metals. Arsenic, chromium, and lead were detected in each soil sample. Additionally, toluene and selenium were detected in the soil sample from soil boring HA-8.

O'Brien & Gere collected one soil sample from a boring (S-13) installed at a proposed telephone pole location in the southeast property area in 1996. The sample, a 0 to 5 ft composite, was analyzed for PCBs, which were not detected (O'Brien & Gere 1996a).

During the 1998/1999 Supplemental RI, two soil borings (OBG-TB-22 and OBG-TB-23) were collected to investigate beneath the parking lot. Methylene chloride was the only VOC detected in the soil borings in this area, at concentrations ranging from 0.003 N mg/kg to 0.006 N mg/kg. SVOCs anthracene (0.047 J mg/kg), benzo(a)anthracene (0.14 J mg/kg), benzo(a)pyrene (0.13 J mg/kg), benzo(b)fluoranthene (0.26 J mg/kg), benzo(k)fluoranthene (0.066 J mg/kg), chrysene (0.22 J mg/kg), fluoranthene (0.37 J mg/kg), phenanthrene (0.37 J mg/kg), pyrene (0.71 J mg/kg), and bis(2-ethylhexyl)phthalate (1.3 J mg/kg) were detected in OBG-TB-22. Bis(2-ethylhexyl)phthalate (0.5 mg/kg to 1.3 J mg/kg) was detected in OBG-TB-22 and OBG-TB-23. PCB Aroclor 1248 was detected at 0.005 J mg/kg in OBG-TB-23. PCBs were not detected in OBG-TB-22. Siterelated metals arsenic (3.3 mg/kg and 5.6 mg/kg), chromium (14 mg/kg and 27.9 mg/kg), copper (13.4 mg/kg and 23.8 mg/kg), lead (5.3 mg/kg and 9.2

mg/kg), nickel (13.9 mg/kg and 26.9 mg/kg), and zinc (31.9 mg/kg and 53.1 mg/kg) were also detected in these two samples.

In addition, during the 1998/1999 Supplemental RI, four surface soil samples (SS-99-18, SS-99-19, SS-99-20 and SS-99-21)were collected to investigate the vicinity of the former miscellaneous storage area. Methylene chloride was the only VOC detected in these surface soil samples, at concentrations ranging from 0.003 mg/kg to 0.006 mg/kg. Several SVOCs were detected in these surface soil samples, including 2-methylnaphthalene (0.057 J mg/kg to 0.12 J mg/kg), anthracene (0.064 J mg/kg), benzo(a)anthracene (0.1 mg/kg to 0.27 mg/kg), benzo(a)pyrene (0.11 J mg/kg to 0.37 mg/kg), benzo(b)fluoranthene (0.043 mg/kg to 0.72 mg/kg), benzo(g,h,i)perylene (0.45 J mg/kg), benzo(k)fluoranthene (0.057 J to 0.23 mg/kg), butyl benzyl phthalate (0.22 J mg/kg), chrysene (0.16 J mg/kg to 0.52 mg/kg), di-n-butyl phthalate (0.089 J mg/kg), fluoranthene (0.046 J mg/kg to 0.33 J mg/kg), indeno(1,2,3-c,d)perylene (0.35 J mg/kg), naphthalene (0.078 J mg/kg to 0.09 J mg/kg), phenanthrene (0.13 J mg/kg to 0.28 J mg/kg), pyrene (0.041 J mg/kg to 0.87 J mg/kg), and bis(2ethylhexyl)phthalate (0.072 J mg/kg to 1 J mg/kg). PCBs were detected at concentrations ranging from 0.3 mg/kg to 8 J mg/kg in three of these surface samples. Site-related metals detected in these surface soils samples included arsenic (4.9 mg/kg and 162 mg/kg), chromium (21.5 mg/kg to 31.4 mg/kg), copper (19.8 mg/kg to 60.3 mg/kg), lead (10.8 mg/kg and 50.8 mg/kg), nickel (20.3 mg/kg and 54 mg/kg), and zinc (53.1 mg/kg and 892 mg/kg). In addition to site-related metals, sample SS-99-21 was analyzed for TAL metals. TAL metals (in addition to site-related metals) detected in this sample included: aluminum, antimony, barium, beryllium, cadmium, calcium, cobalt, iron, magnesium, manganese, mercury, nickel, potassium, selenium, sodium, and vanadium. Detected concentrations are depicted in Appendix C.

Data collected to date in this area show that constituents in subsurface soils beneath the parking lot at concentrations that exceeded the NYSDEC **TAGM** 4046 screening level included benzo(a)pyrene. benzo(b)fluoranthene, nickel and zinc. Constituents in surface soils in the vicinity of the former miscellaneous storage area at concentrations that exceeded the NYSDEC TAGM 4046 screening level included PCB Aroclor 1254 (8 J mg/kg, in sample SS-99-18); SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene; site-related metals arsenic, copper, nickel and zinc; and metals beryllium and iron. The only constituent detected at concentrations greater than the NYSDEC TAGM 4046 screening level in subsurface samples in the vicinity of the former miscellaneous storage area was chromium.

concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-6A, B, and $\rm C.$

Summary. The sampling activities and associated results from the various investigations conducted in the southeast property area indicate that soil in certain locations in this area contains PCBs, SVOCs, and site-related metals. PCBs were detected in one of six surface soil samples collected from the northern side of the general storage area at a concentration of 8 J mg/kg. SVOCs detected above the screening levels were limited to three surface soil location in the in the vicinity of the general storage area, and one subsurface soil location beneath the parking lot. Arsenic, copper, nickel, zinc, beryllium and iron were detected above screening levels in surface soil in the vicinity of the general storage area located in the southeast property area. Zinc was the only metal detected at concentrations above the screening level in subsurface soil beneath the parking lot in the southeast property area. Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4, and listed as follows:

PCBs

· general storage area

SVOCs

- general storage area
- parking lot

Metals

- general storage area
- parking lot

3.2.4. Industrial waste treatment plant area

Soil in the vicinity of the IWT plant was evaluated by EDI, CRA, and O'Brien & Gere, as described in Section 2. This evaluation included the installation and sampling of seventeen soil borings and ten surface soil samples, summarized by area as follows:

General IWT plant area. EDI sampled one boring (P-13) during the 1985 Hydrogeological Investigation and six borings (WT-10 to WT-15) during the 1985 Phase II Hydrogeological Investigation in the vicinity of the IWT plant. PCBs Aroclors 1242 and 1248 were each detected in one sample at concentrations of 1.8 mg/kg (WT-13) and 0.14 mg/kg (P-13), respectively.

Oil & grease were detected in each of sixteen samples analyzed from borings WT-10 to WT-15 at concentrations ranging from 80 mg/kg to 440 mg/kg. Oil and grease concentrations with respect to depth are depicted in Exhibit G of the 1997 Preliminary RI/FS Report (EDI 1985a, 1986a).

O'Brien & Gere collected soil samples from two borings (S-11 and S-12) installed at proposed telephone pole locations in the vicinity of the IWT plant in 1996. These two samples (0 to 5 ft composites) were analyzed for PCBs. PCB Aroclor 1254 was detected in S-11 and S-12 at 0.032 mg/kg and 0.027 mg/kg, respectively, less than the NYSDEC TAGM 4046 screening level (O'Brien & Gere 1996a).

During the 1998/1999 Supplemental RI, five surface soil samples (SS-99-22, SS-99-23, SS-99-28, SS-99-29, and SS-99-30), were collected to evaluate surface soil in the vicinity of the IWT plant. Methylene chloride (0.003 N mg/kg to 0.035 NJ mg/kg) was detected in each of the samples, and toluene (0.001 J mg/kg) was detected in one of these samples (SS-99-28). Several SVOCs were also detected in each of these samples. Detected SVOCs included methyl naphthalene (0.059 J mg/kg to 0.21 J mg/kg), acenaphthene (0.046 J to 0.33 J mg/kg), anthracene (0.052 J mg/kg to 2.5 J mg/kg), benzo(a)anthracene (0.092 J mg/kg to 7.6 mg/kg), benzo(a)pyrene (0.19 J mg/kg to 8.4 mg/kg), benzo(b)fluoranthene (0.31 J mg/kg to 12 J mg/kg), benzo(g,h,i)perylene (0.11 J mg/kg to 3.2 J mg/kg), benzo(k)fluoranthene (0.091 J to 3.8 J mg/kg), butyl benzyl phthalate (0.54 J mg/kg to 36 mg/kg), carbazole (0.21 J mg/kg to 1.3 J mg/kg), chrysene (0.15 J mg/kg to 8.5 mg/kg), dibenzo(a,h)anthracene (0.14 J mg/kg), dibenzofuran (0.039 mg/kg to 0.11 J mg/kg), dimethyl phthalate (0.086 J mg/kg), fluoranthene (0.092 J mg/kg to 13 J mg/kg), fluorene (0.18 J mg/kg to 1 J mg/kg), indeno(1,2,3c,d)perylene (0.1 J mg/kg to 3.5 J mg/kg), naphthalene (0.24 J mg/kg), phenanthrene (0.084 J mg/kg to 9 mg/kg), phenol (0.041 J mg/kg), pyrene (0.23 J mg/kg to 14 mg/kg), and bis(2-ethylhexyl)phthalate (0.062 J mg/kg to 0.51 J mg/kg). PCB Aroclor 1248 was detected in four of these five surface soil samples at concentrations ranging from 0.8 mg/kg to 11 J mg/kg. PCB Aroclor 1254 was detected in SS-99-29 at 0.8 mg/kg. Site-related metals arsenic (4.6 mg/kg to 6 mg/kg), chromium (15.2 mg/kg to 39 mg/kg), copper (14.7 mg/kg to 21.5 mg/kg), lead (7.9 mg/kg to 33.2 mg/kg), nickel (14.9 mg/kg to 26.8 mg/kg), and zinc (50.8 mg/kg to 137 mg/kg) were also detected in these samples. Detected concentrations are depicted in Appendix C.

Results from the various investigations conducted in this area show that constituents detected at concentrations greater than the NYSDEC TAGM 4046 screening levels included SVOCs and PCBs. PCBs were detected

above the NYSDEC TAGM 4046 screening level of 1 mg/kg for surface soil in three of the surface soil samples at concentrations ranging from 7 mg/kg to 11 mg/kg. These locations are in the vicinity of the clarifiers (SS-99-30) and the former chromium water conditioning tanks (SS-99-22 and SS-99-23). SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)perylene, and phenol were detected above the NYSDEC TAGM 4046 screening level in surface soil in this area. Metals detected at concentrations greater than the NYSDEC TAGM 4046 screening level included nickel and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-7A, B, and C.

Electroplating wastewater treatment tanks. Two borings (HA-9 and HA-10) were advanced in the vicinity of the electroplating wastewater treatment tanks by CRA in August 1995, and one soil sample from each location was collected and submitted for analysis of chromium, cadmium, copper, nickel, and cyanide. Chromium, copper, and nickel were detected in both samples at concentrations (6.9 J, 13 J, and 9.6 J mg/kg, respectively, in HA-9, and 3.1 J, 10 J, and 5 J mg/kg, respectively, in HA-10) below NYSDEC TAGM 4046 screening levels. Detected concentrations are depicted in Appendix C.

Former liquid waste incinerator area. One soil boring (HA-12) was advanced by CRA in August 1995 in the former liquid waste incinerator area, and one soil sample was collected and submitted for analysis for VOCs, SVOCs, PCBs, RCRA metals, and cyanide. The soil sample from soil boring HA-12 contained 4-bromo phenyl ether at 0.49 J mg/kg, for which there is not a soil screening level. Arsenic and lead were detected below NYSDEC TAGM 4046 screening levels. Chromium was the only parameter detected at this location (20 J mg/kg) at a concentration above screening levels (10 mg/kg).

During the 1998/1999 Supplemental RI, five surface soil samples (SS-99-24, SS-99-25, SS-99-26, SS-99-27 and SS-99-31) were collected to evaluate the surface soil in the vicinity of the former liquid waste incinerator. Methylene chloride was the only VOC detected in these samples, at concentrations ranging from 0.003 N mg/kg to 0.05 N mg/kg. SVOCs were detected in each of these samples. SVOCs detected included 2-methyl naphthalene (0.067 J mg/kg to 2.8 J mg/kg), acenaphthene (0.57 J mg/kg to 3.8 mg/kg), anthracene (2.2 mg/kg to 2.4 J mg/kg), benzo(a)anthracene (0.089 J mg/kg to 12 J mg/kg), benzo(a)pyrene (0.077 J mg/kg to 3.3 mg/kg), benzo(b)fluoranthene (0.15 J to 4.8 J mg/kg), benzo(g,h,i,)perylene (0.81 J mg/kg), benzo(k)fluoranthene (0.042 J mg/kg to 1.8 J mg/kg), butyl benzyl phthalate (22 J mg/kg), carbazole (0.64 J mg/kg to 3.6 J mg/kg to 3.9 mg/kg), dibenzo(a,h)anthracene (0.36 J mg/kg to 3.9

J mg/kg), dibenzofuran (0.34 J mg/kg to 2.5 J mg/kg), fluoranthene (0.1 J mg/kg to 21 J mg/kg), fluorene (0.9 mg/kg to 3.1 J mg/kg), indeno(1,2,3-c,d)pyrene (0.9 J mg/kg to 12 J mg/kg), naphthalene (0.82 J mg/kg), phenanthrene (0.075 J mg/kg to 24 mg/kg), phenol (0.85 J mg/kg), pyrene (0.26 J mg/kg to 29 mg/kg), and bis(2-ethylhexyl)phthalate (0.057 J mg/kg to 2.8 J mg/kg). PCBs (Aroclor 1248) were detected in each of these samples at concentrations ranging from 0.2 J mg/kg to 3900 mg/kg. Siterelated metals including arsenic (4.6 mg/kg to 27.1 mg/kg), chromium (18.3 mg/kg to 32,000 mg/kg), copper (17.6 mg/kg to 4,790 mg/kg), lead (9.3 mg/kg to 717 mg/kg), nickel (17 mg/kg to 6,630 mg/kg) and zinc (47.2 mg/kg to 5,880 mg/kg) were also detected in these samples. In addition to site-related metals, sample SS-99-24 was analyzed for TAL metals. Detected metals other than site-related metals included aluminum, barium, beryllium, cadmium, calcium, cobalt, iron, magnesium, manganese, potassium, selenium, sodium, and vanadium.

Surface samples in this location were also analyzed for dioxins and furans. Dioxin congeners were detected in each of the surface soil samples, and were subsequently converted to 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) equivalents. The calculated 2,3,7,8-TCDD equivalents ranged from 10.46 to 916.41 ng/kg. The calculations to derive the 2,3,7,8-TCDD equivalents are included in Appendix D. Detected concentrations are depicted in Appendix C.

Results of the various investigations in this area indicate that SVOCs, PCBs and metals are present in soil above the NYSDEC TAGM 4046 screening levels. SVOCs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene, chrysene, and phenol were detected at concentration above the corresponding NYSDEC TAGM 4046 screening levels in samples SS-99-24, SS-99-26, SS-99-27, and SS-99-31, located west and south of the former liquid incinerator location. PCBs were detected at concentrations greater than the NYSDEC TAGM 4046 screening level in SS-99-25, SS-99-26, SS-99-27, and SS-99-31 at concentrations ranging from 2 J mg/kg to 3,900 mg/kg. Site-related metals detected at concentrations greater than the NYSDEC TAGM 4046 screening level included arsenic, chromium, copper, nickel, and zinc. In addition to siterelated metals, metals beryllium and iron were detected above the corresponding NYSDEC TAGM 4046 screening levels in SS-99-24. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-7A, B, and C.

Former TCE storage area. During the 1998/1999 Supplemental RI, two soil borings (OBG-TB-30 and OBG-TB-38) were installed in the vicinity of the former TCE drum storage area. VOCs including 1,1-DCA (0.036 NJ mg/kg), 1,2-dichlorobenzene (0.013 mg/kg), methylene chloride (0.023 NJ mg/kg to 0.039 N mg/kg), TCE (0.001 mg/kg to 0.22 mg/kg), and cis-1,2-DCE (0.044 mg/kg) were detected in these borings. Bis(2-ethylhexyl)phthalate was the only SVOC detected in these samples at concentrations ranging from 0.077 J mg/kg to 0.48 mg/kg. PCB Aroclor 1248 was detected in both locations at concentrations ranging from 0.003 J mg/kg to 0.01 J mg/kg. Site-related metals including arsenic (1.9 mg/kg to 3.9 mg/kg), chromium (7.7 J mg/kg to 17.3 J mg/kg), copper (10.6 mg/kg to 12.4 mg/kg), lead (3 mg/kg to 4.7 mg/kg), nickel (7.3 mg/kg to 14.1 mg/kg), and zinc (16.3 mg/kg to 28.5 mg/kg) were also detected in these samples. Detected concentrations are depicted in Appendix C.

Constituents detected at concentrations greater than NYSDEC TAGM 4046 screening levels in subsurface soil in the vicinity of the former TCE storage area were limited to nickel and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-7A, B, and C.

Former fuel oil tanks area. During the 1998/1999 Supplemental RI, four soil borings (OBG-TB-31, OBG-TB-32, OBG-TB-43, and OBG-TB-44) were installed to investigate the former fuel oil tanks. As described in Section 2.1.1, the tank closure report was located following installation of the borings, and it indicated that the tanks were located east of these borings. The closure report, included in Exhibit F, indicated that confirmatory samples showed no detections. VOCs including methylene chloride (0.001 N mg/kg to 0.018 N mg/kg), TCE (0.002 mg/kg to 0.015 mg/kg), and cis-1,2-DCE (0.008 mg/kg) were detected in these samples. The SVOCs di-nbutyl phthalate (0.14 J mg/kg) and bis(2-ethylhexyl)phthalate (0.045 J mg/kg to 4.8 mg/kg) were also detected in these samples. PCB Aroclor 1248 was detected in this area at concentrations ranging from 0.004 J mg/kg to 190 mg/kg. Site-related metals arsenic (2 mg/kg to 6.2 mg/kg), chromium (2.9 mg/kg to 26.7 mg/kg), copper (12.3 mg/kg to 44.3 mg/kg), lead (2.9 mg/kg to 18.8 mg/kg), nickel (7.2 mg/kg to 55.9 mg/kg), and zinc (15.9 mg/kg to 553 J mg/kg) were also detected in these samples. Detected concentrations are depicted in Appendix C.

Constituents detected in subsurface soil at concentrations greater than NYSDEC TAGM 4046 screening levels in the vicinity of the fuel oil tanks included PCB Aroclor 1248 (190 mg/kg), site-related metals copper (44.3 mg/kg), nickel (13.7 mg/kg to 55.9 mg/kg), and zinc (26.6 mg/kg to 553 J

mg/kg). Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-7A, B, and C.

Soil borings OBG-TB-38 and OBG-13 were also used to investigate the potential presence of NAPL in this area. The UV screening for NAPL was negative in these borings, indicating that no NAPL was present on the soil at those locations.

SO₂ scrubber area. One soil boring (HA-11) was installed by CRA in the vicinity of the SO₂ scrubber in August 1995, and one soil sample was collected and submitted for analysis of chromium, cadmium, copper, nickel, and cyanide. Cadmium, chromium, copper, nickel and cyanide were detected (0.63, 44 J, 37 J, 32 J, and 0.92 mg/kg, respectively) in the soil samples from soil boring HA-11, with chromium, copper, and nickel concentrations slightly above NYSDEC TAGM 4046 screening levels. Detected concentrations are depicted in Appendix C. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-7A, B, and C.

Summary. The sampling activities and associated results from the various investigations conducted in the IWT plant area indicate that surface and subsurface soil in this area contain PCBs, SVOCs, and site-related metals at concentrations in excess of the NYSDEC TAGM 4046 screening levels. Generally, PCB concentrations in surface soils above screening levels ranged from 2 to 14 mg/kg, with the exception of surface soil sample SS-99-26, that showed a detection of 3900 mg/kg. Based on data from surface soil samples SS-99-25 and SS-99-27, collected east and west of SS-99-26, the maximum detection appears isolated. PCB detections above the screening level in subsurface soil were limited to one subsurface soil sample (OBG-TB-44) at 190 mg/kg from the 2 to 4-ft interval, in the vicinity of the former fuel oil tanks. SVOCs were detected in eight surface soil samples at concentrations above screening levels, ranging up to 18 ing/kg. Arsenic, chromium, copper, lead, nickel, zinc, beryllium and iron are present above NYSDEC TAGM 4046 screening levels in soil in the vicinity of the IWT plant. Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4, and listed as follows:

PCBs

- · seven surface soil locations
- one subsurface soil location in the vicinity of the former fuel oil tanks (OBG-TB-44).

SVOCs

· eight surface soil locations.

Metals

· each of the surface and subsurface soil samples.

3.2.5. Former thinner tanks area

Soil in the location of the former thinner tanks was evaluated by EDI and CRA through the sampling of soil borings as described in Section 2. The soil sample data outside the manufacturing building ("T" borings) collected by EDI in 1986 indicated the presence of toluene, ethylbenzene and xylene in samples obtained from fourteen locations at varying depths. Concentrations of detected toluene ranged from 0.010 to 5.9 mg/kg; detected ethylbenzene concentrations ranged from 0.047 to 61 mg/kg; and detected xylene concentrations ranged from 0.020 to 330 mg/kg. The highest concentrations of these three constituents were generally evident in the soil samples obtained from the intervals 7 to 11 ft bgs, with detections down as deep as 15 feet. Concentrations of toluene, ethylbenzene and/or xylene were detected above NYSDEC TAGM 4046 screening levels at nine locations (EDI 1986b).

Two soil samples were collected by CRA in August 1995 from the HP-4 and HP-BH-5 locations inside the manufacturing building from the fill/native soil interface. The samples were submitted for analyses of PHS, PCBs, and VOCs. PCBs were detected in the HP-BH-5 soil sample at 0.071 mg/kg, below the NYSDEC TAGM 4046 screening level, and several VOCs were detected (methylene chloride at 0.016 mg/kg, acetone at 0.026 mg/kg, and toluene at 0.011 mg/kg), below the NYSDEC TAGM 4046 screening levels at this location. Neither PCBs nor VOCs were detected in sample HP-4.

During the 1998/1999 Supplemental RI, three soil borings (OBG-TB-45, OBG-TB-46, and OBG-TB-47) were installed to evaluate the subsurface in the vicinity of the transformer/switch house. No VOCs were detected in these samples. Benzo(a)pyrene and benzo(b)fluoranthene were detected in OBG-TB-46 and OBG-TB-47 at concentrations ranging from 0.18 mg/kg to 300 J mg/kg, which are greater than the corresponding NYSDEC TAGM 4046 screening levels. In addition, anthracene (170 mg/kg to 230 mg/kg), benzo(a)anthracene (0.77 to 350 mg/kg), benzo(g,h,i)perylene (0.41 mg/kg to 310 mg/kg), benzo(k)fluoranthene (0.34 mg/kg to 120 mg/kg), chrysene (0.82 mg/kg to 380 mg/kg), dibenzo(g,h,i)anthracene (0.18 mg/kg to 65 mg/kg), dibenzofuran (12 mg/kg to 21 mg/kg), fluoranthene (560 mg/kg to 1200 mg/kg), fluorene (65 mg/kg), indeno(c,d)pyrene (76 J mg/kg to 190 J mg/kg), phenanthrene (450 mg/kg to 670 mg/kg), and pyrene (480 mg/kg to

1000 mg/kg) were also detected in OBG-TB-46, above the corresponding NYSDEC TAGM 4046 screening levels. PCB Aroclor 1248 was detected in OBG-TB-46 and OBG-TB-47 at 0.1 J mg/kg to 0.3 J mg/kg. PCB Aroclor 1254 was detected at 0.03 mg/kg in OBG-TB-45.

In addition to the soil borings collected in this area, one surface soil sample (SS-99-05) was collected during the 1998/1999 Supplemental RI. Tetrachloroethene was the only VOC detected in this sample, at 0.002 J mg/kg. Metals including aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, sodium, vanadium and zinc were detected in this sample. SVOCs, PCBs, and metals were also detected in the 0 to 1-ft interval of OBG-TB-45, OBG-TB-46, and OBG-TB-47. Detected concentrations are depicted in Appendix C.

Results from the various investigations conducted to date indicate that constituents detected at concentrations greater than NYSDEC TAGM 4046 screening levels in subsurface soils in the vicinity of the thinner tanks area included toluene, ethylbenzene and xylene. Constituents detected at concentrations greater than the NYSDEC TAGM 4046 screening levels in subsurface soil in the vicinity of the transformer/switch house included anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i,)perylene, benzo(k)fluoranthene, chrysene. dibenzo(a,h)anthracene, dibenzofuran, fluoranthene, fluorene, indeno(1,2,3c,d)pyrene, phenanthrene, and pyrene. Constituents detected at concentrations greater than NYSDEC TAGM 4046 screening levels in surface soils included SVOCs, PCBs, beryllium, iron, nickel, and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-9A, B, and C.

Summary. The sampling activities and associated results from the various investigation conducted in the former thinner tanks area indicate that soil in this area contain VOCs, SVOCs, and site-related metals. Toluene, ethylbenzene and xylene were detected at concentrations up to 720, 61 and 330 mg/kg, respectively, in subsurface soil in the former thinner tanks area. Generally, these concentrations were from samples collected from between 9 and 15 ft below grade, with the exception of samples collected from T-13, T-15, T-21, and HA-1 where detected concentrations above the screening levels were detected at shallower intervals of 5 to 7 ft below grade. The highest concentrations of SVOCs detected in both surface and subsurface soils at the site (up to 1200 and 560 mg/kg, respectively) were detected in one location (OBG-TB-46) in the vicinity of the transformer/switch house. Nickel, zinc, beryllium, and iron were also detected above screening levels

in soil in the former thinner tanks area. Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4, and listed as follows:

VOCs

subsurface soil in the vicinity of the former thinner tanks

SVOCs

 surface and subsurface soil in the vicinity of the transformer/switch house

Metals

• one surface soil sample

3.2.6. Northeast property area

Soil in the area northeast of the manufacturing and administration building was evaluated by EDI and CRA as described in Section 2. The soil sampling and analysis activities did not indicate the presence of PCBs in samples obtained during the installation of monitoring wells P-3, P-4, P-11 and P-12, which are located in this general area (EDI 1985a). The results of one soil boring (HA-2) installed by CRA in an area of oil staining near the acid alkali bunker in August 1995 indicated the presence of arsenic (2.8 mg/kg), chromium (15 mg/kg), copper (21 mg/kg), lead (6.8 mg/kg) and nickel (16 mg/kg). VOCs, SVOCs, cyanide, and PCBs for this soil boring were not detected.

During the 1998/1999 Supplemental RI, two soil borings (OBG-TB-36 and OBG-TB-37) were installed in the vicinity of the administration building to evaluate the area of historic elevated TCE in ground water. Soil borings OBG-TB-34 and OBG-TB-35 were installed to evaluate sumps 1 and 4, and another soil boring (OBG-TB-24) was installed to evaluate the parking lot area. As discussed in Section 2.1, samples from OBG-TB-34 and OBG-TB-35 were screened for NAPL and not submitted for laboratory analysis. NAPL was not observed. VOCs including chloroform (0.004 N mg/kg to 0.005 N mg/kg), methylene chloride (0.001 NJ mg/kg to 0.009 N mg/kg), TCE (0.79 J mg/kg to 1.5 J mg/kg), cis-1,2-DCE (0.019 mg/kg) and trans-1,2-DCE (0.001 mg/kg) were detected in the subsurface soils. With the exception of bis(2-ethylhexyl)phthalate, SVOC detections in the soil borings were limited to OBG-TB-24 (down to the 6 to 8-ft interval) and the 0 to 1-ft interval of OBG-TB-36. Bis(2-ethylhexyl)phthalate was detected in all the soil borings at concentrations ranging from 0.052 J mg/kg to 0.49 J mg/kg. Other detected SVOCs in soil borings included 2-methyl naphthalene (0.061 J mg/kg to 0.14 J mg/kg), acenaphthylene (0.052 J mg/kg), anthracene

(0.062 J mg/kg), benzo(a)anthracene (0.059 J mg/kg to 0.19 J mg/kg), benzo(a)pyrene (0.059 J mg/kg to 0.64 J mg/kg), benzo(b)fluoranthene (0.098 J mg/kg to 1 j mg/kg), benzo(g,h,i,)perylene (0.11 J mg/kg to 0.27 mg/kg), benzo(k)fluoranthene (0.13 J mg/kg to 0.37 J mg/kg), butyl benzyl phthalate (0.046 J mg/kg), chrysene (0.071 J mg/kg to 0.74 J mg/kg), fluoranthene (0.09 J mg/kg to 0.64 mg/kg), fluorene (0.052 J mg/kg), indeno(1,2,3-c,d)pyrene (0.098 J mg/kg to 0.28 mg/kg), naphthalene (0.044 J mg/kg to 0.092 J mg/kg), phenanthrene (0.2 J mg/kg to 0.54 mg/kg), and pyrene (0.084 J to 1.8 J mg/kg). PCB Aroclor 1248 was detected in the soil borings OBG-TB-36 and OBG-TB-37 at concentrations ranging from 0.005 J mg/kg to 24 J mg/kg. Site-related metals including arsenic (2.3 mg/kg to 6.8 mg/kg), chromium (10.1 J mg/kg to 30.7 J mg/kg), copper (10.7 mg/kg to 37.1 mg/kg), lead (3.8 mg/kg to 31.9 mg/kg), nickel (9.3 mg/kg to 66 mg/kg), and zinc (23.5 mg/kg to 200 mg/kg) were also detected in these samples.

In addition to the soil borings, four surface soil samples (SS-99-14, SS-99-15, SS-99-16, and SS-99-17) were collected during the 1998/1999 Supplemental RI to evaluate surface soils in the vicinity of the administration building. Methylene chloride was the only VOC identified in the surface soil (SS-99-15), at 0.002 N mg/kg. SVOCs including 2-methyl naphthalene (0.047 J mg/kg to 0.051 J mg/kg), acenaphthene (0.94 J mg/kg), acenaphthalene (0.073 J mg/kg), anthracene (0.093 J mg/kg to 3.2 J mg/kg), benzo(a)anthracene (0.28 J to 7.7 mg/kg), benzo(a)pyrene (0.39 J to 6.9 J mg/kg), benzo(b)fluoranthene (0.56 J mg/kg to 10 J mg/kg), benzo(g,h,i)perylene (0.37 J mg/kg to 1.7 J mg/kg), benzo(k)fluoranthene (0.16 J mg/kg to 3.7 J mg/kg), carbazole (0.068 J mg/kg to 2.5 J mg/kg), chrysene (0.47 J mg/kg to 8.9 mg/kg), dibenzo(a, h)anthracene (0.17 J mg/kg), dibenzofuran (0.49 J mg/kg), fluoranthene (0.34 J mg/kg to 19 mg/kg), fluorene (0.051 J mg/kg to 1 J mg/kg), indeno(1,2,3-c,d)pyrene (0.29 J mg/kg to 2.1 J mg/kg), phenanthrene (0.29 j mg/kg to 15 mg/kg), pyrene (1 J to 21 mg/kg), and bis(2-ethylhexyl)phthalate (0.18 J mg/kg to 0.47 J mg/kg). PCB Aroclor 1254 was detected in surface soils at concentrations ranging from 0.2 J mg/kg to 7 mg/kg. Site-related metals arsenic (4.8 mg/kg to 6.3 mg/kg), chromium (21.6 mg/kg to 61.2 mg/kg), copper (25.9 mg/kg to 65.1 mg/kg), lead (19.8 mg/kg to 58.6 mg/kg), nickel (22 mg/kg to 97.8 mg/kg), and zinc (147 mg/kg to 170 mg/kg) were also detected in these samples. In addition to site-related metals, aluminum, antimony, barium beryllium, cadmium, calcium, cobalt, iron, magnesium, manganese, mercury, potassium, selenium, sodium, and vanadium were also detected in SS-99-17. SVOCs and metals were detected in the 0 to 1-ft surface interval of OBG-TB-36 and OBG-TB-37. VOCs and PCBs were

also detected in OBG-TB-36. Detected concentrations are depicted in Appendix C.

Based on the results of the various investigations conducted to date, benzo(b)fluoranthene and benzo(a)pyrene were detected in the 0 to 1-ft surface interval of OBG-TB-36. Constituents detected in subsurface soils at concentrations greater than the NYSDEC TAGM 4046 screening level included benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene. Constituents detected in surface soils at concentrations greater the NYSDEC TAGM 4046 screening level included benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenzo(a,h)anthracene. TCE was the only VOC detected above the NYSDEC TAGM 4046 screening levels in subsurface soil in the northeast property area. VOCs were not detected above the screening level in surface soil in the northeast property area. PCB Aroclor 1254 was detected above the NYSDEC TAGM 4046 screening level in surface soil sample SS-99-17. PCB Aroclor 1248 was detected above the NYSDEC TAGM 4046 screening level in subsurface soil sample OBG-TB-37, at a depth of 12 to 14 ft below surface. Site-related metals chromium, copper, nickel, and zinc were detected at concentrations above the NYSDEC TAGM 4046 screening levels in surface and subsurface soil samples. In addition to site-related metals, beryllium and iron were also detected in SS-99-17 above the NYSDEC TAGM 4046 screening level. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-10A, B, and C.

Soil borings OBG-TB-36 and OBG-TB-37 were also used to investigate the potential presence of NAPL in this area. The UV screening for NAPL was negative in these borings, indicating that no NAPL was present on the soil at those locations.

Summary. The sampling activities and associated results from the various investigations conducted in the northeast property area indicate that surface and subsurface soil in this area contain PCBs, SVOCs, and site-related metals. In addition, TCE was detected marginally above the screening level in one subsurface soil sample in this area. PCB concentrations above the screening levels were detected in only one subsurface soil sample (OBG-TB-37) located adjacent to the administration building in the northeast property area at 24 J mg/kg collected from the 12 to 14-ft interval. PCBs were also detected in one surface soil sample (SS-99-17) collected adjacent to the manufacturing building in the northeast property area at 7 mg/kg. SVOCs were detected at concentrations marginally above the screening levels in surface and subsurface in this area. Copper, zinc, beryllium and iron are present above screening levels in soil in the northeast property area. In

addition, chromium and nickel are present above screening levels in soil in the vicinity of the acid-alkali bunker Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4, and listed as follows:

PCBs

- surface and subsurface soil in the northeast property area <u>VOCs</u>
- one subsurface soil location in the northeast property area

SVOCs

· surface and subsurface soil in the northeast property area

Metals

· surface and subsurface soil in the northeast property area

3.2.7. Northern property area

Soil located in the northern property area has been evaluated in several of the past investigations described in Section 2. The results of these investigations are summarized as follows.

General northern property area. In 1985, EDI performed soil sampling associated with the installation of three ground water monitoring wells, designated P-5, P-6 and P-7, in the general area referred to as the northern property area. This area of the facility was historically undeveloped, and a portion was reportedly used as a former landfill. Another portion of the area was reportedly filled with construction debris and soil from facility excavations to raise its elevation, since the area was prone to flooding. Soil samples were analyzed for PCBs, which were not detected in the P-5 and P-6 samples. The sample from P-7 (4 to 6 ft depth) indicated a PCB concentration of 25 mg/kg (EDI 1985a).

NMPC installed nine borings south of Factory Avenue just north of GM's northern property boundary in 1996 at proposed utility pole locations. PCB Aroclor 1248 was detected in composite samples collected from eight of the nine locations at concentrations ranging from 1 to 15 mg/kg. Of the sixty-two grab samples collected at each 1 ft depth in each boring, eighteen showed visual discoloration and were analyzed for PCBs. PCB Aroclor 1248 was detected in six of these eighteen samples at concentrations ranging from 1.7 to 16 mg/kg. One of the composite samples (pole location 36C) contained PCBs at a concentration of 15 mg/kg. Three of the grab samples (from the 4 ft and 5 ft depth intervals at pole location 37E and 5 ft depth

interval at pole location 39) exhibited PCB concentrations of 10.6, 16, and 10.5 mg/kg, respectively.

During the 1998/1999 Supplemental RI, four soil borings (OBG-TB-25, OBG-TB-26, OBG-TB-27, and OBG-TB-28) were installed to evaluate general fill in the northern property area. Chloroform and methylene chloride (0.001 N mg/kg to 0.015 N mg/kg) were the only VOCs detected in these samples. No SVOCs were detected in these samples. PCB Aroclor 1242 was detected in OBG-TB-25 at 0.06 mg/kg and in OBG-TB-28 at 44 mg/kg. Aroclor 1248 was detected in each of the soil borings, with the exception of OBG-TB-27, at concentrations ranging from 0.2 to 2 mg/kg. Site-related metals including arsenic (1.7 mg/kg to 9.9 mg/kg), chromium (8.5 mg/kg to 106 J mg/kg), copper (8.5 mg/kg to 62 mg/kg), lead (3 mg/kg to 23.8 mg/kg), nickel (6.9 mg/kg to 54.1 mg/kg), and zinc (14 mg/kg to 212 mg/kg) were also detected in these samples. Copper, nickel, zinc and PCBs were detected in the 0 to 1-ft interval of these soil borings. Detected concentrations are depicted in Appendix C.

Based on results from the various investigations conducted in the northern property area, constituents detected at concentrations greater than the NYSDEC TAGM 4046 screening levels in subsurface soil in this area included PCBs, arsenic, chromium, copper, nickel and zinc. PCBs, copper, nickel, and zinc were detected in surface soil above the screening levels in the surface interval of the soil borings. PCB concentrations above the NYSDEC TAGM 4046 screening levels were detected in samples collected from soil boring P-7 and OBG-TB-28 in the vicinity of the former drainage swale. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D, and E.

Soil borings OBG-TB-25, OBG-TB-26, OBG-TB-27 and OBG-TB-28 were also used to investigate the potential presence of NAPL in this area. The UV screening for NAPL was negative in these borings, indicating that no NAPL was present on the soil at those locations.

Former drainage swale. During the 1985 Phase II Hydrogeological Investigation, EDI installed a series of soil borings in the general area of monitoring well P-7 to evaluate soil quality in the suspected location of a former drainage swale which, based on a review of aerial photos, existed in this area. A 1957 aerial photo which depicts the former drainage swale is presented in Exhibit H. The investigation consisted of the installation of eleven soil borings, designated 003-1 through 003-11. The results of the PCB analysis performed on thirty samples from soil borings 003-1 to 003-10 indicated PCBs present at varying concentrations and depths, ranging from less than detectable to 8000 mg/kg. In general, the analytical data indicate

the higher concentrations of PCBs are present within the upper 8 ft of soil, but are not concentrated at one soil horizon. PCB concentrations in the gray silty clay at the bottom of the suspected fill are below or slightly above detection limits, with detectable concentrations present in borings which had higher concentrations in the overlying fill materials. A cross-sectional representation of these data, along with the cross section location, are presented as Exhibit J of the 1997 Preliminary RI/FS Report (EDI 1986a).

A soil sampling and analysis program was performed in the vicinity of the former drainage swale in 1990 by O'Brien & Gere. This program consisted of the installation and sampling of eighteen soil borings along the right of way for the proposed Ley Creek Relief Interceptor sewer, which extended in the east-west direction just north of GM's northern property boundary. Samples from soil borings B-I to B-16 were analyzed for PCBs, with the results indicating PCB concentrations ranging from 5.5 to 9600 mg/kg. These samples were collected from depths of up to 10 ft bgs. As with the previous sampling performed by EDI, the results indicated that the highest PCB concentrations occur in the upper 8 ft of soil. The highest concentrations appeared in soil borings installed west of Outfall 003 (O'Brien & Gere 1990).

One soil sample collected from boring B-17 in 1990 by O'Brien & Gere was analyzed for waste characterization purposes prior to the IRM. Analyses included ash content, heat of combustion, PCBs, total organic halogens, TCLP metals, SVOCs, and VOCs. The leachable chromium concentration in this sample (73.8 mg/L) exceeded the RCRA TCLP limit of 5 mg/L. Other leachable metal concentrations were below RCRA TCLP limits. The ash content and heat of combustion for this sample were 73.3 % and less than 10 BTU/lb, respectively. The total organic halogen concentration was reported as less than 0.1 %. PCBs were detected at 3848 mg/kg. VOCs and SVOCs were not detected in this sample. One additional sample from the vicinity of boring B-17 and three samples from boring B-18 were analyzed for TCLP chromium in 1990. Leachable chromium concentrations in these samples were less than detectable (O'Brien & Gere 1991).

The area of the proposed sewer line was excavated in 1991, and GM implemented an IRM program to address the PCB-impacted soil and ground water which was generated by the project. The NYSDEC-approved IRM work plan (O'Brien & Gere Technical Services 1991) called for a confirmatory sampling and analysis program to be performed following removal of the PCB-impacted soil, and prior to the installation of the sewer line. The confirmatory sampling program included the collection and analysis of fifteen soil samples from the base of the IRM excavation. The

results indicated non-detectable concentrations of PCBs (O'Brien & Gere 1992b).

In conjunction with installation of the Ley Creek Relief Interceptor Sewer, Onondaga County collected subsurface soil samples from borings installed in the pipeline route, and from the pipeline excavation. These data are included in Exhibit E of the 1997 Preliminary RI/FS Report. PCB concentrations in subsurface soil samples ranged from less than detectable to 2500 mg/kg. Higher PCB detections were generally present at depths of 6 to 10 ft (Onondaga County 1991).

Onondaga County also collected surface soil samples in the vicinity of Former IFG facility along the route of the Ley Creek Relief Interceptor Sewer following completion of construction. PCBs were detected above the detection limit of 1 mg/kg in twelve of sixteen samples collected between the sewer and Factory Avenue. Detected PCB concentrations ranged from 2 mg/kg to 130 mg/kg, above the NYSDEC TAGM 4046 screening level for surface soil, 1 mg/kg.

An investigation was also conducted by O'Brien & Gere at the Ley Creek PCB Dredgings site to evaluate if the elevated PCB concentrations associated with the former drainage swale south of Factory Avenue extend to the north side of Factory Avenue. PCBs observed north of Factory Avenue in this area during this investigation were not as elevated as those observed in the vicinity of the former drainage swale south of Factory Avenue. A summary of this investigation is presented in Exhibit I of the 1997 Preliminary RI/FS Report.

During the 1998/1999 Supplemental RI test trenching (test trenches 5 through 12) was performed to evaluate the former drainage swale. The former drainage swale was visually evident as a black silt layer mixed with some organic matter during the trenching activities, encountered in test trenches 6 through 9 and in trenches 11 and 12. The former swale was encountered at depths between 8 and 10 ft below grade, and varied in width from approximately 20 ft to 60 ft; though in trench 7, swale material was encountered for approximately 120 ft. Trench 7 is likely parallel to the former swale in this area, thus, the 120 ft is not likely representative of the width of the swale in this area. The approximate location of the former swale, based on these trenching activities, is depicted in Figure 3-11A.

During the 1998/1999 Supplemental RI test trenching activities, twelve samples (T5-1, T5-2, T6-1, T7-1, T8-1, T8-2, T8-3, T9-1, T10-1, T11-1, T12-1, and T12-2) were collected in this area. Results showed that concentrations of chlorobenzene (13 mg/kg), methylene chloride (0.001 N

mg/kg to 0.002 N mg/kg), ethylbenzene (0.021 N mg/kg to 10 N mg/kg), toluene (0.009 N mg/kg to 8.8 N mg/kg), xylene (0.035 NJ mg/kg to 110 Nmg/kg), cis-1,2-DCE (11 mg/kg), and trans-1,2-DCE (0.003 mg/kg) were present in these samples. Sample T09-1 was the only drainage swale trench sample analyzed for SVOCs, and it showed detections of benzo(a)anthracene, chrysene, fluoranthene, phenanthrene, pyrene, and bis(2-ethylhexyl)phthalate at low concentrations ranging from 0.097 J mg/kg to 1.8 J mg/kg. PCBs were detected in each of the trench samples. PCB Aroclor 1242 was detected in trenches 6 through 9 and trench 11 at concentrations ranging from 84 mg/kg to 6,800 mg/kg. PCB Aroclor 1248 was detected in trenches 5, 10 and 12 at concentrations ranging from 0.02 J mg/kg to 3800 mg/kg. Site-related metals including arsenic (2.6 mg/kg to 12.9 mg/kg), chromium (13.9 mg/kg to 34,900 J mg/kg), copper (14.6 mg/kg to 6,990 mg/kg), lead (5 mg/kg to 208 J mg/kg), nickel (13 mg/kg to 19,700 mg/kg), and zinc (33.6 mg/kg to 4,730 J mg/kg) were also detected in these samples. Detected concentrations are depicted in Appendix C.

Based on results of the various investigations conducted in the area of the former swale, constituents detected at concentrations greater than the NYSDEC TAGM 4046 screening levels in soil from this area included PCBs (Aroclors 1242 and 1248) and site-related metals arsenic, chromium, copper, nickel, and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D and E.

Former storage cell location. Upon completion of the transportation and off-site disposal of the IRM soil in late 1993, a surface soil sampling event was performed in the former footprint of the soil storage cell located near the northwestern corner of GM's property. The results indicated detectable concentrations of PCB Aroclor 1248, ranging from 1.3 to 6.3 mg/kg, above the NYSDEC TAGM 4046 screening level for surface soil, 1 mg/kg (O'Brien & Gere 1994). Detected concentrations are depicted in Appendix C. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D, and E.

On-site landfill. In 1995, CRA installed three soil borings within the suspected location of the landfill located in the northwestern portion of the facility. Results of this analysis indicated the presence of vinyl chloride (0.12 mg/kg), toluene (0.007 to 0.27 mg/kg), xylenes (0.110 mg/kg), PCB Aroclor 1248 (3.7 to 4.6 mg/kg), arsenic (1.9 to 48 mg/kg), chromium (23 to 2900 mg/kg), copper (37 to 6600 mg/kg), cyanide (0.86 mg/kg), lead (10 to 31 mg/kg), nickel (23 to 1300 mg/kg) and selenium (0.87 to 2.3 mg/kg). The higher concentrations of metals were generally detected in boring BH-2.

Chromium, copper and nickel were detected above soil screening values in the samples from soil borings BH-1, BH-2 and BH-3. Additionally, methylene chloride, arsenic, and selenium were detected above soil screening levels in the sample from soil boring BH-1.

During the 1998/1999 Supplemental RI, eight surface soil samples (SS-99-06, SS-99-07, SS-99-08, SS-99-09, SS-99-10, SS-99-11, SS-99-12, and SS-99-13) were collected in the area of the landfill. Detected VOCs include chloroform (0.019 N mg/kg), methylene chloride (0.002 NJ mg/kg to 0.017N mg/kg), TCE (0.004 mg/kg to 46 J mg/kg), benzene (0.005 J mg/kg), carbon disulfide (0.038 J mg/kg), PCE (0.012 J mg/kg), and cis-1,2-DCE (0.34 mg/kg). Detected SVOCs included 1,2-dichlorobenzene (0.059 J mg/kg), 2-methyl naphthalene (0.09 J mg/kg to 0.23 J mg/kg), benzo(a)anthracene (0.12 J mg/kg to 0.27 J mg/kg), benzo(a)pyrene (0.16 J mg/kg to 0.37 J mg/kg), benzo(b)fluoranthene (0.043 J mg/kg to 0.63 J mg/kg), benzo(g,h,i,)perylene (0.05 J mg/kg to 0.13 J mg/kg), benzo(k)fluoranthene (0.061 J mg/kg to 0.02 J mg/kg), chrysene (0.042 J mg/kg to 0.2 J mg/kg), di-n-octyl phthalate (56 mg/kg), dibenzofuran (0.048 J mg/kg to 0.055 J mg/kg), fluoranthene (0.048 J mg/kg to 0.46 J mg/kg), indeno(1,2,3-c,d)pyrene (0.067 mg/kg to 0.14 J mg/kg), naphthalene (0.04 J mg/kg to 0.16 J mg/kg), phenanthrene (0.085 J mg/kg to 0.25 J mg/kg), pyrene (0.068 J mg/kg to 0.57 J mg/kg), and bis(2-ethylhexyl)phthalate $(0.067 \, \text{J} \, \text{mg/kg} \, \text{to} \, 0.26 \, \text{J} \, \text{mg/kg})$. PCB Aroclor 1254 was detected in SS-99-01 at 0.2 mg/kg. PCB Aroclor 1248 was detected in the remaining samples at concentrations ranging from 3 mg/kg to 2,600 J mg/kg. Site-related metals arsenic (2.7 mg/kg to 15 mg/kg), chromium (14.2 mg/kg to 1,770 mg/kg), copper (11.8 mg/kg to 267 mg/kg), lead (7.8 mg/kg to 45.5 mg/kg), nickel (11.8 mg/kg to 443 mg/kg), and zinc (25 mg/kg to 394 mg/kg), and the heavy metal mercury (0.029 J mg/kg to 0.095 mg/kg) were also detected in these samples. In addition, aluminum, barium, beryllium, cadmium, calcium, cobalt, iron, magnesium, manganese, mercury, potassium, selenium, sodium, thallium, and vanadium were detected in SS-99-10. Detected concentrations are depicted in Appendix C.

Constituents detected in this area at concentrations greater than the NYSDEC TAGM 4046 screening levels included TCE, cis-1,2-DCE, benzo(a)pyrene, benzo(b)fluoranthene, di-n-octyl-phthalate, PCBs (Aroclor 1248), and site-related metals arsenic, chromium, copper, nickel, and zinc. In addition, beryllium, iron, and selenium were also detected above the respective NYSDEC TAGM 4046 screening levels. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D, and E.

97

In addition to the surface soil samples, test trenching was performed during the 1998/1999 Supplemental RI to evaluate the extent of the on-site landfill. The limits of the on-site landfill were identified based on visual observation during the trenching activities. Paint sludge, fly ash, and sludge material were observed during the trenching activities. Trench logs are included in Exhibit B. The approximate location of the on-site landfill is shown in Figure 1-10. It should be noted that the northern extent of the landfill was not encountered during the trenching activities, as trenching stopped at the fence line during excavation of Trench 4. Seventeen samples (T1-1, T1-2, T1-3, T1-4, T2-1, T2-2, T2-3, T2-4, T3-1, T3-2, T3-3, T3-4, T3-5, T3-6, T4-1, T4-2, and T4-3) were collected during the test trenching activities in this area. As described in Exhibit B, the samples were of landfill materials. such as fill material, sludge, fly ash, and stained soil. Detected VOCs included 1,1-DCE (0.002 J mg/kg), methyl ethyl ketone (0.007 J mg/kg). acetone (0.025 J mg/kg to 0.032 J mg/kg), benzene (0.001 J mg/kg to 0.002 J mg/kg), carbon disulfide (0.002 J mg/kg to 0.004 J mg/kg), ethyl benzene (0.0008 NJ mg/kg to 11 J mg/kg), methylene chloride (0.002 N mg/kg), toluene (0.002 NJ mg/kg to 110 NJ mg/kg), TCE (0.004 mg/kg to 0.053 J mg/kg), xylene (0.002 NJ mg/kg to 84 NJ mg/kg), cis-1,2-DCE (0.002 J mg/kg to 0.47 J mg/kg), and trans-1,2-DCE (0.009 J to 0.011 J mg/kg). Detected SVOCs included 1,2-dichlorobenzene (0.81 Jmg/kg), 2,4-dimethyl phenol (0.078 J mg/kg to 15 mg/kg), 2-methyl naphthalene (0.079 J mg/kg to 11 mg/kg), 2-methyl phenol (0.1 J mg/kg to 0.44 J mg/kg), 4bromophenyl phenyl ether (3.1 J mg/kg), 4-chloro-3-methylphenol (0.28 J mg/kg), 4-methylphenol (0.043 J mg/kg to 3.9 mg/kg), acenaphthene (0.058 J mg/kg to 0.086 J mg/kg), anthracene (0.092 J mg/kg), benzo(a)anthracene (0.045 J mg/kg to 0.13 J mg/kg), benzo(b)fluoranthene (0.041 J mg/kg to 0.12 J mg/kg), butyl benzyl phthalate (0.14 J mg/kg), carbazole (0.1 J mg/kg), chrysene (0.072 J mg/kg to 0.25 J mg/kg), dibenzofuran (0.12 J mg/kg to 0.36 J mg/kg), fluoranthene (0.042 J mg/kg to 0.14 J mg/kg), naphthalene (0.052 NJ mg/kg to 2.3 J mg/kg), phenanthrene (0.11 J mg/kg to 1.1 mg/kg), phenol (0.067 J mg/kg to 0.23 J mg/kg), pyrene (0.048 J mg/kg to 0.51 J mg/kg), and bis(2-ethylhexyl)phthalate (0.058 J mg/kg to 16 mg/kg). PCB Aroclor 1248 was detected in each trench at concentrations ranging from 0.9 mg/kg to 2,700 mg/kg. PCB Aroclor 1242 was also detected in trench 3 at concentrations ranging from 5 to 1400 mg/kg. The highest PCB concentrations corresponded to samples (T01-1, T01-2, T01-3, T02-3, and T04-1) of paint sludge, other sludge, or stained material. Siterelated metals including arsenic (4.2 mg/kg to 65.7 mg/kg), chromium (19.1 mg/kg to 17,200 mg/kg), copper (22.1 mg/kg to 23,200 mg/kg), lead (7.3 mg/kg to 291 mg/kg), nickel (22.2 mg/kg to 7,940 mg/kg), and zinc (52.1 mg/kg to 53,300 mg/kg) and the heavy metal mercury (0.033 J mg/kg to 0.16 mg/kg) were also detected in these samples. In addition, aluminum, barium,

beryllium, calcium, cobalt, iron, magnesium, manganese, mercury, potassium, selenium, sodium, thallium, and vanadium were detected in T2-1. Detected concentrations are depicted in Appendix C.

Based on the various investigations conducted to date in the on-site landfill area, constituents detected in this area at concentrations greater than the NYSDEC TAGM 4046 screening levels included 2-methylphenol, 4-chloro-3-methylphenol, phenol, PCB Aroclors 1242 and 1248, and site-related metals arsenic, chromium, copper, nickel, and zinc. In addition, barium, mercury, beryllium, iron, and selenium were also detected above the respective NYSDEC TAGM 4046 screening levels. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D, and E.

Closed surface impoundments. During the 1998/1999 Supplemental RI. three soil borings (OBG-TB-29, OBG-TB-41, and OBG-TB-42) were installed in the vicinity of closed surface impoundments, located north of the manufacturing facility, in the northern property area. Soil boring OBG-TB-39 was installed to observe whether impoundment #1 extends beneath the manufacturing building. Based on this soil boring, impoundment #1 does not extend beneath the building. Methylene chloride (0.002 N mg/kg to 0.018 N mg/kg), toluene (0.001 N mg/kg), and TCE (0.004 mg/kg to 1.2 mg/kg) were the only VOCs detected in these samples. ethylhexyl)phthalate was the only SVOC detected in these samples (1.2 mg/kg to 1.9 mg/kg) in OBG-TB-29. PCB Aroclor 1248 was detected in each these samples at concentrations ranging from 0.003 J to 0.3 mg/kg. Site-related metals arsenic (1.9 mg/kg to 6 mg/kg), chromium (8.4 J mg/kg to 30.1 J mg/kg), copper (7.1 mg/kg to 23.6 mg/kg), lead (2.9 mg/kg to 10.4 mg/kg), nickel (7.3 mg/kg to 28.5 mg/kg), and zinc (15.1 mg/kg to 54.3 mg/kg) were also detected in these samples. Detected concentrations are depicted in Appendix C.

Constituents detected at concentrations greater than the NYSDEC TAGM 4046 screening levels included nickel and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-11A, B, C, D, and E.

Soil borings OBG-TB-41 and OBG-TB-42 were also used to investigate the potential presence of NAPL in this area. The UV screening for NAPL was negative in these borings, indicating that no NAPL was present on the soil at those locations.

Summary. The sampling activities and associated results from investigations conducted to date indicate that subsurface soil in portions of the northern

property area contain concentrations of PCBs, metals, SVOCs, and VOCs. In addition, PCBs, copper, nickel, and zinc were detected above screening levels in surface soil. With the exception of one sample (SS-99-06), concentrations of PCBs detected in surface soil in the on-site landfill area ranged from 3 to 200 mg/kg. PCBs were detected at 2,600 mg/kg in SS-99-06, located near the property boundary in close proximity to the NMPC property. PCBs ranging from 2 to 26 mg/kg were detected in the surface interval of the borings installed in the general fill area. Subsurface material samples collected during the trenching activities in the on-site landfill area showed detections of PCBs above screening levels ranging from 17 mg/kg to 1,500 mg/kg. The highest concentrations corresponded to samples (T01-1, T01-2, T01-3, T02-3, and T04-1) of paint sludge, other sludge, or stained material. Subsurface material samples collected during the trenching activities in the area of the former drainage swale showed concentrations of PCBs above screening levels ranging from 84 to 6800 mg/kg. The highest concentrations (T06-1, T08-2, T12-1, and T12-2) corresponded to samples of organic material having an oily odor, sludge like soil, and black silts having a paint thinner odor. One subsurface soil sample (OBG-TB-28) in the general fill area showed a PCB detection of 44 mg/kg in the 12 to 14-ft interval. This sample is also located in the former swale area. The former drainage swale was visually evident as a black silt layer mixed with some organic matter during the trenching activities, and the approximate location of the former drainage swale is shown in Figures 3-11A, B, C, D, and E. The higher PCB concentrations were associated with the black silt layer. It should be noted that historically high PCB concentrations (up to 9700 mg/kg) were detected in subsurface soil in the vicinity of Factory Avenue during the Ley Creek Interceptor Sewer project; however, because these soils were removed as part of that project (as described in Section 4.1.5), these detections are not presented here.

VOCs including TCE and cis-1,2-DCE were detected in one sample close to the property boundary west of the estimated limits of the on-site landfill. Xylene and ethylbenzene were also detected in subsurface material in the on-site landfill area at concentrations above screening levels ranging from 4 to 210 mg/kg, and 7.8 to 36 mg/kg. These concentrations were detected in samples of black sandy material (possibly ash) and paint sludge. Xylene and ethylbenzene were also detected in T-30, a location downgradient of the former thinner tanks area. SVOCs benzo(a)pyrene, benzo(b)fluoranthene, and di-n-octyl phthalate were detected above screening levels in surface soil in the vicinity of the on-site landfill. 2-methylphenol, 4-chloro-3-methylphenol, and phenol were detected above screening levels in subsurface material in the vicinity of the on-site landfill.

Arsenic, chromium, copper, nickel, and zinc barium, mercury, beryllium, iron, and selenium are present above NYSDEC TAGM 4046 screening levels in soil and landfill material in the northern property area. Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4, and listed as follows:

PCBs

- former drainage swale
- surface soil in the vicinity of the former storage cell location
- surface and subsurface soil in the vicinity of the on-site landfill

VOCs

surface soil in the vicinity of the on-site landfill (TCE and cis-1,2-DCE)

SVOCs

- surface soil in the vicinity of the on-site landfill (benzo(a)pyrene, benzo(b)fluoranthene, and di-n-octyl phthalate)
- subsurface soil in the vicinity of the on-site landfill (2-methylphenol, 4-chloro-3-methylphenol, and phenol)

Metals

- general northern property area, in the general fill area (arsenic, chromium, copper, nickel and zinc)
- former drainage swale (arsenic, chromium, copper, nickel and zinc)
- surface soil in the vicinity of the on-site landfill (arsenic, chromium, copper, nickel and zinc)
- subsurface soil in the vicinity of the on-site landfill (arsenic, chromium, copper, nickel, zinc, barium, mercury, beryllium, iron, and selenium)
- · closed impoundments (nickel and zinc).

3.2.8. Southwest property area

During the 1998/1999 Supplemental RI, five soil borings (OBG-TB-20, OBG-TB-21, OBG-TB-33, OBG-TB-39, and OBG-TB-40) were installed to evaluate the subsurface soil in the vicinity of the mold storage building. VOCs including methylene chloride (0.001 N mg/kg to 0.034 N mg/kg),

TCE (0.002 mg/kg to 2 J mg/kg), and toluene (0.002 N mg/kg) were detected in these subsurface soil samples. SVOCs were detected primarily in OBG-TB-21 and included 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i,)perylene, benzo(k)fluoranthene, carbazole. chrysene, dibenzofuran. fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, phenanthrene, and pyrene. Bis(2-ethylhexyl)phthalate was detected in each soil boring at concentrations ranging from 0.059 J mg/kg to 6.1 mg/kg. PCBs were detected in each soil boring at concentrations ranging from 0.002 J mg/kg to 44 mg/kg. Site-related metals including arsenic, chromium, copper, lead, nickel and zinc were also detected at concentrations ranging from 1.7 mg/kg to 75 mg/kg. Detected concentrations are depicted in Appendix C.

The NYSDEC TAGM 4046 screening level for TCE was exceeded in OBG-TB-39 in the 10 - 12 ft below grade interval. SVOCs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene also exceeded NYSDEC TAGM 4046 screening levels. In OBG-TB-21 (0 to 1 ft), the TAGM screening level was exceeded for PCBs (Aroclor 1248). Site-related metals that exceeded NYSDEC TAGM 4046 included chromium, copper, nickel, and zinc. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-8A, B, and C.

Soil borings OBG-TB-39 and OBG-TB-40 were also used to investigate the potential presence of NAPL in this area. The UV screening for NAPL was negative in these borings, indicating that no NAPL was present on the soil at those locations.

In addition, four surface soil samples (SS-99-01, SS-99-02, SS-99-03 and SS-99-04) were installed to investigate surface conditions in the vicinity of the hazardous waste storage area. Methylene chloride was detected in surface soil samples SS-99-01, SS-99-03, and SS-99-04 at concentrations ranging from 0.001 NJ mg/kg to 0.011 J mg/kg. SVOCs were detected in all four surface soil samples collected in this area. Detected SVOCs included 2-methylnaphthalene, acenaphthene. benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, butyl benzyl phthalate, carbazole, chrysene, di-n-butyl phthalate, dibenzofuran, dimethyl phthalate, fluoranthene, fluorene, hexachlorobenzene, indeno(1,2,3c,d)pyrene, naphthalene, phenanthrene, phenol, pyrene, and bis(2ethylhexyl)phthalate. PCBs were detected in all four surface soil samples at concentrations ranging from 0.4 mg/kg to 20 mg/kg. Site-related metals including arsenic, chromium, copper, lead, nickel, and zinc were also

detected. Aluminum, barium, beryllium, cadmium, calcium, cobalt, iron, magnesium, manganese, mercury, potassium, selenium, sodium, and vanadium were also detected in SS-99-02. Detected concentrations are depicted in Appendix C.

The results from investigations conducted to date indicate that the NYSDEC TAGM 4046 screening levels were exceeded primarily in SS-99-01 and SS-99-04. SVOCs that exceeded NYSDEC TAGM 4046 screening levels included benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and phenol. PCBs (Aroclor 1248) exceeded the NYSDEC TAGM 4046 screening level in surface soil samples SS-99-01, SS-99-03, and SS-99-04. Site-related metals chromium, copper, nickel, and zinc also exceeded the NYSDEC TAGM 4046 screening levels. Beryllium and lead were also detected above the NYSDEC TAGM 4046 screening levels in surface soil sample SS-99-02. Detected concentrations greater than the NYSDEC TAGM 4046 screening levels are depicted on Figures 3-8A, B, and C.

Summary. The sampling activities and associated results from the various investigations conducted to date indicate that soil in the southwest property area contains PCBs, VOCs, SVOCs, and site-related metals. PCBs were detected above screening levels in three surface soil locations in the vicinity of the former storage pad at concentrations ranging from to 2 to 44 mg/kg. TCE was present in subsurface soil in the southwest property area. SVOCs were detected above the screening level in both surface and subsurface soil in this area. Concentrations of site-related metals chromium, copper, nickel, and zinc also exceeded the screening levels in both surface soils and subsurfaces soils. Beryllium and lead were also detected above the screening levels in one surface soil sample. Specific locations where constituents were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels are summarized in Table 3-4 and listed below:

PCBs

• surface and subsurface soil in the southwest property area

VOCs

• subsurface soil in the southwest property area (TCE)

SVOCs

· surface and subsurface soil in the southwest property area

<u>Metals</u>

surface and subsurface soil in the southwest property area

3.3. Ground water

In order to present the most current ground water conditions, the ground water discussion in this report is limited to the latest ground water results. This section discusses the ground water chemistry for the former thinner tanks area separate from the site wide ground water sampling. The analysis of the wells in the former thinner tanks area is primarily limited to BTEX compounds and these wells have been sampled routinely since 1986. The site wide ground water is discussed based on VOCs, SVOCs, PCBs and metals for both the shallow and deep overburden ground water zones. Historic ground water quality is presented in the Preliminary RI/FS Report (O'Brien & Gere 1997).

Consistent with the NYSDEC comments (Benjamin 1999), the following sampling events are discussed in this section:

- July 29, 1999- former thinner tanks area (T-1, T-2, T-3, T-4, T-5, T-10, T-13, T-15, T-18, T-21, T-24, T-26, T-29, T-33B, and P-9)
- July 8 and 19, 1999- former thinner tanks area (OBG-PZ-1, OBG-PZ-2, OBG-PZ-3 and OBG-PZ-7)
- August 17-18, 1999 Supplemental RI wells in or near manufacturing Building - (MWI-1, MWI-2, MWI-3 and WT-3R).
- November 1999 Closed surface impoundments #1 and #2 semiannual sampling - (MW-1S, MW-1D, MW-2S, MW-2D, MW-3S, MW-3D, MW-4S, MW-4D, MW-5S, and MW-5D)
- November 1999 former thinner tanks area (T-1, T-2, T-3, T-4, T-5 T-10, T-13, T-15, T-18, T-21, T-24, T-29, and T-33B)
- November 1999 Supplemental RI wells (OBG-2, OBG-3, OBG-3D, OBG-5, OBG-7A, OBG-6S, OBG-6D, OBG-7S, OBG-7D, OBG-8S, OBG-8D, OBG-9S, OBG-9D, OBG-10S, OBG-10D, OBG-11, OBG-12, OBG-13, OBG-15, P-2, P-9, U-1D, U-1S, W-1D, W-1S, W-6S, W-6D, W-11S, and W-11D).

As previously described in Section 2.2.5, low flow sampling methods were used for samples collected between August and November 1999. As part of the sampling effort a total of 56 wells were sampled. Thirty-three wells were sampled as part of the Supplemental RI. In addition, 13 wells were sampled

as part of the quarterly monitoring event for the former thinner tanks area and 10 wells were sampled as part of the semi-annual event for the surface impoundment.

The ground water chemistry discussion includes VOCs, SVOCs, PCBs, and metals analyses. In this discussion, analytical data are compared with the NYS Ambient Water Quality Standards and Guidance Values for Class GA ground water. Comprehensive summaries of ground water data for detected constituents are presented in Tables 3-12, 3-13, 3-14, and 3-15. Those compounds detected above NYS Class GA ground water standards are flagged with a "Y" and are also presented on these tables. Ground water analytical data from the site (excluding the former thinner tanks area) are illustrated on Figure C-6, while data for the former thinner tanks area are illustrated on Figure 3-13. Ground water data that exceeds screening levels are presented on Figure 3-12.

Additionally, the full set of analytical results and the corresponding data validation reports for the 1999 sampling events are included in the Analytical Data Summary Report (O'Brien & Gere 2000a).

3.3.1. Volatile organic compounds

This section includes discussions of analytical data for VOCs detected in the vicinity of the site. Data from the former thinner tanks area is discussed separately from the site wide ground water chemistry, as the source of contamination has been defined and ground water monitoring has been completed in this area since 1985.

Former thinner tank area

The former thinner tanks area is located in the northwest portion of the site. In 1985 a leak was detected in the vicinity of the three- 8,000 gallons USTs. As a result, an initial investigation was completed in 1985 and an additional investigation was completed in 1986 to further evaluate the downgradient extent of ground water contamination. In 1985, approximately 320 gallons of free-phase product was collected and the three USTs were removed.

The 1986 EDI report stated that the highest levels are found immediately adjacent to the former USTs and in wells in or next to backfilled trenches of underground pipelines. This would indicate that preferred movement of contaminated ground water is along the more permeable backfill of the utilities. Utilities in the area include a fire protection line (estimated to be 5.5 ft below grade), the former thinner transfer lines (estimated to be less than 6 ft below grade), a 42-inch active storm sewer (invert approximately 7.5 ft below grade) and a 24-inch abandoned storm sewer located along the

western edge of the manufacturing building. The depth of the abandoned storm sewer is likely similar to the 42-inch active storm sewer.

Two ground water interceptor trenches were installed in this area. The southern trench is oriented north-south and east-west in an L- shape and is adjacent to the Former UST pit. The northern trench is oriented east-west, parallel with the northern boundary of the 1975 manufacturing building expansion. The combined yield of the recovery trenches is approximately 0.2 gpm. The water is currently pumped to the IWT Plant area, treated and then discharged through Outfall 003 under the September 25, 1997 SPDES permit.

From 1986 through September 25, 1997 ground water samples were collected twice per month from 10 wells as required by the 1986 SPDES Consent Order. Since September 25, 1997, the effective date of the Order, quarterly ground water samples have been collected from 15 wells, and an additional four wells are sampled annually. In February 2000, NYSDEC and GM agreed, based on analytical results, to modify the frequency of the monitoring to annually for eight wells in the former thinner spill area (Hartnett 2000b, Benjamin 2000).

As part of the Supplemental RI, the NYSDEC requested that the eastern extent of the ground water plume (beneath the building) be evaluated. A total of four piezometers (OBG-PZ-1, OBG-PZ-2, OBG-PZ-3 and OBG-PZ-7) were installed and sampled for VOCs (including chlorinated VOCs) using USEPA Method 8021. Piezometers OBG-PZ-1 and OBG-PZ-2 were subsequently abandoned as they contained elevated levels of BTEX and were within the plume. OBG-PZ-3 and OBG-PZ-7 serve to define the eastern extent of the plume.

Two sets of ground water samples from the former thinner tanks area are discussed in this report as requested by the NYSDEC (Benjamin 1999). The first set of samples were collected in July 1999, and the second set of samples was collected in November 1999. In general, xylene has contributed to greater than 75% of the total BTEX concentrations in these wells. The total BTEX concentrations are presented below:

Total BTEX Concentrations

Location	July 1999	November 1999
T-1	ND	9

Total BTEX Concentrations

Location	July 1999	November 1999
T-2	32,000	178,800
T-3	53,100	32,100
T-4	60,000	64,800
T-5	Dry	420
T-10	336	ND
T-13	410	230
T-15	35,300	9,400
T-18	Dry	Dry
T-21	239,000	192,400 (LNAPL noted)
T-24	ND	3
T-26	21	10
T-29	ND	ND
OBG-PZ-1	1,500	Abandoned
OBG-PZ-2	25,500	Abandoned
OBG-PZ-3	ND	NS
OBG-PZ-7	ND	NS
Notes:		

Notes:

Concentration in µg/L

ND - not detected

NS - not sampled

Source: O'Brien & Gere Engineers, Inc.

The ground water chemistry data and the lateral extent of the plume is illustrated on Figure 3-13. Consistent with previous data, the highest concentrations of BTEX were detected in wells T-2, T-3, and T-4 located near the former thinner tanks, well T-15 located adjacent to the building, and well T-21, where light non-aqueous phase liquid (LNAPL) was observed. Well T-21 is located adjacent to the abandoned storm sewer and fire

protection line. Lower concentrations were detected in wells radially away from the former thinner tank area, T-21 and T-15 areas.

As illustrated on Figure 3-13, the lateral extent of the BTEX plume is limited to the east by OBG-PZ-3 and OBG-PZ-7, where no BTEX was detected, to the west by wells T-6 and T-7, and to the south by well T-1 where 9 μ g/L of BTEX was detected. Wells T-6 and T-7 were not sampled as part of the July or November sampling events; however, historical data indicates no BTEX compounds have been detected in the area.

At the downgradient property line, approximately 500 ft north of the Thinner Spill Area along Factory Avenue, monitoring wells W-6S, W-6D, OBG-7S, OBG-7D, OBG-8S, OBG-8D, OBG-9S and OBG-9D did not contain BTEX. The data indicate that BTEX is not migrating off-site.

Site wide VOCs

A total of 55 ground water samples were analyzed for chlorinated hydrocarbons using USEPA Method 8021. This section discusses ground water chemistry for both the shallow and deep ground water zones. The primary compound detected was TCE with lower concentrations of cis-1,2-DCE, trans-1,2-DCE and vinyl chloride. Xylene was only detected once at an upgradient location, with the exception of the detections in the former thinner tank area, previously discussed.

Shallow ground water zone - This zone is present across the site and includes the upper 15 ft of saturated thickness. This discussion describes the ground water chemistry from the southern portion of the site to the northern portion of the site, which is consistent with the ground water flow direction.

Due to the size of the property three upgradient wells were installed at two locations. The sample collected from upgradient monitoring well OBG-11, in the southwest property area did not contain any VOCs. Upgradient monitoring wells U-1S and U-1D, were installed in the southeast property area at the miscellaneous storage area. Xylene was detected at U-1S at 31 μ g/L, which is above the NYS Class GA standard. The extent of the xylene contamination in this area of the site is limited as xylene was not detected in any other on-site wells, other than in the former thinner tanks area.

Monitoring wells OBG-12 and OBG-13 were installed adjacent to the southern side of the manufacturing building and downgradient of the IWT plant area. No VOCs were detected in either well which suggests that the IWT plant area is not a source of VOCs to the ground water. Monitoring well OBG-15, located in southwest property area immediately adjacent to the

manufacturing building and downgradient of the former container storage pad, and former tank farm building (mold storage building) contained 277 μ g/L of total VOCs, primarily TCE. The information suggests that the mold storage building may be a source of VOCs. Monitoring well WT-3R, located in the southeast portion of the site near the building, contained 22 μ g/L of total VOCs. The source of VOCs at WT-3R is undocumented.

Continuing north, monitoring wells MWI-1 and MWI-2 were installed in the southern portion of the manufacturing building. At MWI-1 the only VOC detected was vinyl chloride at 6 μ g/L and at MWI-2 the total VOC concentration was 60 μ g/L.

Monitoring well MWI-3 installed in the northern portion of the manufacturing building contained 29,940 μ g/L of total VOCs. Trichloroethene was detected at 25,000 μ g/L, and its associated breakdown products including cis-1,2-DCE and vinyl chloride were detected at 4800 μ g/L and 140 μ g/L, respectively. The likely source of VOCs detected at MWI-3 is near the paint room, as evidenced by the elevated VOCs, PID readings, and reported odors at soil borings BH-47, BH-49, and BH-9.

In the northwest corner of the manufacturing building (1975 addition) piezometers OBG-PZ-1, OBG-PZ-2, OBG-PZ-3, and OBG-PZ-7 were installed to evaluate the eastern extent of the thinner spill area as previously described. Total chlorinated VOCs were detected at OBG-PZ-2 and OBG-PZ-3 at 42 μ g/L and 17 μ g/L, respectively. The source of the chlorinated VOCs in this area is either the paint room area or closed surface impoundment #1, which extends under this portion of the manufacturing building.

VOCs were detected in only three wells sampled from wells installed north of the manufacturing building including the northern property area and northwest property area. The detections were noted at OBG-10S, MW-2S and W-11S which indicate that VOCs in the shallow zone are limited to the northern side of the manufacturing building and administration building. The total VOCs at OBG-10S was 15 $\mu g/L$, and the total VOC concentration at MW-2S was 2 $\mu g/L$. The highest concentration of total VOCs in the shallow ground water was 437 $\mu g/L$ at well W-11S. The concentration at W-11S is consistent with the presence of VOCs in the soil at OBG-TB-36 and OBG-TB-37, which contained 1,500 $\mu g/Kg$ and 809 $\mu g/Kg$ of total VOCs, respectively.

No VOCs were detected at MW-1S, MW-3S, MW-4S and MW-5S located around closed surface impoundments #1 and #2. This data, in conjunction

109

with the low concentration detected at MW-2S (2 μ g/L of total VOCs), indicate that the former surface impoundments are not a source of VOCs.

Along the northern property boundary, adjacent to Factory Avenue, no VOCs were detected in the shallow ground water zone which indicate that no VOCs are migrating off-site in the shallow ground water zone.

At the Ley Creek PCB Dredgings site, the only VOC detected was methylene chloride which is not consistent with ground water chemistry at the site.

Deep Ground Water Zone

As discussed in Section 3.1.3, the increasing depth of the glacial till layer near the northern portion of the manufacturing building results in both shallow and deep ground water zones in the north portion of the site. The deep ground water zone extends to Ley Creek.

The geologic cross-section presented as Figures 3-2 indicates the shallow and deep ground water zones are separated by a zone with higher clay content. This zone likely limits the downward vertical migration of VOCs in the north of the manufacturing building and northern property area.

Review of ground water data for wells in the deep zone indicates TCE was the primary VOC detected, with lesser amounts of cis-1,2-DCE and vinyl chloride. The total VOC concentration in this zone ranges from 12 μ g/L at OBG-7D to 181,000 μ g/L at OBG-10D.

A ground water iso-concentration map of the total VOC concentrations in the deep zone is presented as Figure 3-14. As illustrated on Figure 3-14, the axis of the plume trends southwest to northeast from monitoring well OBG-10D, which contained 181,000 μ g/L of total VOCs, and monitoring well OBG-6D at the downgradient property boundary that contained 68,400 μ g/L of total VOCs.

Monitoring wells MW-3D, MW-4D, and MW-5D are located approximately 350 ft west of OBG-6D, at former surface impoundment #2. The total VOC concentrations at these wells ranged from 17,000 to 37,000 μ g/L. The compounds detected are primarily TCE and cis-1,2-DCE which are consistent with the compounds detected at OBG-10D and OBG-6D, suggesting a similar source.

Since no significant concentrations of VOCs were detected in the shallow ground water zone, it can be concluded that the source of VOCs to the deep

ground water zone is from the manufacturing building, likely near MWI-3 and near soil borings BH-47, B-49 and B-9. The VOCs likely migrate vertically downward from the manufacturing building and migrate within the lenses of the deeper glaciolacustrine unit. The deeper silt and fine sand layer reflects the topography of the till layer which slopes to the northeast toward OBG-6D.

Field screening information indicates that no significant PID readings, odors or visual evidence of VOCs (via UV field screening) were noted during well installation at OBG-10D or OBG-6D. In addition, no odors or DNAPL were noted during ground water sampling. This further suggests that VOC migration is limited to small lenses.

The southern extent of the VOC plume is appears to be in the area of BH-49, BH-47 and B-9. The northeastern and eastern extent along the axis of the plume is not defined, as the total VOCs at OBG-6D was $68,400~\mu g/L$ and no deep wells exist east of OBG-6D.

Total VOC concentrations in monitoring wells located west of OBG-6D are significantly lower, ranging from 12 μ g/L to 3,250 μ g/L. Specifically, monitoring well OBG-7D, located approximately 400 ft west of well OBG-6D, contained only 12 μ g/L of total VOCs which suggests the well is located near the western extent of the VOC plume originating from the manufacturing building. Further to the west, the total VOC concentrations increased to 3,250 μ g/L at OBG-8D. At OBG-9D, the total VOC concentration decreased to 253 μ g/L and at well W-6D, located furthest west, the total VOC concentration was 20 μ g/L. The compounds detected at each of these wells are consistent with the compounds detected at OBG-10D and OBG-6D.

The presence of DNAPL was evaluated in monitoring wells MW-3D, MW-4D, OBG-6D, OBG-7D, and OBG-8D. Based on filed visual inspection, no DNAPL was present in these wells.

3.3.2. Semivolatile organic compounds

Each of the wells sampled between August and November 1999 were analyzed for SVOCs. The only SVOCs detected were bis (2-ethylhexyl) phthalate, diethylphthalate and 2,4-dimethylphenol.

The phthalate compounds detected are plasticizers and are common laboratory or sampling artifacts. Bis(2-ethylhexyl) phthalate was detected in upgradient monitoring well U-1D at 230 μ g/L which is above the NYS Class GA standard of 5 μ g/L. The source of the bis(2-ethylhexyl) phthalate

may be related to past site activities; however the absence of this compound in shallow well U-IS suggests that its presence at U-ID is due to sampling or laboratory artifacts. This compound was also detected at monitoring well OBG-13 at a concentration below the NYS Class GA standard.

Diethylphthalate was detected at OBG-9D at a concentration of 20 μ g/L, which is below the NYS Class GA standard of 50 μ g/L.

The compound 2,4-dimethylphenol was detected at monitoring well OBG-9S at a concentration of 4 μ g/L, which is slightly above the ground water standard of 1 μ g/L. In summary, the data indicate that no significant concentrations of SVOCs were detected in the ground water.

3.3.3. Polychlorinated biphenyls

Low concentrations of PCBs were detected in 19 of the 42 wells sampled. The low concentrations detected are consistent with the low solubility of PCBs. As a result of the low solubility, PCBs tend to adsorb onto soil. As reported in literature, small quantities of PCBs (low µg/L level) will dissolve in ground water; however, these dissolved compounds readily re-adsorb to soil; therefore, the dissolved PCBs do not readily migrate large distances (Andrews 1990).

Data for the site indicate that PCBs were predominantly detected in the shallow ground water zone as compared to the deep ground water zone. Specifically, 16 of the 27 shallow wells sampled contained Aroclors and the concentrations at 13 of these wells exceed NYS Class GA standards. Conversely, in the deep zone Aroclors were only detected in three of the 15 wells sampled, at concentrations that exceed the NYS Class GA standard. The Aroclor concentrations are illustrated on Figure 3-12 and are summarized on Table 3-14.

The data indicate the highest concentrations of PCBs were generally detected in source areas, as illustrated in the following table:

Highest PCB concentrations in wells

112

Well	Concentration (µg/L)	Potential source
MW-2S	18	Surface impoundment #1
MW-5S	9	Surface impoundment #2

Highest PCB concentrations in wells

Well	Concentration (μg/L)	Potential source
W-6S	4	On-site landfill
W-6D	3	On-site landfill
OBG-6S	2	Unknown
OBG-9S	3	Swale
OBG-9D	2	Swale
MWI-2	5	Oil/water collection sump #5 line.

Source: O'Brien & Gere Engineers, Inc.

As described in Section 3.2, subsurface soil samples collected in the on-site landfill, swale, and oil/water collection sump 5 areas showed PCB concentrations greater than screening levels. Given that most of these detections were associated with locations where PCBs were observed in subsurface soils, the detections are likely indicative of localized conditions. The concentrations in the remaining wells ranged from 0.07 $\mu g/L$ to 0.9 $\mu g/L$.

In summary, samples collected from 16 of the 42 wells contained PCBs at concentrations above NYS Class GA standards for PCBs. The highest concentrations of PCBs were detected in the vicinity of surface impoundment #2, the historic landfill, former drainage swale and the oil/water collection sump 5 line. Concentrations at wells away from theses areas were between 0.07 and 0.9 μ g/L.

3.3.4. Metals

No metals were detected above standards in the 42 wells sampled. The data indicate that the facility is not a source of metals to the ground water.

3.4. Storm water

Data generated during the storm water sampling events described in Section 2, are summarized in this section. A tabular summary of the storm sewer

sampling data which is described below is presented as Table 3-16. Analytical data are included in Exhibit E of the 1997 Preliminary RI/FS Report.

3.4.1. Main storm sewer system

Sampling associated with the main storm sewer system leading to Outfall 003 has been performed during the 1985 Hydrogeological Investigation, the 1987 and 1989 storm sewer sampling studies, the 1992 Ley Creek PCB Dredgings site RI, and SPDES discharge monitoring. In 1985, EDI collected four samples from storm sewers located south of the facility buildings. Constituents detected included PCE at 1 μ g/L, antimony at 160 μ g/L, and lead at 40 μ g/L in S-1; arsenic at 3.6 μ g/L in S-2; chromium ranging from 20 to 50 μ g/L in S-1, S-3, and S-4; zinc at 120 μ g/L at S-2 and 100 μ g/L at S-3; copper at 40 μ g/L at S-1 and 90 μ g/L at S-4; and selenium at 9.6 μ g/L at S-2 and 2.0 μ g/L at S-3. Constituents detected in manholes S-1 and S-3 are likely related to off-site contributions. Manholes S-2 and S-4 receive facility runoff.

Sampling associated with the main storm sewer system tributary to Outfall 003 was also performed in 1987 and 1989 by O'Brien & Gere. The 1987 sampling program assessed the relationship between rain events and concentrations of certain constituents in the facility's storm water discharge to Ley Creek. Constituents detected within the storm water during one or more of the sampling events included PCB Aroclor 1248, VOCs (TCE and 1,2-DCE), metals (lead, copper and zinc) and phthalates. The results indicated a definite first-flush pattern to storm water pollutant loadings upon the beginning of rain events.

In 1989, a sampling program was performed to identify potential sources of PCBs within the then-recently modified storm sewer system and further investigate the presence of TCE within the same sewers. Sampling was performed within a series of manholes and collection sumps located on the southwest corner of the manufacturing building and the manhole just upstream of Outfall 003. The results of these sampling events indicated the presence of PCB Aroclor 1248, with the greatest concentrations originating from the western branch of the storm sewer system tributary to Outfall 003. PCB concentrations in manholes A9, A10, A11, and A12 ranged from 3.0 to 4.2 μ g/L. TCE was also detected during this project in the sewers located on the western side of the facility. The highest concentration existed downgradient of the mold storage building in manhole A6 at 1,500 μ g/L.

Overall, the following conclusions were drawn from the 1989 sampling:

- Collected data do not rule out a potential source of PCBs to the storm sewer system on the southwestern corner of the facility.
- Little or no PCBs were originating from off of the facility.
- Some PCBs were contributed by the section of storm sewer serving the middle of the facility.
- There were no influxes of PCBs into the new sections of storm sewer along the west side of the manufacturing building.
- The source of the TCE within the storm sewers was generally located on the west side of the manufacturing building.

During the 1992 Ley Creek PCB Dredgings site RI sampling, PCB Aroclor 1248 was detected in Outfall 003 discharge water samples taken during the first two sampling times, 2:30 p.m. and 3:00 p.m.; PCBs were not detected in outfall discharge water samples collected at 3:30 p.m. and 4:30 p.m. PCB Aroclor 1248 concentrations in the sample and blind duplicate sample collected at 2:30 p.m. were 1.2 μ g/L and 1.8 μ g/L. The PCB Aroclor 1248 concentration in the sample collected ½ hr later was 1.8 μ g/L. These concentrations did not exceed the 4 μ g/L effluent limit for PCB Aroclor 1248 which was established pursuant to the 1985 SPDES Consent Order. PCB Aroclor 1248 was detected in sediment sample collected from the outfall pipe at a concentration of 0.18 mg/kg. These data are summarized in Table 3-17.

Monitoring of the discharge through Outfall 003 has been routinely performed under SPDES. Until September 25, 1997, the effective date of the new SPDES permit, the discharge was sampled monthly and analyzed for a variety of parameters, including PCBs and TCE. These constituents were routinely detected in the monthly monitoring. Between 1994 and 2000, TCE has been detected consistently below its discharge limit (prior to the September 25, 1997 permit) of 160 µg/L. TCE concentrations have ranged from less than detectable to 53 µg/L since January 1994, as depicted in Appendix E and on Figure 3-15. The September 25, 1997 SPDES permit contains a final action level for TCE of 5 µg/L for Outfall 003, to be effective three years from the effective date of the Order and SPDES permit.

PCB Aroclors 1242 and 1248 concentrations have ranged from less than detectable to 1 μ g/L and less than detectable to 24 μ g/L, respectively, between January 1994 and March 2000, as depicted in Appendix E and Figure 3-16. The September 25, 1997 SPDES permit contains interim discharge limitations of 2 μ g/L per Aroclor, and final discharge limitations

of 0.3 μ g/L per Aroclor, with a discharge goal of non-detect at the higher of 0.065 μ g/L or the site-specific method detection limit. As shown on Figure 3-16, Aroclor 1248 exceeded the interim discharge limit in September and October 1999. With this exception, the interim discharge limit for PCBs has not been exceeded since January 1994. The Order requires that the Outfall 003 discharge meet final discharge limitations within the shortest reasonable time period, which shall not exceed three years from the effective date of the Order.

Total xylenes have periodically been present in this outfall as well, at concentrations up to 16.7 μ g/L in December 1996. The source of the xylenes is likely impacted ground water from the former thinner tanks area on the west side of the facility, which potentially seeps into the storm sewer system. The Order contains an interim action level of 100 μ g/L for xylenes. The September 25, 1997 SPDES permit contains a final action level for total xylenes of 5ug/L for Outfall 003, to become effective three years from the effective date of the Order and the SPDES permit.

Outfall 003 sampling performed twice per week in August 1996 indicated flows ranging from 15,249 to 28,800 gal/day, PCB Aroclor 1248 concentrations ranging from 0.16 to 0.39 μ g/L, and TCE concentrations ranging from 5.1 to 15 μ g/L. Coal pile runoff sampling, also performed twice per week in August 1996, indicated pHs ranging from 6 to 8.6, TSS concentrations ranging from less than 1,000 to 8,000 μ g/L, and total dissolved solids (TDS) concentrations ranging from 446 to 583 μ g/L. Coal pile runoff was redirected to Outfall 003 in accordance with the September 25, 1997 SPDES permit, since the coal pile was removed in 1996.

Following the 1996 sampling, routine monitoring has been performed under the September 25, 1997 SPDES permit. In November 1999, modifications to the SPDES permit monitoring requirements were proposed based on monitoring frequencies and patterns of non-detections. These modifications are described in Section 2.3.

As summarized in Table 3-16, historically, the highest concentrations of TCE were detected at sample location A6, in the vicinity of the mold storage building. The highest concentrations of PCBs were detected at sample location A1, located in the vicinity of Outfall 003. These sample locations are depicted on Figure 1-8. As depicted in Appendix E, concentrations of TCE and PCBs in Outfall 003 have been detected below the previous SPDES Consent Order effluent limits, but above the September 25, 1997 SPDES permit action level for TCE and final effluent limits for PCBs. As depicted in Figure 3-15, TCE has always been detected below the interim

effluent limits. As indicated in Figure 3-16, PCBs have generally been detected below the interim limits, with the exception of samples collected in September and October 1999. Both TCE and PCBs have been sporadically detected at concentrations above the final limits which will be effective in September 2000. A sewer televising IRM is planned to evaluate the integrity of the storm sewer leading to Outfall 003, the oil/water collection sumps in the manufacturing building, and their associated piping. Cleaning of the sumps and sewer lines to facilitate televising will also be conducted as part of this IRM. The IRM is being implemented to gain a better understanding of potential sources of contamination such as potential ground water infiltration and/or residues in the storm sewers, and will be used to evaluate actions, if any, to be taken in order to meet the final effluent limits for Outfall 003.

Recent (April 1998 through February 2000) results for PCBs and TCE in Outfall 003 are illustrated in Figures 3-15 and 3-16. Historical PCB and TCE data collected from Outfall 003 are included in Appendix E. These constituents are illustrated due to routine detections in monthly monitoring.

3.4.2. Eastern storm sewer system

Sampling associated with the eastern storm sewer system leading to Outfall 004 was performed during the 1987 storm outfall assessment, during 1996 and during the SPDES monitoring program. The 1987 sampling was intended to assess the relationship between rain events and concentrations of certain constituents in the facility's storm water discharge. Constituents detected include PCB Aroclor 1248, lead, copper, zinc, cyanide (one sample event only), cis-1,2-DCE (one sample event only), PCE (one sample event only, at the upstream sample point), naphthalene and phthalates.

In 1992, the Outfall 004 sewer line was inspected for integrity using sewer televising. The 1992 televising program indicated that the Outfall 004 sewer line was not subject to significant ground water infiltration. Sewer television inspection logs are presented in Exhibit K of the 1997 Preliminary RI/FS Report.

In November 1995 and April 1996, additional sampling of Outfall 004 and portions of the associated storm sewer system was performed. This sampling was undertaken in addition to the routine SPDES sampling. The sampling focused on investigating the source of the detection of PCBs in the outfall. One round of sampling was performed to assess the concentrations of PCBs in the storm sewer as it entered the GM property on the southeastern corner, and concentrations at the outfall. The results of this sampling indicated low concentrations of PCBs present at the outfall $(0.2 \mu g/L)$, but not within the

upstream portion of the storm sewer. Further sampling performed at the outfall and several upstream manholes indicated less than detectable concentrations at the outfall and the upstream manholes. August 1996 sampling performed twice per week at Outfall 004 indicated less than detectable PCBs for each sampling event.

Following the 1996 sampling, routine monitoring was performed under the September 25, 1997 SPDES permit. In November 1999, modifications to the SPDES permit monitoring requirements were proposed based on monitoring frequencies and patterns of non-detections. These modifications are described in Section 2.3.

Based on the results of the previous investigations and the SPDES monitoring conducted to date, PCBs are infrequently present in the Outfall 004 discharge. Manhole sampling to date has not indicated the source of detections of PCBs in the Outfall 004 discharge. Based on results of monitoring performed under the September 25, 1998 SPDES permit, PCBs are infrequently detected except for samples obtained between January and March 1999.

3.5. Ley Creek

Data generated during the Ley Creek sampling events, described in Section 2, are summarized in this section. As discussed in Section 2, in order to provide the most current but complete environmental conditions for surface water and sediment, analytical data resulting from the 1996 NYSDEC sampling event and the 1998/1999 sampling events associated with the Supplemental RI are included in this report. Historical data are presented in the 1997 Preliminary RI/FS Report. Tabular summaries of the sediment, surface water, and fish sampling data, which are described below, are presented in Tables 3-18 through 3-38. Analytical data, collected in 1998/1999, are included in Exhibit E. Analytical data generated prior to 1998 is included in Exhibit E of the 1997 Preliminary RI/FS Report.

3.5.1. Surface water sampling and analysis

1996 NYSDEC Sampling - Analytical data for detected VOC, SVOC and inorganic constituents in the two surface water samples collected in the south branch of Ley Creek, downstream of Outfall 003 and 004, are presented in Tables 3-18, 3-19 and 3-20. PCBs were not detected in these samples. Detected organic constituents include 1,2-DCE (1 and 2 μ g/L) and bis(2-

ethylhexyl)phthalate (1 μ g/L). The bis(2-ethylhexyl)phthalate detection exceeded the NYS Class B surface water standard of 0.6 μ g/L. Inorganic constituents detected at concentrations above the NYS Class B surface water standard include aluminum, iron, silver, and zinc.

1998/1999 O'Brien & Gere Supplemental RI Sampling. Analytical data generated from the Ley Creek surface water sampling and analysis performed during O'Brien & Gere' 1998 and 1999 sampling events are presented in Tables 3-26 through 3-29. The 1998 surface water sampling event was conducted during low flow conditions; the 1999 surface water sampling event was conducted during high flow conditions. Sampling locations are shown on Figure 2-8 and described on Table 2-6.

Five VOC constituents were detected in the surface water samples collected and analyzed using EPA Method 8260. Acetone was detected in three upstream samples ranging from 1 J μ g/L to 3 J μ g/L. Methylene chloride was detected in two upstream samples ranging from 0.4 J μ g/L to 2 J μ g/L. TCE was detected in three downstream samples at 1 J μ g/L. TCE was detected in four downstream samples ranging from 1 J μ g/L to 12 μ g/L. Vinyl chloride was detected in two samples (one upstream and one downstream) ranging from 0.1 J μ g/L to 0.2 J μ g/L. Cis-1,2-DCE was detected in four downstream samples ranging from 0.9 J μ g/L to 2 J μ g/L. Cis-1,2-DCE was detected in four upstream samples ranging from 1 J μ g/L to 5 J μ g/L. TCE was detected at 5 μ g/L and cis-1,2-DCE at 4 μ g/L in the upstream sample analyzed for TCL VOCs using EPA Method 8021. Detected concentrations are depicted on Figure 3-18.

One SVOC (Di-n-octyl phthalate) was detected in three downstream samples and four upstream samples collected during the 1998 low flow sampling event at $10 \text{ J} \mu\text{g/L}$. SVOCs were not detected in the samples collected during the 1999 high flow sampling event. Detected concentrations are depicted on Figure 3-18.

PCBs were not detected in the samples collected during the 1998 low flow sampling event. PCB Aroclor 1248 was tentatively identified in one downstream sample collected during the 1999 high flow sampling event at 0.04 NJ µg/L. The detected concentrations are depicted on Figure 3-18.

Heavy metals and cyanide detected during the high and low flow sampling events include antimony (0.0015 J μ g/L to 0.0024 J μ g/L), chromium (0.0059 J μ g/L to 0.0080 J μ g/L), copper (0.0016 J μ g/L to 0.0087 J μ g/L), lead (0.0014 J μ g/L to 0.0045 J μ g/L), nickel (0.0010 J μ g/L to 0.013 J μ g/L), zinc (0.0112 μ g/L to 0.0339 μ g/L), and cyanide (0.011 μ g/L). Detectable concentrations of aluminum, barium, beryllium, calcium, iron,

magnesium, manganese, potassium, and sodium were identified in the two samples analyzed for TAL metals. Detected concentrations are depicted on Figure 3-18.

NYS Class B Ground Water Quality Standards for VOCs, SVOCs, and PCBs were not exceeded for any of the surface water samples; Aluminum and iron were the only metals detected in surface water above the NYS Class B surface water standards. Cyanide concentrations also exceeded NYS Class B surface water quality standards at sample location SW-6 during the high flow sampling event.

3.5.2. Sediment sampling and analysis

1996 NYSDEC Sampling - Analytical sediment data for detected PCB, VOC, SVOC, and inorganic constituents and TOC are presented in Tables 3-21 through 3-25. Concentration ranges of these parameters were as follows:

Table 3-39. 1996 NYSDEC sediment organic concentration ranges.

Organic Constituent Concentration Range (mg/kg)	North Branch	Sanders Creek	South Branch	Upper Main Branch ¹	Lower Main Branch ²
Total PCBs	LTD	LTD to 0.016	0.025 to 4.816	0.039 to 1.606	0.122 to 27.820
Total VOCs	0.007 to 0.076	0.006 to 0.033	0.006 to 0.06	0.002 to 0.030	0.004 to 0.4
Total SVOCs	0.213 to 1.89	LTD to 0.041	1.332 to 252.220	0.666 to 34.990	LTD to 54.110
TOC	15100	not sampled	28700	32000	84500

Notes:

Source: O'Brien & Gere Engineers, Inc.

Detected Aroclors in the south, upper main (from confluence of north and south branches to Rt. 11), and lower main (Rt. 11 to Onondaga Lake)

¹ Confluence of north and south branches of Ley Creek to Rt. 11

² Rt. 11 to Onondaga Lake

LTD - less than detectable

branches of Ley Creek include 1016, 1242, 1254, and 1260. Total VOC and SVOC concentrations do not include tentatively identified compounds (TICs). Detected VOC constituents included both chlorinated and aromatic organics, and detected SVOC constituents were predominantly PAHs. The highest total PCB and VOC concentration ranges were observed in the lower main branch of Ley Creek. The highest SVOC concentrations were observed in the south branch of Ley Creek.

Inorganic concentration ranges were as follows:

Table 3-40. 1996 NYSDEC sediment inorganic concentration ranges.

Inorganic Constituent Concentration Range (mg/kg)	North Branch	Sanders Creek	South Branch	Upper Main Branch ¹	Lower Main Branch ²
Alummuum	3070 to 3700	7130 to 13200	3530 to 25900	2820 to 10300	2160 to 1040
Antimony	LTD to 0.77	LTD	LTD to 18.7	LTD	LTD to 3.5
Arsenic	2.9 to 13.5	14.1 to 19.1	3.6 to 10.3	1.1 to 7.6	LTD to 11.1
Barium	18.2 to 36.7	29.1 to 133	76.5 to 316	11.2 to 70.7	59.7 to 137
Beryllium	0.16 to 0.3	0.44 to 0.87	0.24 to 1.2	0.19 to 0.53	0.14 to 0.51
Cadmium	0.15 to 0.26	LTD	0.11 to 5.9	0.25 to 1.1	0.08 to 5.7
Calcium	17500 to 50100	62600 to 69000	23000 to 193000	11200 to 105000	8100 to 231000
Chromium	6.5 to 7.9	14.2 to 21.7	13.1 to 42.2	6.6 to 30	3.3 to 146
Cobalt	4.2 to 4.7	12.5 to 14.3	3.8 to 15.8	3 to 8.2	1.4 to 9.4
Copper	9.7 to 14.4	20.6 to 25.6	28.8 to 423	9.2 to 50.3	3.1 to 128

Table 3-40. 1996 NYSDEC sediment inorganic concentration ranges.

Inorganic Constituent Concentration Range (mg/kg)	North Branch	Sanders Creek	South Branch	Upper Main Branch ¹	Lower Main Branch ²
Iron	11900 to 16400	15900 to 34600	10100 to 36100	7920 to 18700	5860 to 23000
Lead	6.5 to 57.7	5.2 to 15.8	11.1 to 1170	6.9 to 67.1	0.94 to 128
Magnesium	4700 to 16900	22300 to 26500	4160 to 19100	5100 to 23600	4560 to 14800
Manganese	121 to 341	368 to 414	254 to 882	151 to 401	169 to 428
Mercury	LTD	LTD	0.08 to 0.19	LTD to 0.11	LTD to 0.2
Nickel	6.2 to 8.2	17.3 to 33.8	14.8 to 38.6	5.9 to 18	3.8 to 54.1
Potassium	693 to 1130	2670 to 3900	599 to 8430	673 to 2810	495 to 2130
Selenium	LTD	LTD	LTD to 2.2	LTD	LTD to 0.66
Silver	0.19 to 0.31	0.21 to 0.38	0.13 to 4.3	LTD to 1.3	LTD to 1.7
Sodium	128 to 322	381 to 549	233 to 1000	152 to 404	227 to 4160
Thallium	LTD to 0.57	LTD to 0.88	LTD to 0.73	LTD to 0.6	LTD to 1
Vanadium	8.2 to 11.4	17 to 25.3	12.6 to 50.3	7.9 to 24.5	3.9 to 25
Zinc	40.9 to 54.4	39.2 to 77.4	78.7 to 811	38.6 to 172	12.5 to 314
Cyanide	LTD	LTD	LTD	LTD	LTD to 1.6

Table 3-40. 1996 NYSDEC sediment inorganic concentration ranges.

Inorganic Constituent	North Branch	Sanders Creek	South Branch	Upper Main	Lower Main
Concentration				Branch ¹	Branch ²
Range (mg/kg)					

Notes:

1 Confluence of north and south branches of Ley Creek to Rt. 11

2 Rt. 11 to Onondaga Lake

LTD - less than detectable

Source: O'Brien & Gere Engineers, Inc.

Additional data received from NYSDEC related to sediment in Ley Creek indicate that PCB concentrations in sediment in the vicinity of the site were generally lower than those in the south branch of Ley Creek (upstream). PCB concentrations in sediment in the vicinity of the site were generally higher than those in the north branch of Ley Creek and in Sanders Creek (upstream). VOC concentrations in sediment in the vicinity of the site were generally lower than the upstream and downstream portions of the creek. SVOC concentrations in sediment in the vicinity of the site were generally lower than the south branch of Ley Creek (upstream) or the lower main branch of Ley Creek between Rt. 11 and Onondaga Lake (downstream). SVOC concentrations in sediment in the vicinity of the site were generally higher than those in the north branch of Ley Creek and in Sanders Creek (upstream). Inorganic concentrations in sediment in the vicinity of the site were generally lower than the upstream and downstream portions of the creek.

1998/1999 O'Brien & Gere Supplemental RI Sampling. Analytical data generated from the Ley Creek sediment sampling and analysis performed during O'Brien & Gere' 1998 sampling event are presented in Tables 3-30 through 3-36. Sampling locations are shown on Figure 2-8.

VOCs were detected in seven of the twenty-six surface sediment samples collected (five upstream and two downstream) and in two of the five subsurface sediment samples collected (one upstream and one downstream). The detected VOCs were predominantly located in the upstream portion of the creek. Detected VOCs (EPA Method 8021) at the following ranges included benzene (2 J μ g/kg), chloroform (2 J μ g/kg), methylene chloride (65 J μ g/kg to 360 J μ g/kg), ethylbenzene (2 NJ μ g/kg to 3 NJ μ g/kg), toluene (2 NJ μ g/kg to 16 NJ μ g/kg), TCE (3 μ g/kg to 38 J μ g/kg), xylene (total) (5 J μ g/kg to 10 NJ μ g/kg), and cis-1,2-DCE (2 J μ g/kg). Detected TCL VOCs (EPA Method 8260) and ranges included MEK (5 J μ g/kg to 6 J μ g/kg) and

acetone (15 J μ g/kg to 21 J μ g/kg). Detected concentrations above screening levels are depicted on Figure 3-17.

SVOCs were detected in all of the thirty-one sediment samples collected. Detected SVOC constituents were generally polynuclear aromatic hydrocarbons (PAHs). SVOCs were detected at the following concentrations ranges: total phenols (48 J μ g/kg to 602 J μ g/kg), total PAHs upstream (2279 μ g/kg to 805500 μ g/kg) and downstream (12042 μ g/kg to 407000 μ g/kg), butyl benzyl phthalate (220 J μ g/kg to 610 J μ g/kg), carbazole (120 J μ g/kg to 20000 J μ g/kg), di-n-butyl phthalate (45 J μ g/kg), and dibenzofuran (78 J μ g/kg to 14000 μ g/kg). Detected concentrations above screening levels are depicted on Figure 3-17.

PCB Aroclors 1248, 1254, and 1260 were detected in the sediment samples. The highest PCB concentrations were generally observed in the downstream sediment samples. Aroclor 1248 was detected in twenty-five of the thirty-one sediment samples (6 upstream and 19 downstream). The upstream Aroclor 1248 concentrations ranged from 0.031 mg/kg to 0.2 mg/kg. The downstream Aroclor 1248 concentrations ranged from 0.15 mg/kg to 25 mg/kg. Aroclor 1254 was detected in only one upstream sample at a concentration of 0.14 mg/kg. Aroclor 1260 was detected in twenty of the sediment samples (10 upstream and 10 downstream). The upstream Aroclor 1260 concentrations ranged from 0.025 mg/kg to 1.3 mg/kg. The downstream Aroclor 1260 concentrations ranged from 0.041 mg/kg to 0.51 mg/kg. Downstream concentrations greater than 10 mg/kg were detected in only two of the ten locations sampled (SED-1 and SED-8), and concentrations greater than 1 mg/kg were detected in five of the locations. Detected concentrations above screening levels are depicted on a 3-17.

Heavy metals were detected in the majority of sediment samples. In the upstream samples detected heavy metals and ranges included: antimony (0.18 J mg/kg to 0.41 J mg/kg), arsenic (2 mg/kg to 13.7 mg/kg), chromium (6.9 J mg/kg to 45.6 J mg/kg), copper (6.7 mg/kg to 79.7 mg/kg), lead (2.5 mg/kg to 105 mg/kg), nickel (4.5 J mg/kg to 24 mg/kg), selenium (.34 J mg/kg to 43 J mg/kg), and zinc (35.4 mg/kg to 257 mg/kg). In the downstream samples detected heavy metals and ranges included: antimony (.17 J mg/kg to .55 J mg/kg), arsenic (2.2 mg/kg to 7 mg/kg), chromium (11.4 J mg/kg to 153 J mg/kg), copper (14.6 mg/kg to 128 mg/kg), lead (12.4 mg/kg to 172 mg/kg), nickel (6.5 J mg/kg to 37.9 mg/kg), selenium (.52 J mg/kg to 1.2 J mg/kg), and zinc (59.6 mg/kg to 390 mg/kg). Detected concentrations above screening levels are depicted on Figure 3-17.

Two sediment samples were analyzed for TAL metals. The detected constituents included: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, vanadium, and zinc. The detected concentrations ranged from 0.27 J mg/kg to 31,300 mg/kg. Detected concentrations above screening levels are depicted on Figure 3-17.

Cyanide was detected in two of the thirty-one sediment samples, one upstream and one downstream, at 1.8 mg/kg and 1.2 mg/kg, respectively. Cyanide analytical results are summarized in Table 3-33.

TOC analyses were performed on these samples. The upstream concentrations ranged from 11000 mg/kg to 42400 mg/kg. The downstream concentrations ranged from 6270 mg/kg to 67400 mg/kg. TOC results are included in Table 3-34.

Eleven out of the twelve sediment samples analyzed for chlorinated dioxin/furan analyses exhibited detectable concentrations. Chlorinated dioxins and furans were detected. The detected congeners were converted to 2,3,7,8-TCDD toxicity equivalents. The 2,3,7,8-TCDD toxicity equivalents ranged from 10.11 to 55.19 ng/kg. Detected chlorinated dioxins and furans are included in Table 3-35, and 2,3,7,8-TCDD toxicity equivalents are summarized in Table 3-36.

The majority of downstream sediment samples and eight out of thirteen upstream sediment samples exceeded the New York State Sediment Criteria for metals. Metals that exceeded criteria in downstream sediment samples include: arsenic, cadmium, chromium, lead, nickel, silver, and zinc ranging from 1.2 mg/kg to 390 mg/kg. Metals that exceeded criteria in upstream sediment samples include: arsenic, chromium, lead, nickel and zinc ranging from 8.2 mg/kg to 257 mg/kg. The majority of exceedances detected in upstream samples were found at sample locations SED-22 through SED-26.

A statistical evaluation of the 1996 and 1998 sediment performed for the ecological risk assessment indicated that the concentrations of Aroclor 1016, Aroclor 1242, and Aroclor 1248 in the portion of Ley Creek between Townline Road Bridge and the Route 11 Bridge are statistically greater than upstream levels. However, the concentrations of metals, SVOCs, and VOCs in downstream sediments are statistically equivalent in this stretch to the upstream sediments. The statistical evaluation is documented in the Problem Formulation Document for the Former IFG Facility and Ley Creek Deferred Media (O'Brien & Gere 2000d).

3.5.5. Fish

1985 EDI Ley Creek sampling program. Analytical data generated from the fish sampling and analyses in 1985 are presented in Table 3-37. Concentrations of PCB Aroclor 1248 ranged from less than the detection limit to 4.1 mg/kg; concentrations of PCB Aroclor 1254 ranged from non-detectable to 2.7 mg/kg, with total PCB concentrations ranging from less than the detection limit to 6.8 mg/kg. Concentrations of PCBs greater than the detection limit were observed only in carp (EDI 1985b).

1992 O'Brien & Gere Ley Creek Dredged Material Area RI. Data generated from analysis of fish samples collected during the RI are presented in Table 3-38. PCB concentrations in whole fish upstream ranged from less than detectable to 0.86 mg/kg, identified as PCB Aroclor 1248, on a wet weight basis. PCB concentrations in the edible portions of upstream pumpkinseeds ranged from 0.11 mg/kg to 2.4 mg/kg, identified as PCB Aroclor 1248, on a wet weight basis. The lipid percentages in the upstream fish samples were 0.1%, with the exception of 0.5% in the golden shiner. Moisture percentage was not measured for upstream fish samples due to insufficient sample quantity.

PCB Aroclor 1248 concentrations in whole fish collected from the outfall sampling location ranged from 0.19 mg/kg to 0.82 mg/kg on a wet weight basis. PCB Aroclor 1260 was detected in one of the whole fish from the outfall location, a white sucker, at 0.23 mg/kg. Lipid percentages ranged from 0.1% to 0.5% in the outfall fish samples. Moisture percentage was measured for one of the outfall fish samples, a golden shiner, at 79.7%.

PCB Aroclor 1248 concentrations in whole fish downstream ranged from 0.46 mg/kg to 1.1 mg/kg on a wet weight basis. PCB Aroclor 1260 concentrations in whole fish downstream ranged from less than detectable to 0.35 mg/kg on a wet weight basis. PCB Aroclor 1248 concentrations in filet and edible portion fish samples downstream ranged from 0.11 mg/kg to 0.32 mg/kg wet weight; PCB Aroclor 1260 was not detected in downstream filet or edible portion fish samples. The lipid percentages in the downstream fish samples ranged from 0.1% to 3.0%, and moisture percentages for the four samples in which it was measured ranged from 72.6 to 77.8%.

Carp and shiners are species which were analyzed on a whole fish basis in both 1985 and 1992. Data indicate lower concentrations of PCB Aroclor 1248 in fish in 1992 than observed in 1985. PCB Aroclor 1248 concentrations ranged from less than 0.3 mg/kg to 4.1 mg/kg in carp collected in 1985; concentrations of PCB Aroclor 1248 in whole carp collected in 1992 were 0.47 mg/kg and 1.1 mg/kg. PCB Aroclor 1254 was

not detected in whole carp collected in 1992, but was detected in three of the four carp collected in 1985 at concentrations of 0.53 mg/kg, 1.2 mg/kg, and 2.7 mg/kg. PCB Aroclor 1260 was detected in whole carp collected in 1992 at concentrations of 0.35 mg/kg and 0.7 mg/kg, but was not detected in carp collected in 1985.

The fish species observed in Ley Creek are stream dwellers which tend to migrate up and down the stream for up to several miles in response to water level fluctuations, habitat quality, and food availability (Creech 1992). Comparisons of fish from upstream, outfall, and downstream sampling locations could not be made due to the tendency of the fish collected to migrate for several miles (Creech 1992). Potential PCB transport pathways to Ley Creek in the study area (outfall discharge, ground water discharge, and surface runoff) likely contribute PCBs to fish; quantitative conclusions could not, however, be drawn related to the proportionate contribution by these pathways versus possible non-study area related sources to PCBs in fish. Because potential PCB transport pathways to Ley Creek are not fully related to the dredged material, quantitative conclusions could also not be drawn related to the contribution of the dredged material itself to PCBs in fish (O'Brien & Gere 1993).

Based on the results of the previous investigations, PCBs were present in fish collected in the vicinity of the Ley Creek PCB Dredgings site. Quantitative conclusions could not be drawn related to the proportionate contribution by the Ley Creek PCB Dredgings site to PCBs in fish due to the tendency of the fish collected to migrate for several miles. Aroclors other than those associated with GM's outfall discharge were detected in fish.

4. Remedial and decommissioning activities

GM has conducted several remedial and facility decommissioning efforts at the facility, which are discussed in this section. Remedial efforts included installation and operation of an oil/water collection system, storm sewer restoration, installation and operation of a ground water recovery system in the former thinner tanks area, surface impoundment closure, and soil excavation/disposal in the area of the Ley Creek Relief Interceptor sewer. GM has also performed facility decommissioning activities since the facility ceased manufacturing operations in 1993.

4.1. Remedial activities

The various remedial programs which have already been implemented at the facility are discussed in the following subsections. These remedial programs were generally performed in conjunction with either a NYSDEC consent order (as discussed in Section 1) or NYS RCRA regulations.

4.1.1. Oil/water collection sump system

As discussed in Section 1, during the 1980s, oil was discovered in the facility's storm water discharge to Ley Creek and within the existing underground storm sewer system beneath the manufacturing building. It was suspected that the presence of this oil was related to the historic operation of the underground sumps and tanks associated with the injection molding operations. In response to these findings, GM implemented a program to remove the building roof drainage from the underground system and replace it with an overhead system to minimize the release of oils which may have been trapped within the underground system during rain events. The new overhead system was installed in two phases in 1986 and 1988 and was constructed in conjunction with rehabilitation of selected storm sewers outside the facility, as discussed in the following subsection.

Once use of the underground storm sewers beneath the building was discontinued, the storm sewers were plugged, and a series of collection sumps was installed at certain locations where these sewers formerly exited the building and tied into the outside storm water collection system. These

sumps, designated oil/water collection sumps 1, 2, 3, 4, 5, 6, 7 and 8, were installed in two phases in 1986 and 1988 in order to capture residual oil/water which may have been present within the lines. The sump locations are presented on Figure 1-9 and are generally located around the perimeter of the manufacturing building. The sumps operate on a passive collection basis and pump the collected oil/water to the IWT plant for treatment and discharge through Outfall 003 under SPDES permit. The sumps tend to operate more during periods of wet weather than dry weather, which is likely due to infiltration of storm runoff or ground water into the abandoned storm sewer system. Operation of the eight sumps is ongoing. Storm sewer modifications are discussed in detail in Attachment 3 of Appendix G.

4.1.2. Storm sewer rehabilitation

In conjunction with the abandonment of the underground storm sewers beneath the manufacturing building and installation of the oil/water collection sumps, certain storm sewers located outside the facility buildings were rehabilitated in two phases in 1986 and 1988. The sewers which were rehabilitated were those associated with Outfall 003 and the previously detected concentrations of PCBs present within the discharge at the outfall. The project included the abandonment of certain sewers and the installation of new sections of sewer on the west side of the facility. Sewer rehabilitation efforts also included sliplining portions of the sewer and installation of a cured in place liner in a section on the west side of the facility. The sections of the storm sewer restoration work are depicted on Figure 1-8, which represents the current storm sewer configuration at the facility. Storm sewer modifications are discussed in detail in Attachment 3 of Appendix G.

4.1.3. Thinner area ground water recovery system

In 1985 and 1986, GM investigated an area on the west side of the facility where three 5000 gallon thinner USTs had been removed. The investigatory efforts, which are discussed in Sections 2 and 3, indicated that a localized area of ground water was impacted by toluene, ethylbenzene and xylenes. A remedial action plan to address the extent of the impacted ground water was developed and implemented (EDI 1986b). The implementation of the remedial action plan consisted of the installation and operation of two ground water collection trenches. The trenches were installed in 1987 and were designed to intercept the shallow ground water flow from the former tanks area and the downgradient area. One trench, designated the south collection trench, is located just downgradient of the former tank locations, runs in the east-west and north-south directions and drains to a collection

sump located in between the two trench runs. The other trench, designated the north collection trench, is located outside the northwestern corner of the 1975 building addition, runs in the east-west direction, and drains to a collection sump on its east end. Trench locations are depicted on Figures 2-4 and 2-5.

From the two collection sumps, the ground water is pumped via overhead piping which runs through the manufacturing building to the IWT plant. The impacted ground water is then treated at the IWT plant prior to discharge through Outfall 003 under SPDES. Operation of the oil/water collection system has been ongoing since approximately 1987.

4.1.4. Surface impoundment closure

In 1989, the two existing surface impoundments located north of the facility buildings were closed under a RCRA closure and post-closure monitoring program. The closure program consisted of the removal and disposal of impacted sediment from the two impoundments. Facility records do not indicate whether sediment from the portion of impoundment #1 which was covered by the 1975 building addition was removed.

Surface Impoundment #2 was backfilled with clean soil, regraded, and covered with a soil layer and vegetative seeding. Impoundment #1 was backfilled with clean soil and soil containing PCBs at concentrations measured up to 40 mg/kg from the Meadowbrook/Hookway site in Syracuse, New York, regraded, and covered with 1 ft clay, 1.5 to 2 ft soil, and vegetative seeding. The post-closure monitoring program consisted of the installation and routine sampling and analysis of ten ground water monitoring wells near the impoundments. Until September 25, 1997, the effective date of the Order, the ground water monitoring program was conducted quarterly. The Order, which supersedes the requirements of the post-closure monitoring program, requires semi-annual monitoring.

4.1.5. Ley Creek relief interceptor sewer area IRM program

As discussed in Section 1, in 1991, Onondaga County installed a new sanitary sewer within the right of way located on Factory Avenue along GM's northern property boundary. During installation of this sewer line, a concern was noted with respect to soil and ground water quality in this general area. In response, GM entered into a Consent Order with NYSDEC to develop and implement an IRM program to address soil and ground water potentially impacted by PCBs present along the proposed location of the new sewer line. The IRM work plan (O'Brien & Gere Technical Services 1991) called for the temporary stockpiling of impacted soil on GM property and the

installation and operation of a temporary ground water treatment system to treat excavation water which may have been impacted by PCBs. A soil boring program performed prior to the sewer installation indicated a localized area of concern near Outfall 003, as discussed in Sections 2 and 3. The concentrations of PCBs detected within soil in this area were suspected to be related to the former wastewater discharge swale from the facility. The project was performed from approximately June to December of 1991. Soil excavated by Onondaga County's subcontractor was stockpiled in lined storage cells on GM property pending characterization and disposal. The temporary ground water treatment system was constructed on GM's property near the sewer work area. The temporary treatment system processes consisted of a primary settling tank, followed by a rotary drum vacuum filter (RDVF) and granular activated carbon towers and a final effluent holding Treatment operations were performed throughout the project, sometimes on a 24-hr basis. Upon OCDDS approval, treated water was batch discharged to the OCDDS POTW system, in accordance with the NYSDEC-approved work plan. Ground water treatment operations were completed by the end of 1991, and the treatment system was dismantled in 1992.

Soil excavation activities were performed in conjunction with the installation of sheet piling and bentonite mixture cut-off walls at designated perimeter locations. The cut-off walls were designed and installed by Onondaga County and its subcontractors. Installation of the sheet piling was performed by GM and its subcontractors. Between June 17 and 28, 1991, soil was excavated in accordance with the IRM work plan.

The soil which was generated by the sewer line installation activities in the IRM work area was stockpiled on GM property in lined storage cells. Two storage cells were constructed, one located in the northwest corner of the property (large cell) and one in the north central portion of the property (small cell). The small cell, which actually consisted of three smaller cells, was used to store the more highly impacted soil, while the large cell was used to store lower concentrations of PCBs. The storage cells were constructed using an approximate 3 ft high by 5 ft wide earthen berm along the cell perimeter and a 20 mil PVC liner. The floor of each cell was sloped to a central collection point to facilitate the collection of precipitation runoff. Precipitation runoff collected during the project was pumped to the temporary ground water treatment system for treatment and discharge.

Soil disposal operations were performed during 1991 and early 1993. In July 1991, the small cell was closed and disassembled. Closure of the cell consisted of removal and disposal of the impacted soil and PVC debris.

Approximately 1544 tons of this material were disposed of at the Chemical Waste Management (CWM) Model City Landfill in Model City, New York.

Confirmation sampling was performed in the small cell project work area following the soil removal activities. The confirmation sampling program, performed in accordance with the approved IRM work plan, indicated concentrations below the IRM cleanup level of 10 mg/kg PCBs, as discussed in Section 3. Analysis of selected soil samples was also performed for total and TCLP chromium. The results of this analysis indicated levels of chromium ranging from 48 to 1200 mg/kg. TCLP testing indicated concentrations of chromium below the method detection limit of 0.5 mg/L.

In August 1991, additional soil was excavated during the sewer line project. This additional soil was stored in the large cell. A smaller cell was also constructed to store more highly impacted material and diatomaceous earth from the RDVF system. These cells were covered with 20 mil PVC membrane to minimize precipitation runoff from contacting the soil. Following completion of the excavation activities, GM implemented a routine inspection program to monitor the condition of the cells during the interim storage period.

In March 1993, and from September to October 1993, approximately 15,363 tons of PCB-impacted soil from the cells was transported and disposed of at either CWM or at the United States Pollution Control, Inc. (USPCI) Grassey Mountain Landfill in Clive, Utah. Due to high moisture content, the soil from the small cell to be shipped to CWM was stabilized with a 3:1 ratio of kiln dust prior to loading onto CWM's trucks. Confirmation soil sampling performed in the footprint of the large cell after soil removal indicated concentrations of PCBs below 10 mg/kg. This sampling included the collection and analysis of ten surface soil samples from the former footprint of the cell.

A separate portion of the IRM activities involved the disposal of soil which Onondaga County had stored at its Ley Creek Transfer Station located on Seventh North Street. In response to concerns over the potential for this soil to be impacted by PCBs, GM performed a sampling and analysis program. Sixty-six soil samples (one per truckload which had been placed there) were collected and analyzed. The results indicated that the soil contained PCB concentrations less than 50 ppm. However, in October 1993, GM elected to load, transport and dispose of this soil at CWM Model City Landfill. During the project, approximately 1564 tons of soil was disposed of at CWM. Confirmation soil sampling, which consisted of the collection and analysis of six surface soil samples and subsequent analysis for PCBs, indicated non-

detectable levels of PCBs, thereby confirming that the impacted material had been removed.

4.2. Decommissioning activities

In November 1995, at the request of counsel, O'Brien & Gere completed a facility assessment for the Former IFG Facility. Although the resulting report is a privileged and confidential, prepared at the request of counsel document, the information contained in the report is summarized here and was used to identify facility decommissioning needs. The Facility Assessment identified areas of environmental concern relative to the deactivation of the facility structures and equipment. Based on the results of the Facility Assessment, bid specifications were developed by O'Brien & Gere, and GM began deactivation operations in May 1996 using outside contractors.

Deactivation activities, described in further detail below, included coal pile removal, trench drain cleaning, tank removal/closure, surface cleaning, and piping removal. Wastes associated with the deactivation activities were collected and managed by the contractor and disposed by GM. Wastewater generated during cleaning and decontamination was treated at the IWT plant at the facility. In accordance with the PCB Spill Cleanup Policy under the Toxic Substances Control Act (TSCA), PCB cleanup criteria for the deactivation program are $10~\mu g/100~cm^2$ for surface wipe samples or $100~\mu g/100~cm^2$ for surface wipe samples in areas to be encapsulated.

In December 1995, O'Brien & Gere developed Cleaning Project No. 1 bid specification for the deactivation of the coal pile area, decontamination of the coal silos, deactivation of a 300 gallon solvent tank, flushing of facility process sewers, and decontamination of small areas of concrete floor. Marcor Environmental was awarded the project in May 1996 and the deactivation activities were completed by June 1996. Coal was removed from the coal pile area/bulk handling building and from the coal silos and tunnel. Upon removal of the coal from the silos and tunnel, surfaces were decontaminated to remove surficial grime. Oil contained in the powerhouse compressor trench drains was removed, and the trenches were decontaminated using PCB surface cleaning procedures. Upon completion of decontamination, confirmatory wipe samples were collected, and the results indicated PCB concentrations below the cleanup criteria. The 300 gallon solvent tank located in the paint room was drained, cleaned, flushed and removed along with associated piping. PCB surface cleaning was

conducted in the paint mix room, the paint storage room and at the loading dock to remove oil and residue from concrete surfaces. Upon completion of decontamination, confirmatory wipe samples were collected from each area, and the results indicated PCB concentrations below the cleanup criteria. The 12,000 gallon caustic concrete tank associated with the wastewater treatment operation was cleaned and permanently closed in place.

In July 1996 O'Brien & Gere prepared a surface decontamination specification for the removal of dust, oil and grime from approximately 750,000 sq. ft. of concrete floor and above floor (structural steel, ductwork, piping, walls, etc.) surfaces. The specification detailed the decontamination of these surfaces to meet the aforementioned PCB cleanup criteria. In March 1997, Smith Technologies Corporation (Smith) was awarded the surface cleaning project at the facility and observation of field activities was conducted by O'Brien & Gere. In September 1997, the project was placed on hold until contract negotiations between Smith and GM were completed.

Based on a bid specification prepared by O'Brien & Gere, GM solicited proposals to perform deactivation of several systems at the facility. The specification covered the following:

- Surface cleaning
- Removal of several hundred linear feet of process oil piping
- Deactivation of the oil reclamation system including the storage tanks
- Deactivation of the emulsion filtering and transfer system
- Decommissioning of the paint mix room including mixing vessels
- · Cleaning of the powerhouse floor drains and associated piping
- Demolition of the fly ash hopper
- · Decontamination of the mold storage building
- Decontamination of the glycol pumping station
- Abatement of damaged asbestos-containing material in the main manufacturing building.

Decontamination/decommissioning activities continued in 1999 as an IRM under the Consent Order. These activities were designated the Phase 1 and Initial Phase 2 IRMs. Generally, the IRMs consisted of cleaning floors and aboveground surfaces, cleaning and dismantling various process systems, and removing residue from various facility sumps and drains. These activities were conducted in accordance with the Phase 1 and Initial Phase 2 IRM Work Plans, the Consent Order (including the Redevelopment Addendum, effective November 23, 1999), and the Stipulation between GM and NYSDEC (effective August 23, 1999) and are documented in the Phase 1/Initial Phase 2 Certification Report (O'Brien & Gere 2000b). As of April 2000 the decontamination/deactivation activities continue as the Phase 2 IRM.

4.3. Sewer televising IRM

A sewer televising IRM is planned to evaluate the integrity of the storm sewer leading to Outfall 003, the oil/water collection sumps in the manufacturing building and their associated piping. Cleaning of the sumps and sewer lines to facilitate televising will also be conducted as part of this IRM. The IRM is being implemented to gain a better understanding of potential sources of contamination such as potential ground water infiltration and/or residues in the storm sewers. The sewer televising IRM is described in the Sewer Televising IRM Work Plan (O'Brien & Gere 2000c).

5. Remedial investigation conclusions

Detected concentrations of constituents in site media are summarized in figures included in Appendix C, with exceedances of screening levels for soils and standards for ground water highlighted. In addition, detections above screening levels in soils and standards in ground water are depicted on Figures 3-5 through 3-11. The following conclusions were drawn from the site data and evaluations documented in Sections 1 through 4 of this report:

Hydrogeology

- The site geology from the surface consists of fill (1 to 16 ft thick), glaciolacustrine deposits (7 to 28 ft thick) and lodgement till which is underlain by a red shale bedrock. The glaciolacustrine unit is divided into upper, middle, and lower zones. The middle glaciolacustrine zone contains greater amounts of silt and clay than either the upper or lower zones. The glacial till, which underlies the glaicolacustrine unit, varies in elevation across the site and generally slopes to the northeast.
- Ground water is typically encountered from 3 to 13 ft below grade. The unconfined overburden aquifer comprises the saturated portions of the fill and the glaciolacustrine unit. The overburden aquifer is divided into shallow and deep zones. Beginning near the northern boundary of the manufacturing building, the depth to till increases. As a result, the aquifer thickness increases and both shallow and deep ground water zones are present. The deep aquifer is not present in the southern portion of the property due to the shallow depth of the till.
- In the northern portion of the site, the shallow and deep overburden ground water zones are separated by a zone of higher clay content. This zone likely limits the downward migration of VOCs north of the manufacturing building and northern property area.
- Ground water in the shallow and deep overburden aquifer zones flows northeast toward Ley Creek. The shallow overburden ground water (upper 15 ft of saturated overburden) flow direction converges in the southwest property area and northeast property area likely due to storm drain effects.

137

- In the shallow overburden aquifer zone, the horizontal hydraulic conductivity values range from 7.51 x 10⁻³ ft/day to 1.76 ft/day. The estimated ground water velocity in the shallow zone varies from 0.07 to 16.4 ft year. The quantity of ground water discharging along the downgradient boundary in the shallow zone is estimated to range from 15 to 3553 gal/day.
- In the deep overburden aquifer zone, the horizontal hydraulic conductivity values range from 4.25×10^{-2} to 3.12 ft/day. The estimated ground water velocity in the deep overburden aquifer zone ranges from 0.44 to 32.5 ft/day and the quantity of ground water discharging along the downgradient boundary in the deep zone is estimated to range from 64 to 4667 gal/day.
- Vertical permeability/hydraulic conductivity values of the glaciolacustrine unit range up to three orders of magnitude lower than horizontal values, which suggests that horizontal ground water flow is the preferential flow path. This conclusion is consistent with the varved and fine grained nature of the glaciolacustrine deposits.
- An upward flow potential exists between the upper glaciolacustrine deposits and the underlying till. This information suggests that the lodgement till layer behaves as an aquitard in the vicinity of the site.

Soil. The following conclusions related to data gaps identified during completion of the Final 1999 Supplemental RI Work Plan are discussed as follows:

• Six soil borings (OBG-TB-1, OBG-TB-4, OBG-TB-5, OBG-TB-14, OBG-TB-15, and OBG-TB-19) were installed immediately upgradient of oil/water collection sumps 2, 3, 6, 7 and 8 to evaluate whether the bedding materials associated with the inactive storm sewer lines leading to these sumps are a contaminant pathway beneath the manufacturing building. PCBs, VOCs, SVOCs, and site related metals were detected in these borings; however, only PCBs (oil/water collection sump 7), TCE (oil/water collection sump 3), benzo(a)pyrene (oil/water collection sump 8), nickel and zinc (oil/water collection sumps 2, 3, 6, and 7) and copper (oil/water collection sumps 7 and 8) were detected at concentrations above the respective NYSDEC TAGM 4046 screening levels. These data suggest that some migration may have occurred in the bedding material associated with the inactive storm sewers leading to oil/water collection sumps 2, 3, 6 and 7.

- NAPL screening was performed on eight soil borings (OBG-TB-2, OBG-TB-3, OBG-TB-6, OBG-TB-7, OBG-TB-08, OBG-PZ-4, OBG-PZ-5, and OBG-PZ-6) installed along the abandoned lines leading to oil/water collection sumps 1 and 5. The NAPL screening was intended to evaluate the presence of PCB LNAPL. With the exception of the screening performed on three borings (OBG-PZ-4, OBG-PZ-5, and OBG-PZ-6) along the abandoned line leading to oil/water collection sump 5, no positive UV fluorescence was observed. No floating NAPL was observed on ground water in the piezometers completed at these three locations (OBG-PZ-4, OBG-PZ-5, and OBG-PZ-6), indicating that no measurable LNAPL is present on ground water in the vicinity of the abandoned line leading to oil/water collection sump 5.
- VOCs (predominantly TCE) extend down to at least 16 ft below the floor
 of the manufacturing building in the vicinity of the paint room. TCE was
 detected above the NYSDEC TAGM 4046 screening level in eight of ten
 samples collected in the vicinity of the paint room.
- A total of five surface soil samples were collected in the vicinity of the general storage area located in the southeast property area. PCBs, SVOCs, and metals were detected above the NYSDEC TAGM 4046 screening levels in these samples. The detected concentrations are indicative of residual contamination, possibly associated with the storage of equipment in this area.
- Two soil borings (OBG-TB-22 and OBG-TB-23) were installed beneath
 the parking lot in the southeast property area to evaluate subsurface
 conditions in this area. SVOCs were detected in one sample collected
 from OBG-TB-22 at concentrations above the NYSDEC TAGM 4046
 screening levels. Metals were detected at concentrations above the
 NYSDEC TAGM 4046 screening levels at both locations.
- Two soil borings (OBG-TB-30 and OBG-TB-38) were installed to evaluate the presence of contamination in the vicinity of the former TCE storage area located in the IWT plant area. Though 1,1-DCA, 1,2-dichlorobenzene, methylene chloride, TCE, and cis-1,2-DCE were detected in these borings, none of these VOCs were detected above the NYSDEC TAGM 4046 screening levels in these samples, indicating that contamination to subsurface soil from historical TCE storage in this area is not evident.
- Surface soil in the IWT plant area was found to contain PCBs, SVOCs, and metals above the NYSDEC TAGM 4046 screening levels. Generally, the data indicate low level contamination in surface soil,

- possibly associated with IWT plant operations. The maximum PCB detection (3,900 mg/kg) appears to be isolated (the next highest PCB detection was 14 mg/kg).
- Dioxins and furans detected in surface soil in the vicinity of the IWT plant were below the NYSDEC TAGM 4046 screening level, and are therefore not of concern.
- Four borings were installed during the 1998/1999 Supplemental RI to investigate two former fuel tanks believed to be in the vicinity of the IWT plant. Following installation of the borings, a copy of the original tank closure report was located. The report showed that the tanks were in fact located in the vicinity of the powerhouse (east of the area investigated in 1998/1999) and that confirmatory samples collected at the time of the closure showed no detections, indicating clean closure of the fuel tanks. A copy of the closure report is included as Exhibit F.
- Soil boring OBG-TB-24 was installed to evaluate subsurface soil conditions beneath the parking lot in the northeast property area. SVOCs and metals were detected above the NYSDEC TAGM 4046 screening levels in this boring.
- Four surface soil samples (SS-99-14, SS-99-15, SS-99-16, and SS-99-17) were installed to evaluate surface soil in the area east of the administration building. SVOCs and metals were detected above the NYSDEC TAGM 4046 screening levels in each of these samples. PCBs were detected above the NYSDEC TAGM 4046 screening level in one of the surface soil samples (SS-TB-17).
- The former swale was delineated during the trench activities completed in the northern property area. The former drainage swale was visually evident as a black silt layer mixed with some organic matter. The delineation of the former swale is depicted on Figures 3-11A, C, and E. Chlorobenzene was the only VOC detected in samples collected from the former drainage swale. PCBs and metals were also detected above NYSDEC TAGM 4046 screening levels in samples collected from the former drainage swale area.
- Based on the results of boring OBG-TB-29, fill consisting of silt, sand and gravel, was encountered. Zinc was the only constituent detected above the NYSDEC TAGM 4046 screening level. It does not appear that impoundment material extends beyond the limits of closed surface impoundment #1.

- The contents and limits of the on-site landfill were investigated during trenching activities. Revised limits of the on-site landfill are depicted on Figure 1-10. Paint sludge, fly ash, and sludge were observed during the trenching activities. The northern extent of the landfill was not encountered during the trenching activities. Trenching to the north was stopped at the fence line. The approximate depth of fill encountered during the trenching activities was 8 ft below surface.
- Four soil borings (OBG-TB-25, OBG-TB-26, OBG-TB-27, and OBG-TB-28) were installed to evaluate general fill activities in the northern property area. Fill was observed to be 8, 2, 6, and 8 ft thick, respectively, at these locations. PCBs and metals were detected above the NYSDEC TAGM 4046 screening levels in these borings.
- PCBs, SVOCs, and metals were detected above NYSDEC TAGM 4046 screening levels in soil in the vicinity of the storage pad located in the southwest property area, possibly as a result of storage pad activities.
- The highest SVOC detections at the site were detected in one sample collected from the vicinity of the transformer/switch house. PCBs and metals were not detected above NYSDEC TAGM 4046 screening levels in the vicinity of the transformer/switch house.
- NAPL screening performed on borings located in the IWT plant area, the northeast property area, the northern property area, and the southwest property area showed no positive identification of NAPL.

The following text provides a summary of the detected constituents in each area. The discussion is provided by constituent group, in the following order: PCBs, VOCs, SVOCs, dioxins/furans, and metals. Generally, PCBs were present above the NYSDEC TAGM 4046 screening level of I mg/kg in surface soil in the vicinity of the general storage area located in the southeast property area, the IWT plant area, the on-site landfill and the former storage cell located in the northern property area, and the southwest property area. PCBs were present in subsurface soil above the 10 mg/kg subsurface soil NYSDEC TAGM 4046 screening level beneath the manufacturing building, at one location in the IWT plant area, in the northeast property area, in the on-site landfill, the general fill area, the former drainage swale area, and the southwest property area. Specifically, detections of PCBs above NYSDEC TAGM 4046 screening levels were located in the following areas:

141

Manufacturing building

PCBs were detected above the screening level of 10 mg/kg in soil beneath the manufacturing building in the vicinity of the abandoned underground oil hydraulic collection sumps and tanks, the paint room, and the abandoned storm sewer trenches beneath the facility floor. Concentrations above the screening levels generally ranged from 13 to 47 mg/kg, with the exception of three samples, OBG-TB-19, BH-35, and BH-37. Sample OBG-TB-19, located in the vicinity of oil/water collection sump 7 (near the paint storage room) contained 140 mg/kg PCBs. Samples BH-35 and BH-37 contained 2700 mg/kg and 4300 mg/kg, respectively. The results in samples BH-53, BH-54, BH-38, and HA-6 show that the PCB concentration in BH-37 is localized. Similarly, results in samples BH-18, BH-32 and BH-36 indicate that the PCB concentration in BH-35 is also localized. NAPL field screening was positive in three sample locations along oil/water collection sump 5 line; however, NAPL was not measured in the piezometers completed at these locations.

Southeast property area

 PCBs were detected above the screening level of 1 mg/kg in one surface soil sample collected from the northern side of the general storage area at a concentration of 8 J mg/kg.

IWT plant area

- PCBs were detected above the screening level of 1 mg/kg in surface soil samples collected north of the clarifiers, south of the chromium water conditioning tanks, and in the vicinity of the former liquid waste incinerator. Generally concentrations above screening levels ranged from 2 to 14 mg/kg, with the exception of surface soil sample SS-99-26, that showed a detection of 3900 mg/kg. Based on data from surface soil samples SS-99-25 and SS-99-27, collected east and west of SS-99-26, the maximum detection appears isolated.
- PCBs were detected above the screening level of 10 mg/kg in one subsurface soil sample (OBG-TB-44) at 190 mg/kg from the 2 to 4-ft interval, in the vicinity of the former fuel oil tanks

Northeast property area

 PCBs were detected above the screening level of 10 mg/kg in one subsurface soil sample (OBG-TB-37) collected adjacent to the administrative building in the northeast property area at 24 J mg/kg in the 12 to 14-ft interval. PCBs were detected above the screening level of 1 mg/kg in one surface soil sample (SS-99-17) collected adjacent to the manufacturing building in the northeast property area at 7 mg/kg.

Northern property area

- PCBs were detected above the screening level of 1 mg/kg in six surface soil samples collected from the on-site landfill area showed detections above screening levels. With the exception of one sample, concentrations ranged from 3 to 200 mg/kg. PCBs were detected at 2,600 mg/kg in SS-99-06, located near the property boundary in close proximity to the NMPC property.
- PCBs were detected above the screening level of 10 mg/kg in subsurface soil samples collected during the trenching activities in the on-site landfill area showed detections of PCBs above screening levels ranging from 17 mg/kg to 1,500 mg/kg. The highest concentrations corresponded to samples (T01-1, T01-2, T01-3, T02-3, and T04-1) of paint sludge, other sludge, or stained material.
- PCBs were detected above the screening level of 10 mg/kg in one subsurface soil sample (OBG-TB-28) in the general fill area showed a PCB detection of 44 mg/kg in the 12 to 14-ft interval. This sample is also located in the former swale area.
- PCBs were detected above the screening level of 10 mg/kg in subsurface soil samples collected during the trenching activities in the former drainage swale showed concentrations of PCBs above screening levels ranging from 84 to 6800 mg/kg. The highest concentrations (T06-1, T08-2, T12-1, and T12-2) corresponded to samples of organic material having an oily odor, sludge like soil, and black silts having a paint thinner odor.
- During the trench activities the former drainage swale was visually
 evident as a black silt layer that contained some organic matter, and the
 approximate location of the former drainage swale is shown in Figure 311. The higher PCB concentrations are associated with the black silt
 layer.

Southwest property area

- PCBs were detected above the screening level of 1 mg/kg in three surface soil locations in the vicinity of the former storage pad at concentrations ranging from to 2 to 20 mg/kg.
- PCBs were detected above the screening level of 10 mg/kg in one subsurface soil location in the vicinity of the former storage pad at concentrations up to 44 mg/kg in subsurface soil.

Generally, VOCs detected above the NYSDEC TAGM 4046 screening levels were limited to toluene, xylene, ethylbenzene, TCE and cis-1,2-DCE.

The VOCs toluene, xylene, and ethylbenzene were detected above NYSDEC TAGM 4046 screening levels in subsurface soil in the vicinity of the former thinner tanks area, the on-site landfill located in the northern property area, and the former compactor area (west of the manufacturing building). TCE and cis-1,2-DCE were present above the screening levels in soil beneath the manufacturing building in the vicinity of the paint room, and in the northern property area in the vicinity of the on-site landfill. Specifically, VOC detections above screening levels were located in the following areas:

Manufacturing building

• TCE and cis-1,2-DCE were detected above the screening levels in soil beneath the manufacturing building in the vicinity of the paint room. TCE detections above screening levels generally ranged from 0.73 to 14 mg/kg, with the exception of three samples, BH-46, BH-9 and BH-47. At these locations, TCE was detected at concentrations ranging from 47 to 150 mg/kg. These higher concentrations were located between the paint room and the abandoned line leading to oil/water collection sump 6, located south of the paint room.

Former thinner tanks area

- Toluene, ethylbenzene and xylene were detected at concentrations up to 720, 61 and 330 mg/kg, respectively, in subsurface soil in the former thinner tanks area. Generally, these concentrations were from samples collected from between 9 and 15 ft below grade, with the exception of samples collected from T-13, T-15, T-21, and HA-1 where detected concentrations above the screening levels were detected at shallower intervals of 5 to 7 ft below grade.
- Toluene and xylene are present in subsurface soil in the vicinity of the former compactor area (HA-1), located in the former thinner tanks area.

Northeast property area

 TCE was detected marginally above the screening level in one subsurface soil sample in the northeast property area.

Northern property area

- VOCs including TCE and cis-1,2-DCE were detected in one sample close to the property boundary west of the estimated limits of the on-site landfill.
- VOCs including xylene and ethylbenzene were also detected in subsurface soil in the on-site landfill area at concentrations above screening levels ranging from 4 to 210 mg/kg, and 7.8 to 36 mg/kg. These concentrations were detected in samples of black sandy material (possibly ash) and paint sludge.

• Xylene and ethylbenzene were also detected in T-30, a location downgradient of the former thinner tanks area.

Southwest property area

• TCE was present in subsurface soil in the southwest property area.

SVOCs were detected above the NYSDEC TAGM 4046 screening levels in surface soil samples collected from the vicinity of the former general storage area located in the southeast property area, the IWT plant area, northeast property area, the vicinity of the on-site landfill located in the northern property area, and the transformer/switch area in the former tanks area. With the exception of one sample collected in the vicinity of the transformer/switch area (where concentrations ranged up to 1200 mg/kg), and to a lesser degree the IWT plant area (where concentration ranged up to 18 mg/kg), SVOCs in surface soils were only marginally above screening levels. SVOCs were also detected above screening levels in subsurface soil beneath the manufacturing building, beneath the parking lot in the southeast property area, in the vicinity of the transformer/switch area located in the former thinner tanks area, the northeast property area, the vicinity of the onsite landfill in the northern property area, and the southwest property area. Similar to surface soils, detections were generally only marginally above the screening levels, with the exception of one surface soil location in the vicinity of the transformer/switch area (where concentrations ranged up to 1200 mg/kg). Specifically, SVOCs were detected above screening levels in the following areas:

Manufacturing building

 Benzo(a)pyrene and phenol were detected above the screening levels in soil beneath the manufacturing building in the vicinity of the abandoned oil/water collection sump 8.

Southeast property area

- SVOCs were detected above screening levels in surface soil in the vicinity of the general storage area.
- SVOCs were detected above screening levels in subsurface soil beneath the parking lot.

IWT plant area

 SVOCs were detected above screening levels in surface soil samples collected south of the former chromium water conditioning tanks (SS-99-22 and SS-99-23).

145

- SVOCs were detected above screening levels in surface soil south of the former liquid waste incinerator (SS-99-24, SS-99-26, SS-99-2).
- SVOCs were detected above screening levels in general IWT plant area surface soil west and south of the clarifiers and north, west and south of the IWT plant building (SS-99-28, SS-99-29, and SS-99-30).

Former thinner tanks area

- SVOCs were detected above screening levels in one subsurface soil location (OBG-TB-46) in the vicinity of the transformer/switch house.
- SVOCs were detected above screening levels in surface soil in two samples in the vicinity of the transformer/switch house.

Northeast property area

 SVOCs were detected above screening levels in surface and subsurface soil.

Northern property area

- Benzo(a)pyrene, benzo(b)fluoranthene, and di-n-octyl phthalate were detected above the screening levels in surface soil in the vicinity of the on-site landfill.
- 2-Methylphenol, 4-chloro-3-methylphenol, and phenol were detected above screening levels in subsurface soil in the vicinity of the on-site landfill.

Southwest property area

 SVOCs were detected above screening levels in surface and subsurface soil.

Site-related metals were detected above the NYSDEC TAGM 4046 screening levels in subsurface soil beneath the manufacturing building, southeast property area, IWT plant area, former thinner tanks area, northeast property area, and the northern property area. Metals were also detected above screening levels in surface soil in the southeast property area, IWT plant area, former thinner tanks area, northeast property area, northern property area, and the southwest property area. Specifically, metals were detected above screening levels in the following locations:

Manufacturing building

 Chromium, nickel, copper, and zinc were detected above the screening levels in soil beneath the manufacturing building at locations adjacent to former electroplating sumps. Copper, nickel, and zinc were detected above the screening levels in soil in the vicinity of the former oil/water collection sumps.

Southeast property area

 Arsenic, copper, nickel, zinc, beryllium and iron were detected above the screening levels in surface soil in the vicinity of the general storage area located in the southeast property area. Zinc was also detected above the screening level in the parking lot located in the southeast property area.

IWT plant area

 Arsenic, chromium, copper, lead, nickel, zinc, beryllium and iron were detected above NYSDEC TAGM 4046 screening levels in soil in the vicinity of the IWT plant.

Former thinner tanks area

 Nickel, zinc, beryllium, and iron were present above screening levels in soil in the former thinner tanks area.

Northeast property area

- Copper, zinc, beryllium and iron were present above screening levels in soil in the northeast property area.
- Chromium and nickel were present above screening levels in soil in the vicinity of the acid-alkali bunker, located in the northeast property area.

Northern property area

Arsenic, chromium, copper, nickel, zinc, barium, mercury, beryllium, iron, and selenium were present above NYSDEC TAGM 4046 screening levels in soil in the northern property area.

Southwest property area

- Beryllium and lead were detected above the NYSDEC TAGM 4046 screening levels in one surface soil sample.
- Concentrations of site-related metals chromium, copper, nickel, and zinc also exceeded the screening levels in both surface soils and subsurface soils.

Samples from five surface soil locations from the vicinity of the former liquid waste incinerator (IWT plant area) were analyzed for chlorinated dioxins and furans. Chlorinated dioxins and furans were detected in each of the samples. Calculated 2,3,7,8-TCDD equivalents were below the NYS TAGM 4046 screening level for 2,3,7,8-TCDD.

Samples collected from historical locations were also analyzed for oil and grease. Oil and grease were detected in the following areas:

- SAE 30w oil residue is present in soil beneath the manufacturing building in the vicinity of former underground hydraulic oil sumps and tanks and an abandoned storm sewer trench.
- Oil & grease is present in subsurface soil in the vicinity of the IWT plant.

Ground water

- Toluene, ethylbenzene, and xylene are present in facility ground water at
 concentrations higher than NYS Class GA standards, generally in the
 vicinity of and downgradient of the former thinner tanks area. Ground
 water in this area is recovered for IWT plant treatment and discharge
 through Outfall 003 under the September 25, 1997 SPDES permit.
- The BTEX plume has been defined to the east by reference to OBG-PZ-3 and OBG-PZ-7 where no BTEX was detected, to the west by wells T-6 (located southwest of the former thinner tanks) and T-7 (located west of the former thinner thanks), and to the south by well T-1 where 9 µg/L of BTEX was detected. The northern extent is likely limited by the northern recovery trench, because BTEX was not detected in well TB-33(located downgradient of the recovery trench) and wells OBG-6S and OBG-9S (located at the northern property boundary). The lateral extent of the BTEX plume is illustrated on Figure 3-13.
- Chlorinated hydrocarbons, consisting mainly of TCE and cis-1,2-DCE, are present at various locations at the facility at concentrations above NYS Class GA standards. The highest concentrations appear to originate in the vicinity of the paint room and migrate in the deep ground water zone in lenses above the till to the north/northeast. The extent of VOCs above the NYS Class GA standards in the north and northeast deep overburden ground water has not been completely defined.
- Monitoring well OBG-15, located in the southwest property area immediately adjacent to the manufacturing building and downgradient of the former container storage pad and former tank farm building (mold storage building), contained 277 μg/L of total VOCs, primarily TCE. The information suggests that past activities the mold storage building may be a source of VOCs.
- The likely source of VOCs detected at MWI-3 is near the paint room as evidenced by the elevated VOCs and PID readings, as well as the

- reported odors at soil borings BH-47, BH-49, and BH-9. The source of the chlorinated VOCs in this area is likely the paint room area.
- VOC detections were noted at OBG-10S, MW-2S and W-11S indicating that VOCs in the shallow zone are limited to the northern side of the manufacturing building and administration building.
- Along the northern property boundary, adjacent to Factory Avenue, no VOCs were detected in the shallow ground water zone which indicate that no VOCs are migrating off-site in the shallow ground water zone.
- No VOCs were detected at MW-1S, MW-3S, MW-4S and MW-5S located around closed surface impoundments #1 and #2. These data, in conjunction with the low concentration detected at MW-2S (2 μg/L of total VOCs), indicate that the former surface impoundments are not a source of VOCs.
- Since no significant concentrations of VOCs were detected in the shallow ground water zone, it can be concluded that the source of VOCs to the deep ground water zone is from the manufacturing building, likely near MWI-3 and near soil borings BH-47, B-49, and B-9. The VOCs likely migrate vertically downward in this area and then migrate horizontally within the lenses of the deeper glaciolacustrine unit. The deeper silt and fine sand layer reflects the topography of the till layer which slopes to the northeast toward OBG-6D. Field screening data further suggest that VOC migration is limited to small lenses. The northeastern and eastern extent along the axis of the plume is not defined, as the total VOCs at OBG-6D was 68,400 μg/L and no deep wells exist northeast of OBG-6D.
- Total VOC concentrations in monitoring wells located west of OBG-6D are significantly lower, ranging from 12 μg/L to 3,250 μg/L. The source of VOCs in the northwestern area may originate from the area of the manufacturing building.
- The source of VOCs at WT-3R, located in the southwest property area, is unknown.
- No metals were detected at concentrations above the NYS Class GA standards in the 42 wells sampled in 1999.
- At the Ley Creek PCB Dredgings site, the only VOC detected was methylene chloride. This finding is suspect because it is not consistent with ground water chemistry at the site.

- No DNAPL was observed in deep monitoring wells located in the northern property at the Former IFG Facility.
- Chlorinated hydrocarbons, consisting mainly of TCE and cis-1,2-DCE, are present at various locations at the facility at concentrations above NYS Class GA standards. The highest concentrations appear to originate in the vicinity of the paint room and migrate in the deep ground water zone in lenses above the till to the north/northeast. The extent of VOCs above the NYS Class GA standards in the north and northeast deep overburden ground water has not been completely defined.
- PCBs are present in ground water at concentrations above NYS Class GA standards in the vicinity of the on-site landfill, the former surface impoundments, the drainage swale, Ley Creek PCB Dredgings site and the abandoned sewer associated with oil/water collection sump 5.

Outfall 003 and 004 Storm water

- TCE and PCBs (Aroclors 1242 and 1248) are present in the Outfall 003 discharge at concentrations below previous SPDES Consent Order effluent limits, but above the September 25, 1997 SPDES permit final action level for TCE (to become effective three years from the effective date of the Order and SPDES permit) and final effluent limits for PCBs (to be achieved within three years of the effective date of the Order and SPDES permit).
- Historical data indicated that the main contribution of TCE to the Outfall 003 discharge is on the western side of the facility, in the vicinity of the mold storage building.
- Historical data indicated that the main contribution of PCBs to Outfall 003 is at or upgradient of the southwest corner of the facility.
- Manhole sampling to date has not indicated the source of infrequent detections of PCBs in the Outfall 004 discharge.

Ley Creek Surface water

- No VOCs, SVOCs, or PCBs were detected at concentrations above the NYS Class B surface water standards (where available) during the latest rounds of sampling conducted in 1998 and 1999.
- Aluminum and iron were the only metals detected in surface water above the NYS Class B surface water standards. Cyanide concentrations also exceeded NYS Class B surface water quality standards.

Ley Creek Sediment

- The 1998 sampling event conducted during the Supplemental RI work showed metals in sediment above the NYS sediment screening criteria.
- VOCs, SVOCS, PCBs, and chlorinated dioxins and furans were also detected in 1998. There are no sediment criteria for the majority of these compounds. Where available, criteria were not exceeded.
- When evaluated statistically, 1996 and 1998 sediment data show concentrations of Aroclor 1016, Aroclor 1242, and Aroclor 1248 in Ley Creek sediment downstream of the site are statistically greater than upstream levels. However, the concentrations of metals, SVOCs, and VOCs are statistically equivalent with the upstream sediments.

Fish in Ley Creek

 PCBs were present in fish collected in the vicinity of the Ley Creek Deferred Media. Quantitative conclusions could not be drawn related to the proportionate contribution by the Ley Creek Deferred Media to PCBs in fish due to the tendency of the fish collected to migrate for several miles. Aroclors other than those associated with GM's outfall discharge were detected in fish.

General

 With the exception of the need for additional delineation of VOCs in ground water in the deep overburden ground water at the eastern and northeastern boundaries of the Former IFG Facility, the nature and extent of contamination at the site has been sufficiently evaluated to begin preparation of the Supplemental FS.

References

- Andrews, C., J. Cherry, S. Feenstra, A. Freeze, R. Hennet, S. Papadopulos. 1990. Preliminary Results of the Investigation of the Mobility of PCBs and Fate of PCBs in Ground Water at the Delmont and Grantville Sites, Pennsylvania, Prepared for Texas Eastern Gas Pipeline Company -Houston Texas, June 1990.
- A.T. Kearney, Inc. and DPRA Incorporated. 1989. Visual Site Inspection Summary Report of Solid Waste Management Units at General Motors Corporation, Fisher Guide Division, Salina New York, NY002234440. February 1989.
- Benjamin, Susan, P.E. (NYSDEC). 1997. Telephone communication with Maureen Salanger, P.E. (O'Brien & Gere Engineers, Inc.). June 1997.
- Benjamin, Susan, P.E. (NYSDEC). 1998. Letter to Jim Hartnett (GM) dated March 13, 1998.
- Benjamin, Susan, P.E. (NYSDEC). 1999. Letter to Jim Hartnett (GM) dated September 10, 1999.
- Benjamin, Susan, P.E. (NYSDEC). 2000a. Letter to Jim Hartnett (GM) dated February 22, 2000.
- Benjamin, Susan, P.E. (NYSDEC). 2000b. Letter to Jim Hartnett (GM) dated March 16, 2000.
- Bouwer, H.C. and Rice, R.D. 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells" *Water Resource Research*, V. 12, No. 3, 1976, pp. 423-427.
- Cocciardi, Joseph A. (Joseph A. Cocciardi & Associates). 1991. Letter to Mr. Brad Olin (Memphis Construction). December 9, 1991.

- Cooper, Jack (NYSDEC). 1992. Telephone conversation with Anthony Esposito (O'Brien & Gere Engineers, Inc.) July 27, 1992, Syracuse, New York.
- Creech, Cliff (NYSDEC, Region 7). 1992. Personal communication to Anthony Esposito (O'Brien & Gere Engineers, Inc.). 1992.
- Ecology and Environment Engineering, P.C. 1994. Preliminary Site Assessment; Salina Town Landfill Site. May 1994.
- EDI Engineering & Science. 1985a. Hydrogeological Investigation.
- EDI Engineering & Science. 1985b. Oil and PCB Sampling and Analyses of Portions of Ley Creek, Onondaga County, New York.
- EDI Engineering & Science. 1986a. Phase II Hydrogeological Investigation. February 1986.
- EDI Engineering & Science. 1986b. Solvent Spill Hydrogeological Investigation and Remedial Action Plan. April 1986.
- Fetter, C.W., Jr. 1980. Applied Hydrogeology. Charles E. Merrill Publishing Company.
- Hartnett, James F. (GM). 1996. Letter to Susan Benjamin, P.E. (NYSDEC). November 6, 1996.
- Hartnett, James F. (GM). 1998. Letter to Susan Benjamin, P.E. (NYSDEC). May 18, 1998.
- Hartnett, James F. (GM). 1999a. Letter to Susan Benjamin, P.E. (NYSDEC). August 11, 1999.
- Hartnett, James F. (GM). 1999b. Letter to Susan Benjamin (NYSDEC) dated December 14, 1999.
- Hartnett, James F. (GM). 1999c. Letter to Susan Benjamin (NYSDEC) dated December 14, 1999.
- Hartnett, James F. (GM). 1999d. Letter to Susan Benjamin (NYSDEC) dated December 20, 1999.

- Hartnett, James F. (GM). 2000a. Letter to Susan Benjamin (NYSDEC) dated April 6, 2000.
- Hartnett, James F. (GM). 2000b. Letter to Susan Benjamin (NYSDEC) dated February 2, 2000.
- Kelly, Kevin (NYSDEC). 1989. Letter to James P. Walle (GM) and Barry R. Kogut (Bond, Schoeneck & King). October 13, 1989.
- Kochem, William E. (GM). 1991. Letter to Mr. Robert A. Torba (NYSDEC). December 20, 1991.
- Momberger, G.F. 1997. Field Notes; GM-Fisher Guide; Ley Creek Investigation. May 28, 1987.
- Mozola, A.J. 1938. Contributions on the origin of the Vernon Shale: unpublished M.S. thesis. Syracuse, New York, Syracuse University, pp. 142.
- New York State Department of Environmental Conservation (NYSDEC). 1991. *Analytical Services Protocol*. December 1991.
- NYSDEC. 1992. Biennial Report, Rotating Intensive Basin Studies, Water Quality Assessment Program, 1989-1990, Allegheny River Basin, Lake Ontario Basin, Genesee River Basin, Seneca-Oneida-Oswego Basin, Mohawk River Basin. 1992.
- NYSDEC. 1993. Technical Guidance for Screening Contaminated Sediments. November 1993.
- NYSDEC. 1995. Division Technical and Administrative Guidance Memorandum No. 4046: *Determination of Soil Cleanup Objectives and Cleanup Levels*. April 1995.
- Niagara Mohawk Power Corporation. 1996. Factory Avenue Electric Projects; PCB Sampling and Analysis Report. May 1996.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere) 1987a. Hydrogeologic Investigation of Fill Area Along Ley Creek. April 1987.
- O'Brien & Gere. 1987b. Storm Outfall Assessment. August 1987.
- O'Brien & Gere. 1988. Surface Impoundment Post Closure Ground Water Monitoring Plan. April 1988; updated March 1992c.

- O'Brien & Gere. 1989a Surface Impoundment Closure Ground Water Monitoring Program Report. March 1989.
- O'Brien & Gere. 1989b. Field Investigation; Ley Creek Dredged Material Area. July 1989.
- O'Brien & Gere. 1989c. Storm Sewer Sampling Summary. October 1989.
- O'Brien & Gere. 1990. Letter from Thomas K. Pelis, P.E., to William E. Kochem, Jr. (General Motors). May 25, 1990.
- O'Brien & Gere. 1990b. SWMU status report. October 1990.
- O'Brien & Gere. 1991. Letter from Thomas K. Pelis, P.E., to William E. Kochem, Jr. (General Motors). January 11, 1991.
- O'Brien & Gere. 1992a. Work Plan; Remedial Investigation/Feasibility Study; Ley Creek Dredged Material Area. February 1992.
- O'Brien & Gere. 1992b. Interim Remedial Measure; Ley Creek Relief Interceptor Area. March 1992.
- O'Brien & Gere. 1992. Surface Impoundment Post Closure Ground Water Monitoring Plan. April 1988; updated March 1992c.
- O'Brien & Gere. 1993. Remedial Investigation; Ley Creek Dredged Material Area. September 1993.
- O'Brien & Gere. 1994. Interim Remedial Measure; Ley Creek Relief Interceptor Area. Addendum Report. June 1994.
- O'Brien & Gere. 1996a. Memo to file from James R. Fitch, Jr. May 30, 1996.
- O'Brien & Gere. 1996b. Feasibility Study; Ley Creek Dredged Material Area Site. October 1996.
- O'Brien & Gere. 1997. Remedial Investigation/Feasibility Study; Former IFG Facility (Site No. 7-34-057) and Ley Creek Deferred Media. October 1997.
- O'Brien & Gere. 1999a. Final Supplemental RI Work Plan; Former IFG Facility (Site No. 7-34-057) and Ley Creek Deferred Media. October 1999.

- O'Brien & Gere. 2000a. Analytical Data Summary Report 1999 Sampling Events. Former IFG Facility and Ley Creek Deferred Media. February 2000.
- O'Brien & Gere. 2000b. Phase 1 and Initial Phase 2 IRM Report. March 2000.
- O'Brien & Gere. 2000c. Sewer Televising IRM Work Plan. April 2000.
- O'Brien & Gere. 2000d. Problem Formulation Document Former IFG Facility and Ley Creek Deferred Media.
- O'Brien & Gere Technical Services, Inc. 1991. Interim Remedial Measures; Ley Creek Relief Interceptor Area Work Plan. March 1991.
- Onondaga County. 1991. PCB Soil Sampling figure. November 12, 1991.
- Royal Environmental, Inc. 1999. Work Plan, Cleaning of the Syracuse Facility. May 1999.
- Thomsen Associates and Empire Soils Investigations, Inc. 1983. Hydrogeologic Investigation, Fisher Body Plant, Syracuse, New York. December 1983.
- Thompson, J.H. Geography of New York State. 1966. Syracuse University Press, Syracuse, New York. 1966.
- United States Environmental Protection Agency (USEPA). 1979. Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. USEPA-600/4-82-057.
- USEPA. 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA. Interim Final. Washington, D.C. October 1988.
- Walters, R.W. and R.G. Luthy. 1984. Equilibrium Adsorption of Polycyclic Aromatic Hydrocarbons from Water onto Activated Carbon. Environmental Science and Technology. 18:395-403.
- Weston Services, Inc. 1988a. Surface Impoundment Closure and Post-Closure Plan. April 1988.
- Weston Services, Inc. 1988b. Closure Plan for Drum Storage Area. November 21, 1988.

Weston Services, Inc. 1989. Surface Impoundments Closure Documentation Report and Engineer's Certification Statement. December 1989.

Winkley, S.J. 1989. The Hydrogeology of Onondaga County. Master's Thesis. Syracuse University, Syracuse, New York. 1989.

	Comments	etorm courer transh	storm sewer trench	storm sewer trench	storm sewer trench		storm sewer trench	storm sewer french	storm sewer trench	Stollii sewei liench	storm sewer french	storm sewer treach		storm sewer trench	storm sewer trench	storm sewer trench	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	site ground water	background	background	background	
	Monitoring Well	Ves	ves	yes	yes		yes	yes	yes	968	Ves	ves	3	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
	Installation / Sampling Method	4.25" HSA w/ SS Sampler	0 00 7 401 1130 4	4.25 TISA W SS Sampler	4.25 HSA W/ SS Sampler	4 25" HSA W/ SS Sampler	4 25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler, Shelby tube	4.25" HSA	4.25" HSA w/ SS sampler, Shelby tube, rock core	4.25" HSA	4.25" HSA w/ SS Sampler	4.25" HSA	4.25" HSA w/ SS Sampler	4.25" HSA	4.25" HSA w/ SS Sampler	4.25" HSA	4.25" HSA w/ SS sampler, Shelby tube, rock core	4.25" HSA	4.25" HSA w/ SS sampler, Shelby tube, rock core	4.25" HSA	4.25" HSA w/ SS Sampler, Shelby tube	4.25" HSA	4.25" HSA w/ SS sampler, Sheiby tube, rock core	4,25" HSA	4.25" HSA w/ SS Sampler								
	Analyses		1	ω α	ω (ω ο	٥	0 &	1		8	8	8	8	8	-	1	1	ı	;		J	1	1	-	:	ŀ	1	1	1	ŀ	:	1	1		:	1	1	1	
le Summary.	Intervals Sampled (ft bos)	1		3.0-5.0	4.0-6.0	8.0-10.0	10.42.0	40-60			8.0-10.0	3.0-5.0	5.0-7.0	8.0-10.0	7.0-9.0	£-	1	1	***	81	!	1	-	-	-	-	1				!	1		-	1	:	1	1	-	
allation / Samp	Boring epth (ft bas \$		11	-	10	4	2 0	10	10	10	14	13		10	13	1.1	35	17.5	24.5	9	28	13	24.4	11	23	12.5	36	18	41.2	712	35.5	80 5	36	10	15	10.5	11	23	16.5	
Soil Boring Installation / Sample Summary.	Boring ID	P-1	P-2	P-3	P-4	D.5	2 4	P-7	P-8	P-9	P-10	P-11		P-12	P-13	P-14	W-1D	W-1S	W-2D	W-2S	W-3D	W-3S	W-4D	W-4S	W-5D	W-5S	W-6D	W-6S	W-7D	S/-W	W-8D	W-85	W-9D	W-9S	WT-1	WT-3	U-1S	U-1D	U-2D	
Table 2-1.	Investigation	EDIHI85	EDIHI85	EDIHI85	EDIHI85	FUHIRE	FDIHIRS	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85		EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIHI85	EDIH!85	EDIHI85	EDIHI85	EUHI85	EDIH(85	EDIHIBS	EDIHI85	EDIHI85	EDIHI85	EDIHI85	1	- 1	EDIHI85	0060483

Page 1 of 15

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

	Comments	Outfall 003		Oruffell 003	Odilali 003				Ouffall 003	Outfall 003				Outfall 003				Outfall 003		Outfall 003	Outfall 003					Outfall 003	Ontfall 003		Outfall 003	Administration building area		IWT plant area			IWT plant area									
	Monitoring Well Installed	ou		OU.	2				Ou	OU				01				no		20	DQ.					no	OU	!	ou 	yes A	yes A	yes A	yes A	yes	yes A	yes A	yes A		yes			yes		
	Installation / Sampling Method	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler					4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler				4.25" HSA w/ SS Sampler				4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler					4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler			4.25" HSA w/ SS Sampler		
	Analyses	6	0 0	6	· 6	6	6	. თ	6	6	6	6	6	G	6	6	ග	o (6	6	ග	6	6	თ	6	ග ග	6	6	1	-	-			-	1	1	-		<u>5</u>	<u>.</u>	9,13	9,13	9,13	2
le Summary.	Intervals Sampled (ft bas)	2.0-4.0	6.0-8.0 8.0-10.0	2.0-4.0	4.0-6.0	8.0-10.0	10.0-12.0	12.0-14.0	2.0-4.0	4.0-6.0	8.0-10.0	10.0-12.0	12.0-14.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-12.0	6.0-8.0	8.0-10.0	4.0-6.0	2.0-4.0	4.0-5.5	5.5-7.5	7.5-9.5	9.5-11.5	4.0-6.0 6.0-8.0	6.0-8.0	8.0-9.5	:	-	•		11	-			1		1.5-3.0	3.0-4.5	4.5-6.0	2.0-4.0	4.0-6.0 6.0-8.0	2.00
soil Boring Installation / Sample Summary.	Boring epth (ft bas S			14					5.5	14				14				12	-	10	11.5					10	11.5		တ	12	21.5	10	12	12	23.5	12	25		20			19		
Soil Boring Inst	Boring ID	003-1		003-2					003-3	003-4				003-5				9-800		003-7	003-8	`				003-9	003-10		003-11	WT-6	WT-7	WT-8	6-TW	WT-10-S	WT-10-D	W-11-S	W-11-D		WT-10			WI-11		
Table 2-1.	Investigation	EDI_1186		EDI 1186	1				EDI_II86	EDI_1186				EDI_1186				ED!_1186		EDI 1186	EDI_1186					EDI_1186	EDI 1186		- 11	·	EDI_1186	EDI_1186		EDI_1186	EDI_1186	ll ll	д EDI_II86	- 1	EDI_II86	006	- 1	981 I 186 84		

Page 2 of 15

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\#966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

April 16, 2000

					:													:																					
1	Comments	IWT plant area	IWT plant area	IWT plant area		IWT plant area		thinner area					thinner area							thinner area																			
Monitoring	Well	yes	yes	yes		yes		yes	sex	•				yes	•						yes																		
	Installation / Sampling Method	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler	4.25" HSA w/ SS Sampler		4.25" HSA w/ SS Sampler		3.75" HSA w/ SS Sampler	2.25" HSA w/ SS sampler	-				2.25" HSA w/ SS sampler							2.25" HSA w/ SS sampler																		
	Analyses	9,13 13	9,13 13	9,13	2 5	9,13	13 9,13		1		-	1	t	-	•	•		10	10	10	10	5	10	9	10	9	9	ę ;	2.	2 :	ę ;	O :	9	9		10			
	Intervals Sampled (ft bgs)	4.0-6.0 6.0-8.0	2.0-4.0 4.0-6.0	1.0-2.0	6.0-8.0 8.0-10.0	2.0-3.5	4.0-5.5 5.5-7.0	-	•	ı		•	1	r	-	t	1	4.0-6.0	8.0-10.0	10.0-12.0	12.0-14.0	14.0-15.0	1.0-3.0	3.0-5.0	5.0-7.0	7.0-9.0	9.0-11.0	11.0-13.0	13.0-15.0	1.0-3.0	3.0-5.0	0.7-0.6	7.0-9.0	9.0-11.0	11.0-13.0	13.0-15.0			
	Boring epth (ft bgs	10	10	10.2		50		10	8	10	8.5	10	4	10	11	8.5	7	15					15						L	<u>C</u>									
	Boring ID	WT-12	WT-13	WT-14		WT-15		T-1	T-2	T-3	T-4	T-5	9-L	T-7	T-8	6-L	T-10	T-11					T-13						u v	<u>0</u>						•			
	Investigation	ED!_!!86	EDI_1186	EDI 1186		EDI_1186		EDISS86					EDISS86						0000	EDISS80					R	AC	ER006(0485	5										

Table 2-1. Oil Boring Installation / Sample Summary.

Comments		thinner area							thinner area	thinner area	200						thinner area	5							uniner area						thinner area				thinner area									
Monitoring Well	Installed	0''							OL	Sev	}						ves							ć	9						yes				00									
Installation / Sampling Method		2.25" HSA w/ SS sampler							2.25" HSA w/ SS sampler	2.25" HSA w/ SS sampler							2.25" HSA w/ SS sampler							2 25" HQA w/ QQ compler							2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler									
Analyses	0,7	OL :	9	10	9	10	: ∈	£ 6	10	10	10	10	÷ 6	÷ 6	; ⊊	5 6	10	9	9	5	: 6	: 6	: C	10	2 €	5 5	: C	: 6	: 0	5	10	9	9 :	10	10	19	9	10	9	10				
intervals Sampled (# hos)	Campieu (it bys)	0.8-2.8	2.8-4.8	5.0-7.0	7.0-9.0	9.0-11.0	11.0-13.0	13.0-15.0	2.0-3.0	1.0-3.0	3.0-5.0	5.0-7.0	7.0-9.0	9.0-11.0	110-130	13.0-15.0	1.0-3.0	3.0	4.0-6.0	6.0-8.0	10.0-12.0	12.0-14.0	14.0-16.0	10-30	3.0-5.0	5.0-7.0	2.0-9.0	9.0-11.0	11.0-13.0	13.0-15.0	1.0-3.0	3.0-5.0	9.0-11.0	12.0-15.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-12.0	12.0-14.0	14.0-15.0				
Boring		<u>.</u>							က	15							15							15	2						15				15									
Boring	T 48	01-1							T-18A	T-18B							T-21							T-23	} i						T-24				T-25									
Investigation	280010	EDISS00							EDISS86	EDISS86					••		EDISS86							EDISS86							EDISS86				EDISS86				R	AC	ER	006	048	86

Table 2-1. Soil Boring Installation / Sample Summary.

Page 4 of 15

- 1																
	Comments	thinner area	thinner area	thinner area	thinner area	uninner area	thinner area	surface impoundment								
	Monitoring Well Installed	yes	yes	OL .	OU	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
	Installation / Sampling Method	2.25" HSA w/ SS sampler	2.25" HSA w/ SS sampler	2.25" HSA w/ SS sampler	2.25" HSA w/ SS sampler	C.2.5 TIGA W/ GO Salliple!	2.25" HSA w/ SS sampler	HSA w/ SS sampler	HSA w/ SS sampler	HSA w/ SS sampler	HSA w/ SS sampler	HSA W/ SS sampler	HSA W/ SS sampler	HSA W/ SS campler	HSA w/ SS sampler	HSA w/ SS sampler
	Analyses	5	555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	2 2 2	6 	;	-	1		1	: 1	1 1		
	intervals Sampled (ft bgs)	1.0-3.0 3.0-5.0 5.0-7.0 7.0-9.0 9.0-11.0 11.0-13.0	1.0-3.0 3.0-5.0 5.0-7.0 7.0-9.0 9.0-11.0 11.0-13.0	1.0-3.0 3.0-5.0 5.0-7.0 7.0-9.0 9.0-11.0 11.0-13.0	3.0-5.0	9.0-11.0 13.0-15.0	3.0-5.0 5.0-7.0 7.0-9.0 9.0-11.0 11.0-13.0	1	1	1	-	1	1 1	1	1 1	
· (mump) ordina i i i i i i i i i i i i i i i i i i	Boring epth (ft bgs S	. 15	2	15	80 <u>fC</u>	2 !		27	12	30.4	14	S.I.S.	36.5	14.	36.5	14
6	Boring ID	T-26	T-29	T-30	T-33A T-33B		\$5	MW - 1D	MW - 1S	MW - 2D	MW - 25	MAY - 3U	MW - 4D	MW - 45	MW - 5D	MW - 5S
	Investigation	EDISS86	EDISS86	EDISS86	EDISS86		EDIS386	OBGSIM89	OBGSIM89	OBGSIM89	OBGSIM89	OBGSIMBS	TORGSIM89	ACRGS IM89	HOBGSIM89	GOBGSIM89

oring Comments		Interceptor Sewer IRM Sampling						Interceptor Sewer IRM Sampling				Interceptor Sewer IRM Sampling				Interceptor Sewer JRM Sampling				Interceptor Sewer IRM Sampling				Interceptor Sewer IRM Sampling				Interceptor Sewer IRM Sampling			Interceptor Sewer IRM Sampling				Interceptor Sewer IRM Sampling			Interceptor Sewer IRM Sampling		•			Interceptor Sewer IRM Sampling				
Monitoring Well	installed	2						2				2				2	!			2				2				2			은				2			2					2				
Installation / Sampling Method		2.25" HSA w/ SS sampler						2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler	•			2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler	-			2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler		•	2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler			2.25" HSA w/ SS sampler					2.25" HSA w/ SS sampler				
Analyses		ო	ო	(**) r	o c	3	. .	ო	က	က	33	ന	സ	က	3	ო	ო	က်	3	က	က	က	3	က	က	က	3	က	က	3	က	က	30	က	ကဖ	200	۰ د٠	ကဖ	י כי	က -	3	က	က	က	3	
Intervals	Sampled (It pgs)	2.0-4.0	4.0-6.0	60-80	0.0.00	0.01-0.0	10.0-12.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	8.0-10.0	Z.U-4.U	4.0-6.0	6.0-8.0	8.0-10.0	10.0-12.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	
Boring	eba il inde	12						01				10				10				10				10				10			10			!	10		5	7					9				
Boring	 	В - -1						7-9			•	B-3				B-4				B-5				B-6				B-7			B-8				6-A		0 40	2 - 12					B-11				
Investigation		IS_IRMa						IN INIA				S_ISMa				IS_IRMa			IS_IRMa				IS_IKMa		SMOI SI	INIVIA INIVIA		R/	ACE		OOG IS IRMa	048	88														

Table 2-1. Oil Boring Installation / Sample Summary.

Monitoring Well Comments	8	no Interceptor Sewer IRM Sampling				no Interceptor Sewer IRM Sampling	•			no Interceptor Sewer IRM Sampling				no Infercentor Sewer IBM Samiling				no Infercentor Sourer IDM Someling			no Interceptor Sewer IRM Sampling		ilo iliterceptor sewer ikin sampiing			no Interceptor Sewer IRM Sampling			-	no Interceptor Sewer IRM Sampling					no Interceptor Sewer IRM Sampling				no Interceptor Sewer IRM Sampling				Company Course Course	interceptor sewer Irkin sampling			
Installation / Sampling Method		Z.Z5" HSA W/ SS sampler				2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler				2.25" HSA w/ SS sampler				2 25" HSA w/ SS sampler			4.25" HSA w/ SS sampler			A 25" HSA W/ SS campler	4.20 TOA W/ SO SAITIPLE!	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ΥN	A/N	N/N	N/A				CAL
Analyses	C	n (m	က	က	3	ო	က	က	က	က	က	· က	3	. «	, ,	? «) (r)) (n m	11,12	11			_ c	n c	"	က	က	3	က	ო	က	က	3	ო	ო	က	3	က	က		ď) (°	י רי) (r	
Boring Intervals	allipica (it ogs)	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	2.0-4.0	4 0-6 0	0.00	8.0-0.0	2.0-4.0	0.00	8.0-10.0	5.0-7.0	5.0-7.0	7.0-9.0	90-110	404	C.I-0.1	0.0-0.0	9.5-10.0	14.0-14.5	1.0-1.5	5.0-5.5	6.0-6.5	9.5-10.0	14.0-14.5	1.0-1.5	6.0-6.5	8.0-8.5	14.0-14.5	1.0-1.5	6.0-6.5	9.0-9.5	14.0-14.5	10-15	2.6.0	2.0.0 2.0.0	14 N-14 K	
Boring enth (# has S	chill (It bys C	2				10				10				10	•			10	2		11	11	:		44.6	C:41				14.5					14.5				14.5				14.5	2			
Boring ID	5 5	71-0				B-13				B-14				B-15	! !		-	B-16	2		B-17	R-18	2		60	2				LC-4 .				•	C-5				P-C-6				10-7	Ì			
Investigation	CANCIL OI	BINIAL CI				IS_IRMa				IS_IRMa				IS IRMa	ŀ			IS IRMa	1		IS_IRMb	IS IRMh) 		MOI OI	יי ואואו				IS_IRM					IS_IRM				IS_IRM	R	AC	:ER	NAI SI		489	9	

Table 2-1. Soil Boring Installation / Sample Summary.

Page 7 of 15

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

Š
=
_
~
~ 1
_
တ
_
_
_
_
=
_
=
C 3
_
April
ч.
•

Monitoring	Well Comments Installed	no Interceptor Sewer IRM Sampling	no Interceptor Sewer IRM Sampling	no Interceptor Sewer IRM Sampling	Σ	no Interceptor Sewer IRM Sampling	no. Interceptor Sewer IRM Sampling	no Interceptor Sewer IRM Sampling		no Interceptor Sewer IRM Sampling		Interceptor Sewer IRM	no Interceptor Sewer IRM Sampling	no Interceptor Sewer IRM Sampling	Sewer IRM	Interceptor Sewer IRM	Intercentor Sewer IRM	Infercenter Sewer IDM	Interceptor Sewer IKIN	Interceptor Sewer IRIM	Interceptor Sewer IRM	Interceptor Sewer IRM		Interceptor Sewer IRM	ΣX	Interceptor Sewer IRM	Interceptor Sewer IRM	_	Interceptor Sewer IRM	-	İ	Downgradie	no Compactor area	no Acid/Alkali Bunker	no Dock Leveler Sump	no Dock Leveler Sump	no Suspected PCB Oil Tank	no Suspected PCB Oil Tank	no General storage area	no General storage area	no Electoplating WWT Tanks	no Electroplating WWT Tanks	no SO2 Scrubber Area					
	Installation / Sampling Method	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	A/N	(√ 2		N/A	A/N	N/A	A/N	N/A	N/A	A/N	A/N	N/A	A/N	4.25" HSA W/ SS sampler	4.25" HSA W/ SS sampler	4.25" HSA W/ SS sampler	3" Hand Auger	4.25" HSA w/ SS sampler	3" Hand Auger	4.25" HSA w/ SS sampler	4,25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	3" Hand Auger	
	Analyses	က	m .	ო	ო	ო	ന	(r)	က	က ်	m	က	က	ო	ო	3	က	က	က	က	ო	က) m	, (,	n (· ο	, O		m (ന (ന	m (3 7 04	3,7,21	3,7,21	3,7,21	1,2,3,5,6,21	3,7	3,7	3,7	3,7	1,2,3,21	1,2,3,21		5,6	5,6	
	epth (ft bgs Sampled (ft bgs)	16-17	17-18	6-9	ග −හ	6-8	6-8 9	9-10	9-10 -	2-8 - 7	2-8	9-10	ტ ტ	13-14	18-19	7-8	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.5	0.0-0.0	0.0-0.5	0.2-0.1	0.0-0.0	0.7-0.0	10.5-11	10.0-11.0	9.0-9.5	6.0-7.0	6.0-8.0	7.0-8.0	5.5-7.0	6.0-7.0	10.5-12.0	4.0-4.6	
	epth (ft bgs	17.0	18.U	9.0	9.0	9.0	0.6	10.0	10.0	8.0	10.0		14.0		19.0	8.0	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surfee	Surface	Surfere	Surface	Surface	Surface	Surface	Surface	Surface	3	7	, ;	1	11	10.5	7	80	æ	7	7	12	4.5	
, i	filling O	122+00	123+00	123+40	123+87	124+00	124+30	126+40	127+10	127+40	129+50		130+40		131+00	131+80	18+80 to 119+6	119+64 to 120+4	120+64 to 120+4	120+42 to 121+2	121+20 to 122+1	121+20 to 122+1	122+16 to 123+2	123+25 to 124+3	123+23 to 124+3	124133 (0 12314	20+47 (0 120+3	07.00.127.40	127+60 to 128+4	128+48 to 129+3	129+35 to 130+2	130+24 to 131+1	131+12 10 132	151+12 10 132	100	UA 4	1-WL	HA-2	HA-3	HA-4	HA-5	HA-6	HA-7	HA-8	HA-9	HA-10	HA-11	out moonit
i i i i i i i i i i i i i i i i i i i	IIIA COLINGRICIO	SIRM															IS-IRM	•	-	•	•-		, <u> </u>		_		- 1	_ *	•	· ·				DAIIOE	CENTION	CEVALISE	CRAIRS	CKAII85	CKAligo	E CRAII95		- 1	Ī	© CRAII95		CRAII95	CRAII95	Parion & Gord Env

Table 2-1. | Soil Boring Installation / Sample Summary.

Page 8 of 15

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

\mathbf{c}
Ō
0
∾
-
တ
$\overline{}$
=
`⋤
₽
Q,

	oring Comments		Former Incinerator Area	Landfill	Landfill	Landfill	Cyanide Sump #1	Chrome Sump #1	Chrome Sump #5	Cvanide Sump #2	Cyanide Sump #3		Chrome Sump #6	Chrome Sump #6, (offset #1)	Hydraulic Oil Sump J	Hydraulic Oil Tank Q	Hydraulic Oil Sump H	Hydraulic Oil Tank P	Hydraulic Oil Tank P (offset #1)	Hydraulic Oil Sump I	Hydraulic Oil Sump G	Hydraulic Oil Tank R		Hydraulic Oil Sump E	Hydraulic Oil Tank O	Hydraulic Oil Sump A	Hydraulic Oil Sump C	Hydraulic Oil Sump D	Hydraulic Oil Tank N	Hydraulic Oil Tank N (offset #1)	inside Hydraulic Oil Sump M	adjacent to Hydraulic Oil Sump B	10' south of Hydraulic Oil Sump H	15' north of Hydraulic Oil Sump H	3' north of Hydraulic Oil Sump M	storm sewer	storm sewer	storm sewer	storm sewer	storm sewer	storm sewer	storm sewer	storm sewer	storm sewer	Hydraulic Oil Sump I	Hydraulic Oil Sump I	Hydraulic Oil Sump J	
	Monitoring Well	nalisian	00	00	0	DO.	ОП	ou	5	2	20		2	ou	ou	6	ou	OL	ou	0.0	ou Ou	2	92	5	ou	2	OU	50	OU	2	ou	2	no	no	on O	ou	on	no	00	no	ou	OLI	00	ou	ou	on O	일	
	Installation / Sampling Method	2" Lond Aren	S Hand Auger	4.25" HSA W/ SS sampler	-	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler		4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler	4.25" HSA w/ SS sampler		2.25" HSA w/ SS sampler	2.25" HSA w/ SS sampler	25" HSA w/	25" HSA w/	2.25" HSA w/ SS sampler	HSA w/	HSA w/	SS	HSA w/					HSA w/	HSA ₩/	2.25" HSA w/ SS sampler								
	Analyses	123621	1,2,0,0,2,1	1,2,3,5,6,21	1,2,3,5,6,21	1,2,3,5,6,21	5,6	5,6	5,6,21	5,6,21	5,6	21	5,6	-	3,7	3,7	3,7	3,7	-	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7	1	3, 7	3, 7	3,7,21	3,7,21	3,7	3, 7	3, 7	3, 7	3, 7	3,7	3, 7	3, 7	3, 7	3, 7	3, 7	3, 7	3,7	
pre Summary.	Intervals Sampled (# bgs)	10 0-10 F	10.0-10.3	9.0-10.0	8.0-10.0	14.0-15.5	1.0-5.0 COM	1.0-3.0	1.0-2.0 COM	1.0-2.0 COM	3.0-5.0	6.0-8.0	1-2 COM	1-2 COM	11.0-12.1	11.0-12.0	7.0-8.0	7.0-8.0	1	7.0-7.4	9.0-11.0	5.0-6.8	6.7-0.7	8.0-9.0	7.0-8.0	8.0-9.0	8.0-9.0	7.0-7.7	7.0-9.0	1	3.0-5.3	5.0-7.0	7.5-9.0	7.5-9.0	7.0-8.5	8.5-9.5	8.0-9.0	9.0-10.8	8.0-9.7	10.0-10.8	9.0-10.3	10.5-12.2	10.0-12.1	12.1-12.8	12.8-13.8	13.0-13.8	12.0-13.5	
ananon i cam	Boring enth (# has	10 5	2.07	٥	01	27	ا ک	2	5	5	8		5	5	12.1	13	7.4	4	6	7.4	11	6.8	6	8.4	11	11	7	7.7	6	4.2	5.3	6	7	11	11	10	10	13	13	13	13	13	15	15	15	15	16	
ופווו לווווסם ווסר	Boring	HA-12	21-71		2-Hg	5H-3	BH-4	BH-5	BH-6	BH-7	BH-9		BH-10	BH-10B	BH-11	BH-12	BH-13	BH-14	BH-14B	BH-15	BH-16	BH-17	BH-18	BH-19	BH-20	BH-21	BH-22	BH-23	BH-24	BH-24B	BH-25	BH-26	BH-27	BH-28	BH-29	BH-30	BH-31	BH-32	BH-33	BH-34	BH-35	BH-36	BH-37	BH-38	BH-39	BH-40	BH-41	oul oroqui
Table 1	Investigation	CRAII95	SOLIVE	CENTING	CRAIIBO	CKAII85	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95		CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAII95	CRAI195	CRAII95	CRAII96	CRAI196	CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	a CRAII96	C CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	CRAII96	ويم المريس في ممنيوا						

Table 2-1. Soil Boring Installation / Sample Summary.

Page 9 of 15

\circ
\circ
ō
$\bar{\mathbf{v}}$
တ်
_
April
٠.

THE STATE OF THE S						Monitoring	oring	- 1
Investigation	Boring	Boring enth (# has	Intervals Sampled (# bos)	Analyses	Installation / Sampling Method	Well	Comments	
CRAII96	RH-42	7 7		2.7	2 26" HOA w/ 66 complex	Installed		- 1
SOLIVED.	21-12	1.7	7.7-7.7	٥, ٥	Z.Z5 HSA W/ SS sampler	2	Hydraulic Oil Sump K	
001410	01-43	2	11.0-12.3	3, /	2.25" HSA w/ SS sampler	OU	Hydraulic Oil Sump L	
CKAli96	BH-44	13	1	:	2.25" HSA w/ SS sampler	ou	Hydraulic Oil Sump L	
CRAII96	BH-45	23	15.0-17.0	3,7	2.25" HSA w/ SS sampler	2	Hydraulic Oil Sump L	Т_
CRAII96	BH-46	20	4.0-5.0	5	2.25" HSA w/ SS sampler	01	Former Paint Shop	1
			15.0-16.0			i		
CKAII96	BH-47	54	4.0-6.0	77	2.25" HSA w/ SS sampler	00	Former Paint Shop	
•			7.0-9.0	. 21				
			15.0-16.0	5				
CRA/196	BH-48	10.3	10.0-10.5	21	2.25" HSA w/ SS sampler	2	Former Paint Shop	Т
CRAII96	BH-49	15	10.8-11.9	3, 7	2.25" HSA w/ SS sampler	92	Hydraulic Oil Tank O	T
CRAII96	BH-50	15	10.0-10.8	3,7	2.25" HSA w/ SS sampler	2	Hydraulic Oil Tank O	T
CRAII96	BH-51	15	8.6-10.5	3,7	2.25" HSA w/ SS sampler	2	ctorm sewer	Т
CRAII96	BH-52	8.7	7.5-8.7	3, 7	2.25" HSA w/ SS sampler		storm sewer	\top
CRAII96	BH-53	15	12.5-12.9	3, 7	2.25" HSA w/ SS sampler	2 2	ctorm cower	Т
CRAII96	BH-54	15	12.0-12.8	3.7	2.25" HSA w/ SS sampler	2	Caron anoto	┰
S-96SOMIN	35	7	0.0-7.0 COM	3	Geoprobe - fruck mounted	2 2	proposed utility pole location	\top
						2	proposed during pole location	
			1,2,3,4,5,6,7	က				
S-96SOMIN	36E	7	0.0-7.0 COM	င	Geoprobe - truck mounted	UOU	proposed utility pole location	$\overline{}$
NIMO COR C	280	7	1,2,3,4,3,0,7	; ;				
0-080 ONINI	200	_	1.2,3,4,5,6,7	ი	Geoprobe - truck mounted	2	proposed utility pole location	
S-96SOMIN	36W	7	0.0-7.0 COM	3	Geoprobe - fruck mounted	00	proposed utility pole location	$\overline{}$
			1,2,3,4,5,6,7		-		in the second factor of the second second factor of the second se	
S-96SOMIN	37E	7	0.0-7.0 COM	3	Geoprobe - truck mounted	01	proposed utility pole location	
			1, / 2,3,4,5,6	ო			•	
S-96SOWIN	37C	9	0.0-6.0 COM	3	Geoprobe - truck mounted	92	proposed utility pole location	
			1,2,3,4,5 6	; m				
S-96SOMIN	37W	7	0.0-7.0 COM	3	Geoprobe - truck mounted	ou	proposed utility note focation	$\overline{}$
			1,7 2,3,4,5,6	ო				
S-96SOMIN	38	7	0.0-7.0 COM	က	Geoprobe - truck mounted	2	proposed utility pole location	
NIMOCOR C	30	7	1,2,3,4,5,6,7					
0-080018181	33	•	0.0-7.0 0.0-7.0 0.0-7.0	ກ	Geoprope - truck mounted	2	proposed utility pole location	
RAC			1,2,3,4, <i>/</i> 5,6	ო				
⊞0BGTEL96	S-11	2	0.0-5.0 COM	3	Geoprobe - Manual	OL C	aronosed utility nole location	
SOBGTEL96	S-12	2	0.0-5.0 COM	က	Geoprobe - Manual	2	proposed utility note location	
§0BGTEL96	S-13	5	0.0-5.0 COM	က	Geoprobe - Manual	02	proposed utility pole location	
£6 SOOS №	S#1	surface	0.0-0.5 COM	က	Trowel - Manual	OL	Storage Cell Confirmation Sampling	_
SCCS 93	S#2	surface	0.0-0.5 COM	3	Trowel - Manual	OL	Storage Cell Confirmation Sampling	
SCCS 93	S#3	surface	0.0-0.5 COM	3	Trowel - Manual	OU	Storage Cell Confirmation Sampling	
J'Brien & Gere Engineers. Inc	eers, Inc.			۵	Page 10 of 15		4 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, č

Table 2-1. Soil Boring Installation / Sample Summary.

Page 10 of 15

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

-				•		Monitoring	
Investigation	Boring G	Boring	intervals	Analyses	Installation / Sampling Method	Well	Comments
	S#4	Surface		6	Trowel - Manial	nistalieu Po Ct	Trillians Sacitornificas Ollows
SCCS 93	S#5	Surface	0.0-0.5 COM	0 (1	Trowel Manual		Storage cell confilmation sampling
	9#%	curface	0.0-0 S COM	0 00	Towel - Mailai		Storage Cell Collinination Sampling
8 0000	2#3	oogine oogine	0.0-0.0 0.0 5.0 0.0	2 6	Tiowel - Inalian		orage Cell Confirmation Sampling
5000) #5 0	Sullace	WICO C.O-O.O	0 (0	I rower - Manual		Storage Cell Confirmation Sampling
SCCS 93	8#8	surface	0.0-0.5 COM	က	Trowel - Manual	no	Storage Cell Confirmation Sampling
SCCS 93	6#5	surface	0.0-0.5 COM	က	Trowel - Manual	no Sto	orage Cell Confirmation Sampling
SCCS 93	S#10	surface	0.0-0.5 COM	က	Trowel - Manual	no Sto	Storage Cell Confirmation Sampling
OGBSR199	MWI-1	16		-	4.25" HSA/ SS Sampler	yes	Southwest portion of building
OBGSR199	MWI-2	15		1	4.25" HSA/ SS Sampler	"	Adjacent to oil/water collection sump 5 line
OBGSR199	MWI-3	16		•	4.25" HSA/ SS Sampler	t	Downgradient of paint room
OBGSR199	WT-3R	15	1	44	4.25" HSA/ SS Sampler		Downgradient of oil/water collection sump 5
OGBSRI99	OBG-6D	36.1	-	•	4.25" HSA/ SS Sampler	l l	Northern property area ground water
OBGSR199	OBG-6S	17.1	ļ	1	4.25" HSA/ SS Sampler		Northern property area ground water
OBGSR199	OBG-7D	36.5	:	!		yes Nor	Northern property area ground water
OBGSR199	OBG-7S	18.8	-	;	4.25" HSA/ SS Sampler	yes Nor	Northern property area ground water
OGBSRI99	0BG-8D	31.6	F	1		yes Nor	Northern property area ground water
OBGSR199	OBG-8S	18.5	•	1	4.25" HSA/ SS Sampler	yes Nor	Northern property area ground water
OBGSR199	OBG-9D	31.6	!	ı	4.25" HSA/ SS Sampler		Northern property area ground water
OBGSR199	OBG-98	17.8	1	-	4.25" HSA/ SS Sampler		Northern property area ground water
OGBSR199	OBG-10D	29.1		1	4.25" HSA/ SS Sampler	yes	North of manufacturing building
OBGSR199	OBG-10S	13.7	:	1		yes	North of manufacturing building
OBGSR199	0BG-11	18.3	a :		4.25" HSA/ SS Sampler	yes Upgr	Upgradient background monitoring well
OBGSR199	OBG-11R	62	ŀ	-	4.25" HSA/ SS Sampler	20	Abandoned boring
OGBSR199	OBG-12	17.8	:	:		yes	IWT Plant Area
OBGSR199	OBG-13	17.8		1		yes	IWT Plant Area
OBGSR199	OBG-14R	23.5	1	•		OU	Abandoned boring
OBGSR199	OBG-15	12.7	1	1	4.25" HSA/ SS Sampler	yes	Southwest property area
OGBSR199	OBG-PZ-1	21				01	Delineate thinner spill plume
OBGSR199	OBG-PZ-2	18	-	-	4.25" HSA/ SS Sampler	OU	Delineate thinner spill plume
OBGSR199	OBG-PZ-3	20	-	:		yes	Delineate thinner spill plume
OBGSR199	OBG-PZ-4	6		1		yes (Oil/water collection sump 5 line
OGBSRI99	0BG-PZ-5	10.9	1	1	4.25" HSA/ SS Sampler	yes	Oil/water collection sump 5 line
OBGSR199	OBG-PZ-6	6.6	-	:	4.25" HSA/ SS Sampler	yes South	South of oil/water collection sump 5 line
OBGSR199	OBG-PZ-7	20	•	-	4.25" HSA/ SS Sampler	yes	Delineate thinner spill plume
OBGSR199	OBG-PZ-8	13.1			4.25" HSA/ SS Sampler	yes East	East of oil/water collection sump 5 line
OGBSR199	OBG-TB-1	11	1-3	15,16,17,18,19	4.25"HSA/ 3-inch SS Sampler	no Adia	Adjacent to oil/water collection sumn 8
			3-5		-		
R			2 - 2				
AC			7 - 9				
ER			9-11				
SOBGSR199	OBG-TB-2	15	1	•	4.25" HSA/ 2-inch SS Sampler	LIO C	Oil/water collection sump 1 line
© OBGSRI99	OBG-TB-3	13	;		4.25" HSA/ 3-inch SS Sampler		Oil/water collection sump 1 line
881 889 08	OBG-18-4	13	1	:	4.25" HSA/ 3-inch SS Sampler	OL	Along fire protection line

soil Boring Installation / Sample Summary.

Table 2-1.

Page 11 of 15

	Monitoring Well Comments	по Adjacent to oil/water collection sump 6	no Oil/water collection sump 5 line		no East of paint room	no Adjacent to oil/water collection sump 3	no Adjacent to oil/water collection sump 2	no West of paint room	no Paint room	no Adjacent to oil/water collection sump 7	no Southwest property storage pad area	по Southwest property storage pad area	no Southeast property area parking lot	no Southeast property area parking lot	no Northeast property area parking lot	no Northern property area general fill area
	Installation / Sampling Method	4.25 " HSA/ 3-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ Macro-Core	4.25" HSA/ Macro-Core	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ 3-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler				
		. 15,17,18,19	1	15,16,17,18,19,20	15,16,17,18,19,20	15,17,18,19	15,17,18,19	15,17,18,19,20	15,16,17,18,19,20	15,17,18,19	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,18,19,20
le Summary.	Boring Intervals epth (ft bgs Sampled (ft bgs)	2 - 4 4 - 6 6 - 8	-	5 - 7 11 - 13	7 - 9 9 - 11 15 - 17	2 - 4 4 - 6 6 - 8 8 - 10 12 - 14 14 - 16	3 - 5 5 - 7 7 - 9 12 - 14 14 - 16	1-3 5-7	4 - 8 10 - 12	5-7 7-9 9-11	2 - 4 4 - 6	0-1 2-4 5-6	2 - 4 6 - 8	2 - 4 6 - 8	2 - 4 6 - 8	0 - 1 2 - 4 10 - 12
allation / Samp	Boring epth (ft bgs S	12	13	13	13	52	13	6	12	1-	9	8	8	8	8	12
soil Boring Installation / Sample Summary.	Boring ID	OBG-TB-5	OBG-TB-6	0BG-TB-12	OBG-TB-13	OBG-TB-14	OBG-TB-15	OBG-TB-16	OBG-TB-17	OBG-TB-19	OBG-TB-20	0BG-TB-21	OBG-TB-22	OBG-TB-23	OBG-TB-24	ОВG-ТВ-25
Table 2-1.	Investigation	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSRI99	6612859 00 000000000000000000000000000000000

	Monitoring Well Comments	no Northern property area general fill area	no Northern property area general fill area	no Northern property area general fill area	no Vicinity of former Surface Impdments	no IWTP - former TCE storage area	no IWTP - fuel tank area	no IWTP - fuel tank area		no Northeast property area		no Northeast property area - Evaluate DNAPL	no Northeast property area - Evaluate DNAPL	no IWTP TCE storage area - Evaluate DNAPL	no Southwest property mold storage DNAPL	no Southwest property mold storage DNAPL	no Evaluate DNAPL near Surface Impndmt #1	no Evaluate DNAPL near Surface Impndmt #1	no IWTP - fuel tank area	no IWTP - fuel tank area
	Installation / Sampling Method	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/2 -inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4,25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler
	Anal	15,18,19,20	15,18,19,20	15,18,19,20	15,18,19,20	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	19	1		15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,17,18,19,20	15,18,19,20	15,18,19,20	15,17,18,19,20	15,17,18,19,20
ile Summary.	Intervals Sampled (ft bgs)	0 - 1 4 - 6 6 - 8	0 - 1 4 - 6 12 - 14	0 - 1 4 - 6 12 - 14	2 - 4 6 - 8	4 - 6 6 - 8	2 - 4 4 - 6	2-4 4-6	5-6	1		6 - 8 12 - 14 22 - 24	6 - 8 22 - 24	4 - 6 12 - 14	4 - 6 10 - 12	0-1 4-6 8-10	0 - 2 6 - 8 10 - 12 34 - 36	0 - 1 6 - 8 10 - 12 32 - 34	2-4	2-4
allation / Samp	ng ît bgs	&	14	14	10	10	8	9	9	10	8	72	25.2	18	13.5	12	39	34	9	ω
Soil Boring Installation / Sample Summary.	Boring ID	OBG-TB-26	0BG-TB-27	OBG-TB-28	OBG-TB-29	OBG-TB-30	OBG-TB-31	OBG-TB-32	OBG-TB-33	OBG-TB-34	OBG-TB-35	OBG-18-36	OBG-TB-37	OBG-TB-38	OBG-TB-39	OBG-TB-40	0BG-TB-41	OBG-TB-42	OBG-TB-43	OBG-TB-44
Table 2-1.	Investigation	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSKIBB	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	OBGSR199	08 OBGSR199	9 OBGSR199

Page 13 of 15

O'Brien & Gere Engineers, Inc. P.IDIV71/PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-1B.WB2

_	
\Box	
N	
တ်	
\equiv	
April	
⋖	

					<u> </u>	
	Comments	Thinner tanks area	Thinner tanks area	Thinner tanks area	es, USEPA, 1983	
	Monitoring Well Installed	OL	OLI	no	rer of Water and Wast	
	Installation / Sampling Method	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	4.25" HSA/ 2-inch SS Sampler	Arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver USEPA Test Methods 6010 and 7470 USEPA Test Method 8270 USEPA Test Method 8080 USEPA Test Method 6010 USEPA Test Method 6004-82-057 USEPA Test Method 6004-82-057 Standard Methods 16th Edition or Methods for Chemical Analysis of Water and Wastes, USEPA, 1983 USEPA Test Method 6004-82-057 Standard Method 8021 USEPA Test Method 8021 USEPA Test Method 8021 USEPA Test Method 8020 USEPA Test Method 8020 USEPA Test Method 6010B; arsenic, chromium, copper, lead, nickel, and zinc USEPA Test Method 6010B; arsenic, chromium, copper, lead, nickel, and zinc USEPA Test Method 80240	n, September 1985 estigation, February 1986 I Investigation, April 1986 P.E., to William E. Kochem, Jr. (General Motors), P.E., to William E. Kochem, Jr. (General Motors),
	. V	17,18	17,18	17,18		nvestigation ological Inv ogeological as K. Pelis, as K. Pelis,
Soil Boring Installation / Sample Summary.	Boring Intervals epth (ft.bgs Sampled (ft.bgs)	0 - 4 6 - 6 8 - 8	0 - 1 4 - 6 6 - 8	0 - 1 2 - 4 6 - 8	RCRA Metals SVOCs PCBs Mercury Metals Cyanide Petroleum Hydrocarbon Scan PCBs VOCs Chromium Waste characterization oil & grease WWT VOCs SVOCs SVOCs SVOCs Chtal Cyanide VOCs	ED! Engineering & Science, Inc. Hydrogeological Investigation ED! Engineering & Science, Inc. Phase II Hydrogeological Inv ED! Engineering & Science Solvent Spill Hydrogeologica O'Brien & Gere Engineers, Inc. Letter from Thomas K. Pelis, May 25,1990 O'Brien & Gere Engineers, Inc. Letter from Thomas K. Pelis, January 11, 1991
stallation / Sar	Boring epth (ft bgs	ω	∞ .	ω	SVOCs PCBs Mercury Metals Cyanide Petroleum Hydrocarbor PCBs VOCs Chromium Waste characterization oil & grease WWT VOCs VOCs VOCs VOCs VOCs VOCs VOCs VOCs	ED! Enginee ED! Enginee ED! Enginee O'Brien & Ge
Soil Boring In.	Boring ID	OBG-TB-45	OBG-TB-46	OBG-TB-47	£ 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	EDIHI85 EDISS86 IS_IRMa IS_IRMb
Table 2-1.	Investigation	OBGSR199	OBGSR199	OBGSR199	Notes:	RACER0060496

Niagara Mohawk Power Corporation Niagara Mohawk Power Corporation Factory Ave. Electric Projects PCB Sampling and Analysis Report, May 1996 O'Brien & Gere Engineers, Inc. Memo from James R. Fitch Jr. regarding proposed telephone pole location PCB O'Brien & Gere Engineers, Inc. 1999 Supplemental Remedial Investigation Sampling Activities 1999 Supplemental Remedial Investigation Sampling Activities	
---	--

	5	_'
	Ç	ŭ
	Ε	Ξ
	£	2
	Ξ	ī
	U)
	a	٥
	7	ŧ
	ŝ	:
	à	3
	ũ	ŏ
	`	
	c	-
	ō	5
	÷	3
1	2	ã
	ā	3
	t	5
	C	Ξ
	7	2
	č	ņ
•	Ē	3
	ç	5
ı	α	1
į	-	:
	ς	3
•	•	•

Comments

Monitoring

installed

Installation / Sampling Method

Analyses

Intervals

Boring

Boring

Investigation

Table 2-1. (

Storage Cell Confirmation Sampling - Addendum Report - Interim Remedial Measure

Ley Creek Relief Interceptor Area, June 1994.

Phase II ESA (1995)

Conestoga-Rovers & Associates

CRA1195

O'Brien & Gere Engineers, Inc. epth (ft bgs Sampled (ft bgs)

SCCS 93

Phase II ESA (1996)

OBGSR199

OBGTEL

Conestoga-Rovers & Associates

CRAII96

960MIN

Jr. regarding proposed telephone pole location PCB soil sampling, May 30, 1996.

5
₹
5
Page

RACER0060497

Table 2-2. Phase II ESA Soil Boring Summary,

PAOC		August 1995 Soil Borings	April 1996 Soil Borings
#1	Abandoned underground oil sumps and tanks	-	
	Sump A	BH-21	
	Sump B		BH-26
	Sump C	BH-22	
	Sump D	BH-23	
	Sump E	BH-19	**
	Sump F	BH-18	
	Sump G	BH-16	
	Sump H	BH-13	BH-27, BH-28
	Sump I	BH-15	BH-39, BH-40
	Sump J	BH-11	BH-41
	Sump K		BH-42
	Sump L		BH-43, BH-44, BH-45
	Sump M		BH-25, BH- 2 9, BH-30
	Tank N	BH-24	
	Tank O	BH-20	BH-49, BH-50
	Tank P	BH-14 (offset)	**
	Tank Q	BH-12	
	Tank R	BH-17	
#2	Former PCB Oil USTs	HA-5, HA-6	
#3	Former thinner tanks	HP-BH-5, HP-4	~~
#4	Electroplating wastewater treatment tanks	HA-9, HA-10	·
#5	Former liquid waste incineration area	HA-12	
#6	Hydrochloric acid spill area		
#7	On-site landfill	BH-1, BH-2, BH-3	
#8	Acid/alkali bunker	HA-2	
#9	SO ₂ scrubber area	HA-11	
#10	General storage area	HA-7, HA-8	•
#11	Dock leveler sumps in the east and west receiving docks	HA-3, HA-4	
#12	Compactor area	HA-I	

Table 2-2. Phase II ESA Soil Boring Summary.

PAOC	·	August 1995 Soil Borings	April 1996 Soil Borings
#13	Sumps in former plating area		
	Sump 1	BH-4	
	Sump 3	BH-9	
	Sump 4	BH-5	
	Sump 5	BH-6	
	Sump 6	BH-10 (offset)	
	Sump 7	BH-7	
#14	Former paint shop	ВН-7, ВН-9	BH-46, BH-47, BH-48
#15	Stormwater sewer trench		BH-31, BH-32, BH-33, BH-34, BH-35, BH-36, BH-37, BH-38, BH-51, BH-52, BH-53, BH-54

Table 2-3. Ground Water Monitoring Well Specifications.

	Table 2-3.	Ground Wat	ter Monitoring Well Sp	ecifications.			•	
~	Investigation	Well ID	Installation	Casing	Ground	Screened	Well	Notes
			Date			Interval (ft bgs)	Denth (ft has)	140103
						mioria, (it bgo)	Deptil (it bgs)	
	EDIHI85	P-1	05/15/85	388.6	388.6	3.5-8.5	9	(4)
	EDIHI85	P - 2	05/15/85	386.05	386.3	5.5-10.5	11	(A)
	EDIHI85	P-3	05/15/85	385.59	385.59			(E)
	EDIH185	P - 4	05/13/85	380.5		5.5-10.5	11	(A)
	EDIHI85	P-5	05/14/85		380.5	5-10	10	(A)
	EDIHI85	P-6		386.8	387.12	8.5-13.5	15	(E)
	EDIHI85	P-7	05/10/85	383.84	383.84	9-14	19	(A)
			05/15/85	378.08	378.08	5-10	10	(A)
	EDIHI85	P - 8	05/16/85	392.53	392.53	4-9	10	(A)
	EDIHI85	P-9	05/13/85	387.41	387.41	5-10	10	(E)
	EDIHI85	P - 10	05/14/85	381.61	381.61	9-14	14	(A)
	EDIHI85	P - 11	05/23/85	380.85	380.85	8-13	13	(A)
	EDIHI85	P - 12	05/23/85	381.7 <i>2</i>	381.72	3-8	10	(A)
	EDIHI85	P - 13	05/23/85	396.12	396.12	8-13	13	(A)
	EDIHI85	P - 14	05/29/85	395.47	395.47	4.5-9.5	1 1	(A)
	EDIHI85	W - 1S	05/23/85	391.03	388.45	12.5-17.5	17.5	È)
	EDIHI85	W - 1D	05/22/85	390.59	388.34	20.5-30.5	35	(E)
	EDIHI85	W - 2S	05/20/85	381.38	381.38	4-9	10	(A)
	EDIHI85	W - 2D	05/20/85	381.39	381.39	9.5-19.5	25	(A)
	EDIHI85	W - 3S	05/20/85	383.96	383.96	7.7-12.7	13	(A)
	EDIHI85	W - 3D	05/20/85	383.97	383.97	13.5-23.5	28	(A)
	EDIHI85	W - 4S	05/16/85	400.42	400.42	6-11	11	
	EDIHI85	- W-4D	05/16/85	400.21	400.21	13-23	24.5	(A)
	EDIHI85	W - 5S	05/17/85	381.43	381.43	5.5-10.5		(A)
٠	EDIHI85	W - 5D	05/16/85	381.52			12.5	(A)
	EDIHI85	W-6S	05/24/85	383.21	381.52	18.3-28.3	33	(A)
<u> </u>	EDIHI85	W - 6D	05/23/85		383.67	12.5-17.5	18	(E)
	EDIHI85	W - 6D W - 7S		383.54	384	18.5-28.5	36	(E)
			05/28/85	384.36	384.36	7-12	12	(C)
	EDIHI85	W - 7D	05/22/85	383.4	383.4	22-32	41.5	(C)
	EDIHI85	W - 8S	05/22/85	379.29	379.29	3-8	8	(A)
	EDIHI85	W - 8D	05/21/85	379.39	379.39	20-30	36	(A)
	EDIHI85	W - 9S	05/22/85	377.81	377.81	5-10	10	(A)
	EDIHI85	W - 9D	05/21/85	377.91	377.91	18.5-28.5	- 36	(A)
	EDIHI85	U - 1S	06/04/85	396.62	396.79	6-11	11	(E)
	EDIHI85	U - 1D	06/03/85	396.64	396.85	11-21	23	(Ε)
	EDIHI85	U - 2	06/04/85	400.07	400.07	8-13	16.5	(A)
	EDIHI85	WT - 1	05/16/85	395.83	395.83	10-15	15	(A)
	EDIHI85	WT - 3	05/16/85	387.2	387.2	5.1-10.1	11	(A)
				7-7				(,)
•	EDI_II86	WT-6	12/09/85	384.37	384.37	6.7-11.7	11.5	
	EDI 1186	WT-7	12/04/85	383.58	383.58	10.2-15.2	19	
	EDI II86	WT-8	12/06/85	382.63	382.63	4.2-9.2	9.5	
	EDI_II86	WT-9	12/07/85	384.28	384.28	6.7-11.7	• 12	
	EDI_1186	W-10-S	12/09/85	385.23	385.23	5.7-10.7	11	
	EDI 1186	W-10-D	12/09/85	385.22	385.22	12.2-22.4	22.5	
	EDI_II86	W-10-B	12/07/85	383.36	383.62			(E\
	EDI_1186	W-11-0 W-11-D	12/07/85	383.41	383.53	6.7-11.7	12	(E)
	EDI_1186	WT-10	12/11/85			13.2-23.4	24 10 F	(E)
	EDI_1186	WT-10		394.5	394.5	5.2-10.2	18.5	
	EDI_II86		12/12/85	394.66	394.66	3.7-8.7	8.7	
		WT-12	12/10/85	392.55	392.55	4.2-9.2	8	(A)
	EDI_II86	WT-13	12/10/85	391.69	391.69	3.2-8.2	8	(A)
٠.	EDI_II86	WT-14	12/10/85	395.72	395.72	5.2-10.2	10	(A)

Table 2-3. Ground Water Monitoring Well Specifications.

Table 2-3.		<u>r Monitoring Well S</u>	-p				
Investigation	Well ID	Installation	Casing	Ground	Screened	Well	Notes
		Date			Interval (ft bgs)	Depth (ft bas)	110100
					· (11.550)	Dopar (R bgs)	
EDI_II86	WT-15	12/11/85	395.83	395.83	4.2-9.2	9.5	· (A)
		. "	<u></u>				(/-)
EDISS86	T - 1	04/08/85	391.02	391.02	4.7-9.7	10	(D)
EDISS86	T - 2	04/08/85	389.15	389.15	3-8	8	(D)
EDISS86	T - 3	04/08/85	387.31	387.31	0-5	10	(D)
EDISS86	T - 4	04/08/85	388.21	388.21	0.75-5.75	8.5	
EDISS86	T - 5	04/08/85	391.01	391.01	4.7-9.7	10	(D) (D)
EDISS86	T - 6	04/05/85	395.71	395.71	8.1-13.1	14	(D)
EDISS86	T - 7	04/08/85	393.81	393.81	5-10	10	
EDISS86	T - 8	04/05/85	387.65	387.65	1.5-6.5	11	(D)
EDISS86	T - 9	04/09/85	387.11	387.11	0-5		(D)
EDISS86	T - 10	04/09/85	387.38	387.38	0-5 0-5	8.5 7	(D)
EDISS86	T - 11	03/31/86	387.49	387.49	4.7-9.7	15	
EDISS86	T - 13	03/27/86	387.37	387.37	4.6-9.6		
EDISS86	T - 15	03/24/86	388.07	388.07	4.7-9.7	15 15	
EDISS86	T - 18	03/26/86	387.46	387.46	4.7-9.7 5.4-10.4	15	
EDISS86	T - 21	03/25/86	387.68	387.68		15	
EDISS86	T - 24	03/31/86	388.15		8.45-13.45	15	
EDISS86	T - 26	03/27/86	386.7	388.15	5.75-10.75	15	
EDISS86	T - 29	03/28/86		386.7	5.6-10.6	15	
EDISS86	T - 33B	03/28/86	387.73	387.73	5.75-10.75	15	
EDISS86	T - 34		386.75	386.75	5.75-10.75		
ED10300	1 - 54	03/29/86	386.71	386.71	7.7-12.7	15	
OBGSIMR	MW - 1D	09/17/88	202.77	004.0	00.000		
OBGSIMR	MW - 1S	09/17/88	383.77	381.3	22.0-27.0	27	
OBGSIMWP	MW - 1S(1)		383.74	381.2	7.0-12.0	12	
OBGSIMR	MW - 2D	09/07/91	384	381.6	7.0-12.0	12	
OBGSIMR	MW - 25	09/20/88	386.19	385.1	24.0-29.0	29	
OBGSIMR	MW - 3D	09/20/88	386.95	385	8.0-13.0	13	
OBGSIMR		09/21/88	383.61	381.2	25.5-30.5	30.5	
	MW - 3S	09/21/88	384.06	381.2	4.0-14.0	14	
OBGSIMWP	MW - 3S(2)	06/10/91	383.7	381.4	4.0-14.0	14	
OBGSIMR	MW - 4D	09/22/88	385.6	383.8(4)	30.0-35.0	35	
OBGSIMR	MW - 4S	09/22/88	386.16	384.0(4)	<u>4</u> .0-14.0	14	
OBGAGWR	MW - 4S(3)	6/95	385.8	384	5.0-15.0		·
OBGSIMR	MW - 5D	09/22/88	383.02	381.5(4)	30.5-35.0	35	
OBGSIMR	MW - 5S	09/22/88	383.81	381.6(4)	4.0-14.0	14	
000101							
OBGLCHI	OBG-1	11/24/86	379.18	376.67	4.8-9.8	9.8	
OBGLCHI	OBG-2	11/21/86	378.34	375.34	4-9	9	
OBGLCHI	OBG-3	11/20/86	379.38	376.76	4.75-9.75	9.75	
OBGLCHI	OBG-4	11/20/86	379.54	377.24	5.39-10.39	10.4	
OBGLCHI	OBG-5	11/20/86	379.07	376.74	4.79-9.79	9.8	
OBGLCHI	OBG-6	11/10/86	381.52	379.15	13.1-18.1	18.1	-
OBGLCHI	OBG-7A	11/21/86	378.69	376.12	4.6-9.6	9.6	
OBGLCHI	OBG-7B	11/21/86	379.4	376.96	4.4-9.4	9.4	
OBGLCHI	OBG-7C	11/21/86	380.7	378.08	4.9-9.9	9.9	
			_	·			
OBGLCFI	MW-8	09/13/88	381.66	379.9	5.2-15.2	15.2	·
OBGLCFI	MW-9	09/13/88	375.36	373.6	5.1-15.1	15.1	
	MW-9 MW-10	09/13/88 09/13/88	375.36 379.24	373.6 377.4	5.1-15.1 5.1-15.1	15.1 15.1	

Table 2-3. Ground Water Monitoring Well Specifications.

Table 2-3.	Ground Wate	er monitoring well S	specifications.				
Investigation	Well ID	Installation	Casing	Ground	Screened	Well	Notes
		Date			Interval (ft bgs)	Depth (ft bas)	110(03
	<u></u>			· · · · · · · · · · · · · · · · · · ·	- 	, , , , , , ,	•
OBGLCFI	MW-12	09/14/88	382.89	381.2	7.1-17.1	17.1	
OBGLCFI	MW-13	09/14/88	379.83	378	6.2-11.2	11.2	
			· 		**		
OBGLC93	OBG-3D	07/24/92	379.11	376.5	30-35	35	
OBGLC93	OBG-9D	07/21/92	377.56	374.2	26.9-31.9	31.9	
OBGSRI99	OBG-6D	09/28/99	381.2	378.58	31.13 - 36.13	36.1	(E)
OBGSRI99	OBG-6S	09/29/99	381.35	378.61	7.06 - 17.06	17.1	(E)
OBGSRI99	OBG-7D	09/29/99	383.58	381.44	31.5 - 36.5	36.5	Ė)
OBGSRI99	OBG-7S	09/30/99	383.74	381.31	8.78 - 18.78	18.8	È)
OBGSRI99	OBG-8D	09/30/99	381.33	379	26.57 - 31.57	31.6	È)
OBGSRI99	OBG-8S	10/01/99	381.35	378.74	8.52 - 18.52	18.5	<u>(E)</u>
OBGSRI99	OBG-9D	10/01/99	382.34	379.63	26.55 - 31.55	31.6	È)
OBGSRI99	OBG-9S	10/04/99	382.12	379.47	7.83 - 17.83	17.8	È)
OBGSRI99	OBG-10D	10/05/99	381.8	382.22	24.09 - 29.09	29.1	È)
OBGSRI99	OBG-10S	10/05/99	382	382.28	3.66 - 13.66	13.7	(E)
OBGSRI99	OBG-11	10/06/99	404.52	401.93	8.28 - 18.28	18.3	(E)
OBGSR199	OBG-12	10/06/99	395.89	396.03	5.54 - 15.54	15.5	È)
OBGSRI99	OBG-13	10/08/99	395.2	395.69	7.84 - 17.84	17.8	(E)
OBGSRI99	OBG-15	10/05/99	391.4	391.79	12.74 - 4.74	12.7	(E)
OBGSRI99	MWI-1	07/14/99	391.72	392.1	3.5 - 13.5	13.5	(E)
OBGSRI99	MWI-2	07/15/99	391.55	392.06	3.75 - 13.75	13.8	(E)
OBGSRI99	MWI-3	07/15/99	391.74	392.09	4.75 - 14.75	14.8	È)
OBGSR199	WT-3R	07/15/99	387.8	388.08	2.6 - 12.6	12.6	È)
OBGSRI99	OBG-PZ-3	07/07/99	391.48	391.96	10 - 20	20	È)
OBGSRI99	OBG-PZ-4	07/09/99	391.77	392.12	4 - 9	9	È)
OBGSRI99	OBG-PZ-5	07/12/99	391.66	392.04	0.87 - 10.87	10.9	(E)
OBGSRI99	OBG-PZ-6	07/12/99	391.8	392.09	4.92 - 9.92	9.9	(E)
OBGSRI99	OBG-PZ-7	07/13/99	391.68	392	10 - 20	20	(E)
OBGSRI99	OBG-PZ-8	07/19/99	391.71	392.01	3.05 - 13.05	13.1	È)

Notes:

- (A) Casing elevation is based on curb box rim.
- (B) Casing elevation is based on top of riser pipe hinge cap.
- (C) Casing elevation is based on top of concrete.
- (D) Based on information in report.

(Monitoring well installation records not located.)

- (E) Elevation data based on November 1999 survey.
- (1) Replaces well MW-1S
- (2) Replaces well MW-3S
- (3) Replaces well MW-4S
- (4) Updated Ground Surface Elevations -

O'Brien & Gere Engineers, Inc. Report - Annual Ground Water Quality Assessment, February 1996

bgs below ground surface

Key:

EDIHI85

EDI Engineering & Science, Inc.

Hydrogeological Investigation, September 1985

EDI_II86

EDI Engineering & Science, Inc.

Table 2-3.	Ground Wat	er Monitoring Well S	Specifications.				
Investigation	Well ID	Installation Date	Casing	Ground Elevation (ft)	Screened Interval (ft bgs)	Well Depth (ft bgs)	Notes
		Phase II Hydrogeolo					
EDISS86	EDI Enginee	ring & Science, Inc.	ogicai ilivestigati	on, rebluary	1900		
		Solvent Spill Hydrog		igation and Re	emedial Action D	lan Antil 1006	•
OBGSIMR	O'Brien & Ge	ere Engineers, Inc.	,	.ga.ion and re	Ciricalal Action F	ian, Apin 1900	,
		Report - Surface Im	poundment Pos	Ciosure Mon	itorina Program	March 1989	
OBGLCHI	O'Brien & Ge	ere Engineers, Inc.	•			March 1000	
		Report - Hydrogeol	ogical Investigat	ion of Fill Area	a Alona Lev Cree	k April 1987	
OBGLCFI	O'Brien & Ge	ere Engineers, Inc.					
	1	Field Investigation -	Ley Creek Dred	ged Material /	Area, July 1989		
OBGSIMWP	O'Brien & Ge	ere Engineers, Inc.			•		
	,	Nork Plan - Surface	Impoundment F	Post Closure C	Fround Water Mo	nitoring Plan,	
0001000		April 1988, update	d March 1992				
OBGLC93		ere Engineers, Inc.	_				
0004014/0		Report - Ley Creek I	Remedial Invest	igation, Septe	mber 1993		
OBGAGWR		ere Engineers, Inc.					
OBCCBIOO	OlDeian 9 Oc	Report - Annual Gro	und Water Qual	ity Assessmeı	nt, February 1996	ŝ	
OBGSRI99		ere Engineers, Inc.	P. I. P. 44		•		
	;	Supplemental Reme	ediai Investigatio	n, 1999			

Table 2-6. Ley Creek Surface Sater Sampling Summary.

Sample identification	Sample location	Analyses
Low flow sampling eve	nt	
Downstream Samples	•	
GM98-SW1 GM98-SW1MS GM98-SW1MSD	Ley Creek: 80 ft upstream of Route 11 bridge	TCL/TAL
GM98-SW2	Ley Creek: 40 ft downstream of Outfall 003.	VOCs, SVOCs, PCBs, heavy metals, CN
GM98-SW3	Ley Creek: 60 ft down stream of Outfall 004	VOCs, SVOCs, PCBs, heavy metals, CN
Upstream Samples	,	
GM98-SW4	Ley Creek: 120 ft upstream of Townline Road bridge	VOCs, SVOCs, PCBs, heavy metals, CN
GM98-SW5	Ley Creek North Branch Ley Creek: 75 ft upstream of confluence with South Branch.	VOCs, SVOCs, PCBs, heavy metals, CN
GM98-SW6 GM98-SW6-DUP	Sanders Creek: 100 ft upstream of confluence with South Branch	VOCs, SVOCs, PCBs, heavy metals, CN
GM98-SW7	Ley Creek South Branch: 60 ft upstream of Sanders Creek	VOCs, SVOCs, PCBs, heavy metals, CN
High Flow Sampling Eve	ent	
Downstream samples		
GM99-SW-1 GM99-SW1MS GM99-SW1MSD GM99-FD1	Ley Creek: 80 ft upstream of Route 11 bridge.	TCL/TAL: VOCs (8260), SVOCs (8270), PCB/Pesticide (8081/8082), metals, cyanide
GM99-SW2 GM99-SW2MS* GM99-SW2MSD* GM99-FD2* QC Trip Blank for VOCs	Ley Creek: 40 ft downstream of Outfall 003	VOCs, SVOCs, PCBs, heavy metals, cyanide
GM99-SW3	Ley Creek: 60 ft downstream of	VOCs, SVOCs, PCBs, heavy metals, cyanide
Upstream samples	Outfall 004	
GM99-SW4	Ley Creek: 120 ft upstream of	VOCs, SVOCs, PCBs, heavy metals, cyanide
GM99-SW5	Townline Road bridge North Branch Ley Creek: 75 ft	VOCs, SVOCs, PCBs, heavy metals, cyanide
GM99-SW6	upstream of Ley Creek confluence Sanders Creek: 100 ft upstream of confluence with South Branch Ley Creek	VOCs, SVOCs, PCBs, heavy metals, cyanide

Table 2-6. Ley Creek Surface Sater Sampling Summary.

Sample identification	Sample location	Analyses
GM99-SW7 QC trip blank for VOCs	Ley Creek South Branch Ley Creek – 60 ft upstream of Sanders Creek confluence	VOCs, SVOCs, PCBs, heavy metals, cyanide

Notes: MS = matrix spike

MSD = matrix spike duplicate

FD = field duplicate

* = VOCs (8021) analysis only

TCL/TAL = Target Compound List/Target Analyte List; VOCs by USEPA Method 8260A, SVOCs by USEPA Method 8270C, PCBs USEPA Method 8082, Pesticides by USEPS Method 8081A, metals by

USEPA Methods 6010B and 7470A, and cyanide by USEPA Method 9010B/9014.

PCB = Polychlorinated biphenyl USEPA Method 8082

VOC = Volatile organic compound by USEPA Method 8260A SVOC = Semivolatile organic compound by USEPA Method 8270

QC = Quality control

Heavy metals = Sb, As, Cr, Cu, Pb, Hg, Ni, Se, Zn

Source: O'Brien & Gere Engineers, Inc.

Table 2-7. Ley Creek sediment sampling summary.

Sample identification	Sample Location	Analytes
Downstream surface (0	- 6 inch) samples	. "
GM98-SED1, MS, MSD	Ley Creek: 80 ft upstream of Route 11 bridge, 3' from south shore	TCL/TAL, TOC, PCDDs/PCDFs
GM98-SED2	Ley Creek: 450 ft upstream of SED1, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED3	Ley Creek: 50 ft west of LeMoyne Ave, 5' from south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED4	Ley Creek: 500 ft east of LeMoyne Ave, 3' from north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED5	Ley Creek: 300 ft east of SED4, 6' from north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED6	Ley Creek: 400' east of SED5, 5' from south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED7A	Ley Creek: west end of Diamond Roofing Building, 6' from south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED8	Ley Creek: opposite Ford repair shop, 5' from north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED9	Ley Creek: opposite red barn of Salina Garage, 3' from north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED10	Ley Creek: 700' east of SED9, along north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED11A	Ley Creek: 150 ft east of overhead electrical lines, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED12	Ley Creek: 500' east of SED11, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED13	Ley Creek: slight bend to south, along north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED14	Ley Creek: 500' east of SED13, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED15	Ley Creek: 700' east of SED14, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED16	Ley Creek: 100' west of Outfall 003, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
Upstream surface (0 - 6	inch) samples	
GM98-SED17	Ley Creek: 100' east of Townline Rd, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
O'Brien & Gere Engineers I:\DIV71\PROJECTS\4966\2153	s, Inc. Page 1 of 3 5\5_RPTS\SRI_RPTS\TAB2-7.WPD	April 12, 2000

Table 2-7. Ley Creek sediment sampling summary.

Sample identification	Sample Location	Analytes
GM98-SED17 MS GM98-SED17 MSD	Ley Creek: 100' east of Townline Rd, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED18A	Ley Creek: 50' east of SED17, on south bank	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED19	Ley Creek: eastern corner of white building, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED20A	Ley Creek: 50' west of North & South Branch confluence	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED21A	Ley Creek North Branch: 150' east of confluence with South Branch, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED22	Ley Creek North Branch: 300' east of SED21, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED23	Ley Creek South Branch: 50' upstream of confluence with Sanders Creek	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED24	Ley Creek South Branch: 30' downstream of small waterfall, along east shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED25	Sanders Creek: 75' east of confluence with South Branch, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED25 DUP	Sanders Creek: 75' east of confluence with South Branch, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED26	Sanders Creek: 50' east of water sample location, on south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
Downstream subsurface	e (6 - 12 inch) samples	
GM98-SED1B	Ley Creek: 80 ft upstream of Route 11 bridge	TCL/TAL, TOC, PCDDs/PCDFs
GM98-SEC7B	Ley Creek: west end of Diamond Roofing Building, 6' from south shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC
GM98-SED11B	Ley Creek: 150 ft east of overhead electrical lines, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
Upstream subsurface (6	5 - 12 inch) samples	
GM98-SED18B	Ley Creek: 50' east of SED17, on south bank	VOCs, SVOCs, PCBs, heavy metals; CN, TOC, PCDDs/PCDFs
GM98-SED20B	Ley Creek: 50' west of North & South Branch confluence	VOCs, SVOCs, PCBs, heavy metals, CN, TOC, PCDDs/PCDFs
GM98-SED21B	Ley Creek North Branch: 150' east of confluence with South Branch, on north shore	VOCs, SVOCs, PCBs, heavy metals, CN, TOC

O'Brien & Gere Engineers, Inc. Page 2 of 3 I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB2-7.WPD

April 12, 2000

Sample identification

Sample Location

Analytes

Notes: TCL/TAL - Target Compound List/Target Analyte List; VOCs by EPA Method 8260A, SVOCs by EPA Method 8270C, PCBs by EPA Method 8082, pesticides by EPA Method 8081A, metals by EPA Methods 6010B and 7470A, and cyanide by EPA Method 9010B/9014.

TOC - total organic carbon by Lloyd Kahn Method

PCDDs/PCDFs - polychlorinated dibenzodioxins and polychlorinated dibenzofurans by EPA Method 8290

VOCs - volatile organic compounds by EPA Method 8021B

SVOCs - semivolatile organic compounds by EPA Method 8270C

PCBs - polychlorinated biphenyls by EPA Method 8082

heavy metals - antimony, arsenic, chromium, copper, lead mercury, nickel, selenium and zinc by EPA Methods 6010B and 7470A

CN - cyanide by EPA Method 9010B/9014

Source: O'Brien & Gere Engineers, Inc.

Table 2-8. Fish Sampling Information - 1992 Ley Creek PCB Dredging Site RI,

0	j	COLLECTED FROM	1	·····	
Species	#	Length (mm)	Mass (g)	Portion Analyzed	Purpos
JPSTREAM	, -				
Pumpkinseed	1	95	11	EP	HHRA
Pumpkinseed	1	77	8.5	EP	HHRA
Pumpkinseed	1	84	9.5	EP	HHRA
Mudminnow	1	86	6	•	_
Stickleback	9	28-41	3.5	٠	
Banded Killifish	1	27	0.5	-	-
Dace	20	17-61	10	WF	FWIA
White Sucker	26_	32-47	19	WF	FWIA
Golden Shiner	3	65	7	WF	CWPD
UTFALL					
White Sucker *	1	286	250	•	_
White Sucker *	1	314	300	-	_
White Sucker *	1	120	17	WF	FWIA
Golden Shiner *	1	186	83	WF	CWPD
Golden Shiner	1	96	12	WF	CWPD
Golden Shiner	1	87	9	_	-
Golden Shiner	2	61	6	-	_
Creek Chub	2	68	7	-	_
Dace	25	30-61	25	WF	FWIA
Stickleback	5	34	2	_	

EP = Edible Portion

WF = Whole Fish

HHRA = Human Health Risk Assessment

FWIA = Fish and Wildlife Impact Analysis

CWPD = Comparison with Previous Data

* = Fish included in average edible fish mass calculation for risk assessment.

Table 2-8. Fish Sampling Information - 1992 Ley Creek PCB Dredging Site RI.

Species	#	(anath (mm)	Maga (a)	Danking August	
Opecies	#	Length (mm)	Mass (g)	Portion Analyzed	Purpose
OWNSTREAM	 _		· · · · · · · · · · · · · · · · · · ·		
Carp *	1_	550	2,727	WF	CWPD
Carp *	1	545	2,727	Fillet	HHRA
Carp *	1	660	4,091	Fillet	HHRA
Carp *	1	508	2,386	WF	CWPD
White Sucker *	1	227	120	•	
White Sucker *	1_1_	276	240		_
White Sucker *	1	256	180	-	-
White Sucker *	1	174	54		_
White Sucker *	1	151	35	-	
White Sucker *	1	120	19	WF	FWIA
Pumpkinseed *	1	120	24	EP	HHRA
Banded Killifish	2	37	4	•	_
Dace	14	32-80	22	WF	FWIA

EP = Edible Portion

WF = Whole Fish

HHRA = Human Health Risk Assessment

FWIA = Fish and Wildlife Impact Analysis

CWPD = Comparison with Previous Data

Source: O'Brien & Gere Engineers, Inc. Remedial Investigation; Ley Creek Dredged Material Area. September 1993

^{* =} Fish included in average edible fish mass calculation for risk assessment.

Table 3-1. Ground water elevations.

	Property		Top of Casing (TOC)	Depth to Water	Ground Water	
Investigation	Area	Well location	Elevation (ft)	(ft from TOC)	Elevation (ft)	Notes
EDISS86	Thinner	T-1	391.02	8.1	382.91	D
EDISS86	Thinner	T-2	389.15	6.8	382.33	D
EDISS86	Thinner	T-3	387.31	5.6	381.71	D
EDISS86	Thinner	T-4	388.21	6.2	382.00	D
EDISS86	Thinner	T-5	391.01	8.5	382.56	D
EDISS86	Thinner	T-6	395.71	12.5	383.24	D
EDISS86	Thinner	T-7	393.81	11.3	382.52	D
EDISS86	Thinner	T-8	387.65	6.7	380.94	D
EDISS86	Thinner	T-9	387.11	5.6	381.50	D
EDISS86	Thinner	T-10	387.38	3.1	384.28	
EDISS86	Thinner	T-13	387.37	3.8	383.56	
EDISS86	Thinner	T-15	388.07	6.4	381.67	
EDISS86	Thinner	T-18	387.46	7.8	379.65	
EDISS86	Thinner	T-21	387.68	9.4	378.32	
EDISS86	Thinner	T-24	388.15	6.1	382.07	
EDISS86	Thinner	T-26	386.70	8.4	378.28	
EDISS86	Thinner	T-29	387.73	5.3	382.42	
EDISS86	Thinner	T-33B	386.75	10.0	376.76	
EDIHI85	Thinner	P-5	386.80	9.6	377.22	A, B
EDIHI85	Thinner	P-9	387.41	6.8	380.64	C,B
OBGSIMWP	Northern	MW-1S	384.00	7.1	376.86	0,0
OBGSIMR	Northern	MW-1D	383.77	8.2	375.60	
OBGSIMR	Northern	MW-2S	386.95	7.8	379.14	
OBGSIMR	Northern	MW-2D	386.19	10.0	376.15	
OBGSIMWP	Northern	MW-3S	383.70	8.5	375.18	
OBGSIMR	Northern	MW-3D	383.61	8.7	374.89	
OBGSIMWP	Northern	MW-4S	385.80	10.5	375.27	
OBGSIMR	Northern	MW-4D	385.60	10.8	374.82	
OBGSIMR	Northern	MW-5S	383.81	8.6	375.18	
OBGSIMR	Northern	MW-5D	383.02	8.3	374.75	
EDIHI85	Northern	W-1S	391.03	12.9	378.13	A,B
EDIHI86	Northern	W-1D	390.59	13.0	377.60	A,B
EDIHI87	Northern	W-6S-	383.21	7.9	375.33	A,B
EDIHI88	Northern	W-6D	383.54	8.4	375.19	A,B
OBGSRI99	Northern	OBG-6S	381.35	5.6	375.78	, ,, ,
OBGSRI99	Northern	OBG-6D	381.20	5.6	375.57	
OBGSRI99	Northern	OBG-7S	383.74	8.5	375.22	
OBĠSRI99	Northern	OBG-7D	383.58	9.9	373.72	
OBGSRI99	Northern	OBG-8S	381.35	7.0	374.36	
OBGSRI99	Northern	OBG-8D	381.33	7.5	373.79	
OBGSRI99	Northern	OBG-9S	382.12	7.5	374.59	
OBGSRI99	Northern	OBG-9D	382.34	7.5	374.81	
OBGSRI99	Northeast	OBG-10S	382.00	5.1	376.88	
OBGSRI99	Northeast	OBG-10D	381.80	5.5	376.26	
EDI_II86	Northeast	W-11S	383.36	7.5	375.84	В
EDI_II86	Northeast	W-11D	383.41	6.8	376.64	В
OBGSRI99	Southwest	OBG-11	404.52	12.6	391.90	_
OBGSRI99	Southwest	OBG-15	391.40	8.4	383.03	
OBGSRI99	IWT Plant	OBG-12	395.89	9.9	386.01	
			555.55	0.0	500.01	

Table 3-1. Ground water elevations.

, <u></u>	Property		Top of Casing (TOC)	Depth to Water	Ground Water	
Investigation	Area	Well location	Elevation (ft)	(ft from TOC)	Elevation (ft)	Notes
OBGSRI99	IWT Plant	OBG-13	395.20	9.4	385.85	
OBGSRI99	Mnftr Bldg	MWI-1	391.72	7.1	384.59	
OBGSR199	Mnftr Bldg	MWI-2	391.55	7.0	384.53	
OBGSRI99	Mnftr Bldg	MWI-3	391.74	11.8	379.90	
OBGSRI99	Mnftr Bldg	WT-3R	387.80	4.2	383.56	
OBGSRI99	Mnftr Bldg	OBG-PZ-3	391.48	11.7	379.74	
OBGSRI99	Mnftr Bldg	OBG-PZ-4	391.77	8.6	383.18	
OBGSRI99	Mnftr Bldg	OBG-PZ-5	391.66	7.1	384.60	
OBGSRI99	Mnftr Bldg	OBG-PZ-6	391.80	NA	NA	
OBGSRI99	Mnftr Bldg	OBG-PZ-7	391.68	12.1	379.56	
OBGSRI99	Mnftr Bldg	OBG-PZ-8	391.71	8.4	383.28	
EDIHI85	Southeast	P-2	386.05	3.7	382.39	A,B
EDIHI85	Southeast	U-1S	396.62	5.3	391.32	A,B
EDIHI85	Southeast	U-1D	396.64	7.0	389.60	A,B
OBGLCHI	Ley Creek	OBG-2	378.34	6.2	372.10	- 1
OBGLCHI	Ley Creek	OBG-3	379.38	10.3	369.09	
OBGLC93	Ley Creek	OBG-3D	379.11	2.9	376.23	
OBGLCHI	Ley Creek	OBG-5	379.07	9.9	369.15	
OBGLCHI	Ley Creek	OBG-7A	378.69	9.1	369.63	
OBGLCHI	Ley Creek	OBG-7B	379.40	10.2	369.22	
OBGLCHI	Ley Creek	OBG-7C	380.70	11.6	369.07	

Notes:

NA = Data not available

A= Casing elevation based on curb box rim

B= Well screen data obtained from associated investigation reports.

Well casing and ground elevations were resurveyed in November 1999.

C= Casing elevation based on top of concrete

D= Based on information in report (monitoring well installation records not located).

Key:	EDIHI85	EDI Engineering & Science, Inc.
		Hydrogeological Investigation, September 1985
	EDI_I186	EDI Engineering & Science, Inc.
		Phase II Hydrogeological Investigation, February 1986
	EDISS86	EDI Engineering & Science, Inc.
		Solvent Spill Hydrogeological Investigation and Remedial Action Plan, April 1986
	OBGSIMR	O'Brien & Gere Engineers, Inc.
		Report - Surface Impoundment Post Closure Monitoring Program, March 1989
	OBGLCHI	O'Brien & Gere Engineers, Inc.
	_	Report - Hydrogeological Investigation of Fill Area Along Ley Creek, April 1987
	OBGSIMWP	O'Brien & Gere Engineers, Inc.
		Work Plan - Surface Impoundment Post Closure Ground Water Monitoring Plan
	_	April 1988, updated March 1992
	OBGLC93	O'Brien & Gere Engineers, Inc.
		Report - Ley Creek Remedial Investigation, September 1993
	OBGSR199	O'Brien & Gere Engineers, Inc.
		1999 Supplemental Remedial Investigation Sampling Activities

Source: O'Brien & Gere Engineers, Inc.

Table 3-2.	Permeability	//Hydraulic Co	Permeability/Hydraulic Conductivity Data Summary	mmary.			
Investigation	Well ID	Installation Date	Screened Depth Interval (ft bgs)		Geologic Unit	Permeability/hydraulic conductivity (ft/day)	Test Method
Vertical Permeability Measurements	ability Measu.	rements					
FDIHI85	W-1D	05/22/85	13 0-15 0 (1)	بروام ع اازم	ومنطور برمران	L	
EDIHIBE		05/20/85	15.0-10.0 (1)		Glacidiacusiiille	Z.65E-04	laboratory-triaxial
	VV-ZD	00/20/00	10.0-1.0 (1)	DINS MILE	Giaciulacustrine	1.02E+00	laboratory-triaxial
EDIH183	۵۰ <u>۷</u>	05/24/85	16.0-18.0 (1)	SIII	Glaciulacustrine	3.97E-04	laboratory-triaxial.
EDIHIBS	∩6-M	05/21/85	9.0-11.0 (1)	silt & clay	Glaciulacustrine	2.41E-04	laboratory-triaxial
EDIHI85	W-2D	05/20/85	21.5-23.0 (1)	₩	Lodgement till	1.42E-04	laboratory-triaxial
EDIHI85	M-6D	05/23/85	32.0-34.0 (1)	: (111	Lodgement till	1.70E-04	laboratory-triaxial
EDIHI85	W-9D	05/21/85	32.0-34.0 (1)	Ę	Lodgement till	7.09E-05	laboratory-triaxial
Honzontal Hydraulic Conductivity Measurements	aulic Conduc	tivity Measure	ments				
TAHI83	B-1	07/11/83	9.0-19.0	silt, clay, fine sand	Glaciulacustrine	1,30E+00	field-falling head
TAH183	B-1	07/11/83	9.0-19.0	silt clay fine sand	Glacinlacustrine	3 97E±00	field ricing bood
TAH183	B-2	07/11/83	8.0-18.0	silt, clay, fine sand	Glaciulacustrine	3 97E+00	field falling bood
TAHI83	R-2	07/11/83	80-180	silt clay fine sand	Glaciulacustrina	2 42 E + OO	ford -injury
TAHIB3	о се 1 4	07/11/83	10.0-20.0	silt clay, mic saild	Glaciulacustrina	3.12E+00	rield-rising nead
TAHIRS	7 7	07/11/83	10.020.0	oilt ofor oond	Claciniacustine	3.12E+00	rieta-railing nead
	† 	20/11/10	0.02-0.0	siit, clay, sarid	Giaciulacustrine	3.12E+00	field-rising head
EDIHI85	U-1D	06/04/85	11.0-21.0	sand & silt	Glaciulacustrine	2.72E-01	field - falling head
EDIHI85	0-1D	06/04/85	11.0-21.0	sand & silt	Glaciulacustrine	2.41E-01	field - rising head
EDIHI85	W-1D	05/22/85	20.5-30.5	sand & silt	Glaciulacustrine	7.94E-01	field - falling head
EDIHI85	W-1D	05/22/85	20.5-30.5	sand & silt	Glaciulacustrine	4.82E-01	field - rising head
EDIHI85	W-2D	05/20/85	9.5-19.5	sand & silt	Giaciulacustrine	2.83E-01 //	field - falling head
EDIHI85	W-2D	05/20/85	9.5-19.5	sand & silt	Glaciulacustrine	2.83E-01 /	field - rising head
EDIHI85	W-3D	04/20/85	13.5-23.5	silt & clay	Glaciulacustrine	5.67E-02 /	field - falling head
EUIHI85	W-4D	05/16/85	13.0-23.0	silt & fine sand	Glaciulacustrine	4.54E-01	field - falling head
EDIH185	W-5D	05/16/85	18.0-28.0	fine sand	Glaciulacustrine	7.94E-01 /	field - falling head
EDIHI85	W-5D	05/16/85	18.0-28.0	fine sand	Glaciulacustrine	1.02E+00	field - rising head
EDIHI85	Q/-M	05/24/85	22.0-32.0	fine sand & till	Glaciulacustrine	4.25E-02	field - falling head
EDIHI85	W-8D	05/21/85	20.0-30.0	all s	Glaciulacustrine	8.22E-02	field - falling head
EDIHI85	Q6-M	05/21/85	18.5-28.5	silt	Glaciulacustrine	1.30E+00	field - falling head
OBGLCHI	0BG-1	11/24/86	5.0-10.0	silt & fine sand	Glaciulacustrine	7.51E-03	field - rising head
OBGLCHI	OBG-2	11/21/86	3.5-8.5	silt & clay	Glaciulacustrine	4.71E-02	field - rising head
OBGLCHI	OBG-3	11/20/86	4.0-9.0	sit	Glaciulacustrine	1.06E-02	field - rising head
OBGLCHI	0BG-4	11/20/86	4.0-9.0	silt & fine sand	Glaciulacustrine	1.90E-01	field - rising head
OBGLCHI	OBG-5	11/20/86	3.7-8.7	sit	Glaciulacustrine	6.09E-02	field - rising head

Summar
/ Data
onductivity
traulic C
bility/Hye
ermeat

able 3-2.	Permeability.	"Hydraulic Cc	Permeability/Hydraulic Conductivity Data Summary.	ттагу.			
Investigation	Well ID	Installation	Screened Depth	Geologic Unit	c Unit	Permeability/hydraulic	Test Method
		Date	Interval (ft bgs)			conductivity (ft/day)	
OBGLCHI	9-980	11/10/86	12.0-17.0	silt	Glaciulacustrine	1.26E-01	field - rising head
OBGLCHI	OBG-7A	11/21/86	5.0-8.0	silt & clay	Glaciulacustrine	8.05E-01	field - rising head
OBGLCHI	OBG-7B	11/21/86	0.6-0.9	silt & clay	Glaciulacustrine	5.30E-01	field - rising head
OBGLCHI	OBG-7C	11/21/86	6.5-9.5	silt & clay	Glaciulacustrine	6.09E-02	field - rising head
OBGLCFI	MW-8	09/13/88	5.2-15.2	F/M sand	Glaciulacustrine	2.18E-01	field - rising head
OBGLCFI	6-WW	09/13/88	5.1-15.1	F/M sand	Glaciulacustrine	7.06E-01	field - rising head
OBGLCFI	MW-10	09/13/88	5.1-15.1	fine sand & silt	Glaciulacustrine	1.11E+00	field - rising head
OBGLCFI	MW-11	09/14/88	5.1-15.1	fine sand & silt	Glaciulacustrine	7.45E+00	· field - rising head
OBGLCFI	MW-12	09/14/88	7.1-17.1	fine sand & silt	Glaciulacustrine	3.85E-01	field - rising head
OBGLCFI	MW-13	09/14/88	6.0-11.0	fine sand & silt	Glaciulacustrine	2.05E-01	field - rising head
OBGSIMR	MW - 1S	09/19/88	7.0-12.0	silt, clay, fine sand	Glaciulacustrine	5.39E-01	field - rising head
OBGSIMR	MW - 2S	09/20/88	8.0-13.0	silt, clay, fine sand	Glaciulacustrine	4.54E-01	field - rising head
OBGSIMR	MW - 3S	09/21/88	4.0-14.0	fine sand & siit	Glaciulacustrine	3.12E-01	field - rising head
OBGSIMR	MW - 4S	09/22/88	4.0-14.0	silt, fine sand, clay	Glaciulacustrine	2.83E-01	field - rising head
OBGSIMR	MW - 5S	09/22/88	4.0-14.0	fine sand, silt, clay	Glaciulacustrine	6.24E-01	field - rising head
OBGSIMR	MW - 1D	09/17/88	22.0-27.0	silt & fine sand	Glaciulacustrine	3.12E-01 —	field - rising head
OBGSIMR	MW - 2D	09/20/88	24.0-29.0	silt & fine sand	Glaciulacustrine	4.82E-01	field - rising head
OBGSIMR	MW - 3D	09/21/88	25.5-30.5	silt & fine sand	Glaciulacustrine	2.15E-01	field - rising head
OBGSIMR	MW - 4D	09/22/88	30.0-35.0	fine sand & silt	Glaciulacustrine	3.97E-01	field - rising head
OBGSIMR	MW - 5D	09/22/88	30.5-35.0	silt & fine sand	Glaciulacustrine	3.12E+00 //	field - rising head
OBGSR199	OBG-7S	66/36/60	8.78 - 18.78	fine sand, clay, silt	Glaciulacustrine	9.20E-01	field - rising head
OBGSR199	OBG-7D	66/36/60	31.5 - 36.5	fine sand, clay, silt	Glaciulacustrine	1.64E-01	field - rising head
OBGSR199	OBG-98	10/04/99	7.83 - 17.83	fine sand, clay, silt	Glaciulacustrine	1.76E+00	field - rising head
OBGSR199	OBG-11	10/06/99	8.28 - 18.28	fine sand, clay, silt	Glaciulacustrine	9.41E-01	field - rising head
OBGSR199	MWI-2	07/15/99	4.75 - 14.75	fine sand, clay, silt	Glaciulacustrine	4.91E-02	field - rising head
OBGSR199	MWI-3	07/15/99	4.75 - 14.75	fine sand, clay, silt	Glaciulacustrine	5.59E-01	field - rising head
						;	

Notes:

(1) Interval represents Shelby tube sample interval, not screened interval.

bgs = below ground surface F/M = fine / medium F/C = fine / coarse

O'Brien & Gere Engineers, Inc.	I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\TAB3-2B.WB2

<u></u>					
Table 3=z.	Permeability	Permeability/Hydraulic Conductivity Data Summary.)
Investigation	Well ID	Installation Screened Depth Date Interval (ft bgs)	Geologic Unit	Permeability/hydraulic conductivity (ft/dav)	Test Method
Key:	TAHI83	Thomsen Associates and Empire Soils Investigations, Inc.	stigations, Inc.		
		Hydrogeologic Investigation, December 1983	ecember 1983		
	EDHI85	EDI Engineering & Science, Inc.			
		Hydrogeological Investigation, September 1985	September 1985		
	OBGLCHI	O'Brien & Ge			
		Report - Hydrogeological Inves	Report - Hydrogeological Investigation of Fill Area Along Ley Creek, April 1987	April 1987	
	OBGLCFI	O'Brien & Gere Engineers, Inc.		-	
		Field Investigations - Ley Creek	Field Investigations - Ley Creek Dredged Material Area, July 1989		
	OBGSIMR	OBGSIMR O'Brien & Gere Engineers, Inc.			
		Report - Surface Impoundment	Report - Surface Impoundment Post Closure Monitoring Program, March 1989	1arch 1989	
	OBGSR199	OBGSR199 O'Brien & Gere Engineers, Inc.		•	
		1999 Supplemental Remedial Ir	1999 Supplemental Remedial Investigation sampling activities		

Table 3-3. Subsurface Soil Field Screening Summary.

OBG-P2-1 21.0 68 ppm (11-13 ft) negative OBG-P2-2 18.0 260 ppm (14-16 ft) positive (12-18 ft) OBG-P2-3 20.0 0.4 ppm (0.5-4 ft) negative OBG-P2-4 11 220 ppm (1-3 ft) positive (5.5-7.5 ft) OBG-P2-5 13 5.2 ppm (11-13 ft) positive (5.5-7.5 ft) OBG-P2-6 11 0.6 ppm (9-11 ft) positive (6.5-9 ft) OBG-P2-7 20 0.6 ppm (7-9 ft) negative OBG-P2-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-1 12.0 2.4 ppm (2-4 ft) negative OBG-TB-13 13.0 360.0 ppm (11-13 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative	Soil boring location	Total depth of borehole (ft)	VOC Screening Max. PID reading (depth of detection)	DNAPL Screening UV light reading (depth of detection)
OBG-PZ-3 20.0 0.4 ppm (0.5-4 ft) negative (15-10 ft) OBG-PZ-4 11 220 ppm (1-3 ft) positive (5.5-7.5 ft) OBG-PZ-5 13 5.2 ppm (11-13 ft) positive (6.5-9 ft) OBG-PZ-6 11 0.6 ppm (9-11 ft) positive (6.5-9 ft) OBG-PZ-7 20 0.6 ppm (7-9 ft) negative (0.5-9 ft) OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-PZ-1	21.0		
OBG-PZ-4 11 220 ppm (1-3 ft) positive (6.5-7.5 ft) OBG-PZ-5 13 5.2 ppm (11-13 ft) positive (11-13 ft) OBG-PZ-6 11 0.6 ppm (9-11 ft) positive (6.5-9 ft) OBG-PZ-7 20 0.6 ppm (7-9 ft) negative OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 ODG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative OBG-TB-29 ODG-TB-29 10.0 OD ppm negative ODG-TB-29 ODG-TB-29 10.0 OD ppm negative ODG-TB-29 ODG-TB-29 10.0 OD ppm negative ODG-TB-29 OD	OBG-PZ-2	18.0	260 ppm (14-16 ft)	positive (12-18 ft)
DBG-PZ-5 13 5.2 ppm (11-13 ft) positive (11-13 ft) DBG-PZ-6 11 0.6 ppm (9-11 ft) positive (6.5-9 ft) DBG-PZ-7 20 0.6 ppm (7-9 ft) negative DBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) DBG-TB-1 11.0 40 ppm (9-11 ft) negative DBG-TB-5 12.0 2.4 ppm (2-4 ft) negative DBG-TB-12 13.0 360.0 ppm (11-13 ft) negative DBG-TB-13 13.0 11.0 ppm (9-11 ft) negative DBG-TB-14 12.0 0.4 ppm (8-10 ft) negative DBG-TB-15 13.0 0.2 (12-14 ft) negative DBG-TB-16 9.0 DBG-TB-17 12.0 0.0 ppm negative DBG-TB-19 11.0 1.2 ppm (9-11 ft) negative DBG-TB-19 DBG-TB-20 6.0 0.0 ppm negative DBG-TB-21 8.0 0.0 ppm negative DBG-TB-21 8.0 0.0 ppm negative DBG-TB-22 8.0 0.0 ppm negative DBG-TB-23 8.0 0.0 ppm negative DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 DBG-TB-29 10.0 DDG-TB-29 10.0 DDG-TB-29 10.0 DDG-TB-29 10.0 DDG-TB-29 10.0 DDG-TB-29	OBG-PZ-3	20.0	0.4 ppm (0.5-4 ft)	negative
OBG-PZ-6 11 0.6 ppm (9-11 ft) positive (6.5-9 ft) OBG-PZ-7 20 0.6 ppm (7-9 ft) negative OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-TB-1 11.0 0BG-TB-5 12.0 2.4 ppm (9-11 ft) negative OBG-TB-6 OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 0BG-TB-17 12.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-19 OBG-TB-20 0BG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 0BG-TB-27 14.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-29 OBG-TB-29 OBG-TB-29 10.0 0.0 ppm negative	OBG-PZ-4	11	220 ppm (1-3 ft)	positive (5.5-7.5 ft)
OBG-PZ-7 20 0.6 ppm (7-9 ft) negative (0.3 str) OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-PZ-8 11.0 40 ppm (9-11 ft) negative OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11ft) negative OBG-TB-19 11.0 1.2 ppm (9-11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-PZ-5	13	5.2 ppm (11-13 ft)	positive (11-13 ft)
OBG-PZ-8 14 84 ppm (2-4 ft) positive (2-10 ft) OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-20 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 14.0 0.0 ppm negative	OBG-PZ-6	11	0.6 ppm (9-11 ft)	positive (6.5-9 ft)
OBG-TB-1 11.0 40 ppm (9-11 ft) negative OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11-13 ft) negative OBG-TB-13 13.0 11.0 ppm (9-11 ft) negative OBG-TB-14 12.0 0.4 ppm (8-10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11 ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-PZ-7	20	0.6 ppm (7-9 ft)	negative
OBG-TB-5 12.0 2.4 ppm (2-4 ft) negative OBG-TB-12 13.0 360.0 ppm (11–13 ft) negative OBG-TB-13 13.0 11.0 ppm (9–11 ft) negative OBG-TB-14 12.0 0.4 ppm (8–10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9–11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-PZ-8	14	84 ppm (2-4 ft)	positive (2-10 ft)
OBG-TB-12 13.0 360.0 ppm (11–13 ft) negative OBG-TB-13 13.0 11.0 ppm (9–11 ft) negative OBG-TB-14 12.0 0.4 ppm (8–10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9–11 ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 ppm negative OBG-TB-29 10.0 ppm negative	OBG-TB-1	11.0	40 ppm (9-11 ft)	negative
OBG-TB-13 13.0 11.0 ppm (9–11 ft) negative OBG-TB-14 12.0 0.4 ppm (8–10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9–11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-TB-5	12.0	2.4 ppm (2-4 ft)	negative
OBG-TB-14 12.0 0.4 ppm (8–10 ft) negative OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9–11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-TB-12	13.0	360.0 ppm (11-13 ft)	negative
OBG-TB-15 13.0 0.2 (12-14 ft) negative OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9-11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-TB-13	13.0	11.0 ppm (9–11 ft)	negative
OBG-TB-16 9.0 0.0 ppm negative OBG-TB-17 12.0 0.0 ppm negative OBG-TB-19 11.0 1.2 ppm (9–11ft) negative OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-TB-14	12.0	0.4 ppm (8–10 ft)	negative
DBG-TB-17 12.0 0.0 ppm negative DBG-TB-19 11.0 1.2 ppm (9–11ft) negative DBG-TB-20 6.0 0.0 ppm negative DBG-TB-21 8.0 0.0 ppm negative DBG-TB-22 8.0 0.0 ppm negative DBG-TB-23 8.0 0.0 ppm negative DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-15	13.0	0.2 (12-14 ft)	negative
DBG-TB-19	OBG-TB-16	9.0	0.0 ppm	negative
OBG-TB-20 6.0 0.0 ppm negative OBG-TB-21 8.0 0.0 ppm negative OBG-TB-22 8.0 0.0 ppm negative OBG-TB-23 8.0 0.0 ppm negative OBG-TB-24 8.0 0.0 ppm negative OBG-TB-25 12.0 0.0 ppm negative OBG-TB-26 8.0 0.0 ppm negative OBG-TB-27 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-28 14.0 0.0 ppm negative OBG-TB-29 10.0 0.0 ppm negative	OBG-TB-17	12.0	0.0 ppm	negative
DBG-TB-21 8.0 0.0 ppm negative DBG-TB-22 8.0 0.0 ppm negative DBG-TB-23 8.0 0.0 ppm negative DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-19	11.0	1.2 ppm (9-11ft)	negative
DBG-TB-22 8.0 0.0 ppm negative DBG-TB-23 8.0 0.0 ppm negative DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-20	6.0	0.0 ppm	negative
DBG-TB-23 8.0 0.0 ppm negative DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-21	8.0	0.0 ppm	negative
DBG-TB-24 8.0 0.0 ppm negative DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-22	8.0	0.0 ppm	negative
DBG-TB-25 12.0 0.0 ppm negative DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-23	8.0	0.0 ppm	negative
DBG-TB-26 8.0 0.0 ppm negative DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-24	8.0	0.0 ppm	negative
DBG-TB-27 14.0 0.0 ppm negative DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-25	12.0	0.0 ppm	negative
DBG-TB-28 14.0 0.0 ppm negative DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-26	8.0	0.0 ppm	negative
DBG-TB-29 10.0 0.0 ppm negative	OBG-TB-27	14.0	0.0 ppm	negative
DDO TD as	OBG-TB-28	14.0	0.0 ppm	negative
DBG-TB-30 8.0 0.0 ppm negative	OBG-TB-29	10.0	0.0 ppm	negative
	OBG-TB-30	8.0	0.0 ppm	negative

Table 3-3. Subsurface Soil Field Screening Summary,

Soil boring location	Total depth of borehole (ft)	VOC Screening Max. PID reading (depth of detection)	DNAPL Screening UV light reading (depth of detection)
OBG-TB-31	8.0	0.0 ppm	negative
OBG-TB-32	6.0	0.0 ppm	negative
OBG-TB-33	6.0	0.0 ppm	negative
OBG-TB-34	10.0	0.5 ppm (8-10 ft)	negative
OBG-TB-35	8.0	0.1 ppm (0-1 ft)	negative
OBG-TB-36	25.0	55.0 ppm (12-14 ft)	negative
OBG-TB-37	25.2	11.4 ppm (12-14 ft)	negative
OBG-TB-38	18.0	2.6 ppm (4-6 ft)	negative
OBG-TB-39	13.5	6.3 ppm (10-12 ft)	negative
OBG-TB-40	12.0	3.7 ppm (8-10 ft)	negative
OBG-TB-41	36.0	18.0 ppm (32-34 ft)	negative
OBG-TB-42	34.0	3.6 ppm (10-12 ft)	negative
OBG-TB-43	6.0	0.0 ppm	negative
OBG-TB-44	8.0	1.0 pp, (6-8 ft)	negative
OBG-TB-45	8.0	0.0 ppm	negative
OBG-TB-46	8.0	0.0 ppm	negative
OBG-TB-47	8.0	0.0 ppm	negative

Note: UV - Ultraviolet, DNAPL - Dense non-aqueous phase liquid, PID - Photoionization detector, VOC - Volatile organic compound

Source: O'Brien & Gere Engineers, Inc.

Table 3-4. Summary of Source Area Characterization.

Агеа		Surface and subsurface soil samples	Constients detected over NYSDEC TAGM 4046
Manufa	acturing building	-	
	Abandoned underground hydraulic oil sumps and former tanks		
	Sump A	BH-21	••
	Sump B	BH-26	
	Sump C	BH-22	
	Sump D	BH-23	
	Sump E	BH-19	PCBs
	Sump F	BH-18	
	Sump G	BH-16	
	Sump H	BH-13, BH-27, BH-28	PCBs
	Sump I	BH-15, BH-39, BH-40	PCBs
	Sump I	BH-11, BH-41	PCBs
	Sump K	BH-42	
	Sump L	BH-43, BH-44, BH-45	
	Sump M	BH-25, BH-29, BH-30	·
	. Former Tank N	BH-24	
	Former Tank O	BH-20, BH-49, BH-50	PCBs
•	Former Tank P	BH-14 (offset)	4 0
	Former Tank Q	BH-12	
	Former Tank R	BH-17	••
	Abandoned underground oil/water collection sumps		
	Sump 2	OBG-TB-15	nickel, zinc
	Sump 3	OBG-TB-14	TCE, nickel, zinc
	Sump 6	OBG-TB-5	nickel, zinc
	Sump 7	OBG-TB-19	PCBs, copper, nickel, zinc
	Sump 8	OBG-TB-1	benzo(a)pyrene, phenol, copper, nickel, zinc
	Former electroplating sumps	OBG-TB-12, OBG- 13, OBG-16, OBG- 17	TCE, cis-1,2-DCE, methylene chloride, chromium, copper, nickel, zinc

			
Area		Surface and subsurface soil samples	Constients detected over NYSDEC TAGM 4046
	Sump 1	BH-4	copper, nickel
	Sump 3	BH-9	copper, nickel
	Sump 4	BH-5	
	Sump 5	BH-6	
•	Sump 6	BH-10 (offset)	
	Sump 7	BH-7	TCE, chromium, copper, nickel
	Former PCB Oil USTs	HA-5, HA-6	
	Paint room	BH-7, BH-9, BH- 46, BH-47, BH-48, OBG-TB-12, OBG- TB-13, OBG-TB- 16, OBG-TB-17	TCE, cis-1,2-DCE, methylene chloride, chromium, copper, nickel, zinc
	Abandoned stormwater sewer trench	OBG-TB-2,	
	Sump line 1	OBG-TB-2, OBG- TB-3	
	Sump line 5	BH-31, BH-32, BH-33, BH-34, BH-35, BH-36, BH-37, BH-38, BH-51, BH-52, BH-53, BH-54, OBG-TB-6, OBG- TB-7, OBG-TB-8, OBG-PZ-4, OBG- PZ-5, OBG-PZ-6	PCBs, residual NAPL
	Loading dock leveler sumps in the east and west receiving docks	HA-3, HA-4	
	Compactor area	HA-1	toluene, xylene
Southea	st property area		
	General miscellaneous storage area	HA-7, HA-8, SS- 99-18, SS-99-19, SS-99-20, SS-99-21	PCBs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, arsenic, copper, nickel, zinc, beryllium, iron
	Parking lot area	OBG-TB-22, OBG- TB-23	Benzo(a)pyrene, benzo(b)fluroranthene, nickel, zinc
Industr	ial waste treatment plant area	ı	
	General IWT plant area	P-13, WT-10, WT- 11, WT-12, WT-13, WT-14, WT-15, S- 11, S-12, SS-99-22, SS-99-23, SS-99- 28, SS-99-30	PCBs, chromium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)perylene, phenol, nickel, zinc

<u>Area</u>		Surface and subsurface soil samples	Constients detected over NYSDEC TAGM 4046
	Electroplating wastewater treatment tanks	HA-9, HA-10	
	Former liquid waste incineration area	HA-12, SS-99-24, SS-99-25, SS-99- 26, SS-99-27, SS- 99-31	PCBs, dioxin (2,3,7,8-TCDD equivalents), benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, chrysene, phenol, arsenic, chromium, copper, lead, nickel, zinc, beryllium, iron
	Former TCE storage area	OBG-TB-30, OBG- TB-38	nickel, zinc
	Former fuel oil tanks area	OBG-TB-31, OBG- TB-32, OBG-TB- 43, OBG-TB-44)	PCBs, copper, nickel, zinc
	SO ₂ scrubber area	HA-11	copper, nickel
Former	thinner tanks		
	Thinner spill area	T-wells, HP-BH-5, HP-4	toluene, ethylbenzene, xylene
	former transformer/switch house	OBG-TB-45, OBG- TB-46, OBG-TB-47	benzo(a)pyrene, benzo(b)fluoranthene, anthracene, benzo(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, chrysene, dibenzofuran, fluoranthene, flurorene, indeno(1, 2, 3-c,d)pyrene, phenanthrene, pyrene, beryllium, iron, nickel, zinc
Northe	ast property area	P-3, P-4, P-11, P- 12, HA-2, OBG- TB-24, OBG-TB- 36, OBG-TB-37, OBG-TB-34, OBG- TB-35, SS-99-14, SS-99-15, SS-99- 16, SS-99-17	TCE, PCBs, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, chromium, copper, nickel, zinc, beryllium, iron
Northe	rn property area		
	General northern property area	P-5, P-6, P-7, NMPC utility pole location samples, OBG-TB-25, OBG- TB-26, OBG-TB- 27, OBG-TB-28	PCBs, arsenic, chromium, copper, nickel, zinc

Area	·	Surface and subsurface soil samples	Constients detected over NYSDEC TAGM 4046
For	mer drainiage swale	003-1, 003-2, 003-3, 003-4, 003-5, 003-6, 003-7, 003-8, 003-9, 003-10, 003-11, B-1, B-2, B-3, B-4, B-5, B-6, B-7, B-8, B-9, B-10, B-11, B-12, B-13, B-14, B-15, B-16, B-17, B-18, Onondaga County Ley Creek Interceptor Sewer sampling, T5-1, T5-2, T6-1, T7-1, T8-1, T8-2, T8-3, T9-1, T10-1, T11-1, T12-1, T12-2	Chlorobenzene, PCBs, arsenic, chromium, copper, nickel, zinc, TCE
	mer storage cell ttion	S#1, S#2, S#3, S#4, S#5, S#6, S#7, S#8, S#9, S#10	PCBs
On-	site landfill	BH-1, BH-2, BH-3, SS-99-06, SS-99-07, SS-99-08, SS-99-09, SS-99-10, SS-99-11, SS-99-12, T1-1, T1-2, T1-3, T1-4, T2-1, T2-2, T2-3, T2-4, T3-1, T3-2, T3-3, T3-4, T3-5, T3-6, T4-1, T4-2, T4-3	TCE, cis-1,2-DCE, xylene, toluene, ethylbenzene, benzo(a)pyrene, benzo(b)fluoranthene, di-n-octyl-phthalate, 2-methylphenol, 4-methylphenol, 4-chloro-3-methylphenol, phenol, PCBs, arsenic, chromium, copper, nickel, zinc, barium, beryllium, mercury, iron, selenium
Clos	sed impounments	OBG-TB-29, OBG- TB-41, OBG-TB-42	PCBs, nickel, zinc
Southwest pr	operty area		
Mol	d storage building	OBG-TB-39, OBG- TB-40	TCE, nickel, zinc
Stor	age pad area	OBG-TB-20, OBG- TB-21	chromium, copper, nickel, zinc
Haz area	ardous waste storage	SS-99-01, SS-99- 02, SS-99-03, SS- 99-04	benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, phenol, chromium, copper, mickel, zinc, beryllium
Site Backgrou	und	OBG-TB-33	zinc

Surface Soil Data Summary () Table 3-5A Former IFG Facility Syracuse, NY

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-22 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-23 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-24 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-25 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-26 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-27 IWT Area 10/27/1999 0 - 1 ft.	SS-99-28 IWT Area 10/27/1999 00 - 1 ft.
Compound									P
Aroclor 1248 Aroclor 1254 Total PCBs			[4]	[8]	0.2	[13]	[3900]	[2.1]	0.8
		4		I	I			I	1

Date Printed: 03/20/2000 15:03:54
DBF File: N:0247/21535/SRUTEMPDATA.DBF
FXP File: N:0247/21535/SRUTABLEPRS.FXP

File Number: 3247.21535

1 of 12

Page

RACER0060522

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

- Exceeds TAGM Recommended Soil Cleanup criteria.

Surface Soil Data Summary () Tabte 3-5A Former IFG Facility Syracuse, NY

Detected PCB Data

	Sample ID Area Sample Date Sample Dett	TAGM Recommended Soil Cleanup mg/Kg	SS-99-29 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-30 IWT Area 10/27/1999 · 0 - 1 ft. mg/Kg	SS-99-31 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	OBG-1 OBG-3 OBG-4 LC PCB Dredgings Site LC PCB Dredgings Site LC PCB Dredgings Site LL PCB Dredgings Site L	DBG-2 C PCB Dredgings Site 1720/1986 1- 2 ft. (OBG-3 LC PCB Dredgings Site L 11/20/1986 1 0 - 2 ft. 0	BG-4 C PCB Dredgings Site 1/120/1986 -2 ft.
Compound) 1	
Aroclor 1248 Aroclor 1254		1		[11]	[14.1]		-		1
Total PCBs		1	1	-	1	[5.7]	[66]	[81]	[1.9]
-									
-									
								-	

2 of 12 Page

File Number: 3247.21535

Date Printed: 03/20/2000 15:03:54
DBF File: N:024721535\SRI\TEMPDATA DBF
FXP File: N:024721535\SRI\TABLEPRS.FXP

RACER0060523

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

() Table 3-5A Former IFG Facility Syracuse, NY

Surface Soil Data Summary **Detected PCB Data**

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-5 LC PCB Dredgings Site 11/20/1986 0 - 2 ft. mg/Kg	OBG-6 OBG-7A 131+12-132 L.C.P.C.B. Dredgings Site L.C. P.C.B. Dredgings Site N. Property Area 11/10/1986 10/30/1991 0 - 2 ft. ng/Kg mg/Kg mg/Kg	OBG-7A LC PCB Dredgings Site 11/20/1986 0 - 2 ft. ng/Kg		20+42-121+2 N. Property Area 11/12/1991 mg/Kg	20+64-120+4 N. Property Area 10/30/1991 mg/Kg	21+20-122+1 N. Property Area 10/30/1991 mg/Kg
Сотроипа									
Aroclor 1248	·	1					****		
Arodor 1254		1	1	-	-	I	ļ	-	
Total PCBs		1	[100]	[12.2.]	[2.6]	[2]	[2]	[2]	[3]

Date Printed: 03/20/2000 15:03:54
DBF File: N:0247/21535/SRI\TEMPDATA.DBF
FXP File: N:0247/21535/SRI\TABLEPRS.FXP

File Number: 3247.21535

3 of 12

Page

RACER0060524

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

II - Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-5A
Former IFG Facility
Syracuse, NY
Surface Soil Data Summary

				Detected PCB Data	PCB Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	21+20-122+1 N. Property Area 11/12/1991 mg/Kg	22+16-123+2 N. Property Area 11/06/1991 mg/Kg	23+25-124+3 N. Property Area 11/06/1991 mg/Kg	24+33-125+4 N. Property Area 11/06/1991 mg/Kg	25+42-126+5 N. Property Area 11/06/1991 mg/Kg	26+51-127+6 N. Property Area 11/16/1991 mg/Kg	27+60-128+4 N. Property Area 10/30/1991 mg/Kg
Сотроипа									
Aroclor 1248		1	1	1	1	-	-	-	
Auction 1429 Total PCBs		1	[11]	[25]	[130]	[100]	[14]	[8]	1 1
						•			
							•		
									-
						•			
RACERO									
<u> </u>									

Date Printed: 03/20/2000 15:03:54
DBF File: N/024/721535/SRIVTABLEPRS.FXP
FXP File: N/024/721535/SRIVTABLEPRS.FXP

File Number: 3247.21535

4 of 12

Page

RACER0060525

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

() Tabie 3-5A Former IFG Facility Syracuse, NY

Surface Soil Data Summary

	39 S COMP N. Property Area 0.1R/1996 0.0 - 7.0 fl. mg/Kg	1 1	1					
	37W S COMP 39 S (N. Property Area N. Pro 04/19/1996 04/15 0.0 - 7.0 ft. 0.0 - 7. mg/Kg mg/K							
		- 1	1					
	37E S COMP N. Property Area 04/19/1996 0.0 - 7.0 ft. mg/Kg	[13]	[11]					
	37CS COMP N. Property Area 04/19/1996 0.0 - 5.5 ft. mg/Kg	[5.1]	[5.1]					
Detected PCB Data	36E S COMP N. Property Area 04/19/1996 0.0 - 7.0 ft. mg/Kg	[1.4]	[1.4]					
Detected	36C S COMP N. Property Area 04/19/1996 0.0 - 7.0 ft. mg/Kg	[15]	[15]			•		
	35 S COMP N. Property Area 04/18/1996 0.0 - 7.0 ft. mg/Kg	[5]	[5]					
	TAGM Recommended Soil Cleanup n mg/Kg		1					
	Sample ID Area Sample Date Sample Depth Units							
		Compound Aroclor 1248 Aroclor 1254	Total PCBs					
Ĺ		<u>ک</u> کار	H SS					RACER

Date Printed: 03/20/2000 15:03:54
DBF File: N:0247/21535/SRIVEMPDATA.DBF
FXP File: N:0247/21535/SRIVTABLEPRS.FXP

RACER0060526

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

5 of 12

(Tablé 3-5A Former IFG Facility Syracuse, NY

Surface Soil Data Summary

				Detected]	Detected PCB Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	B-17 COMP N. Property Area 10/05/1990 0.0 - 11.0 ft. mg/Kg	LC-7-1 N. Property Area 11/01/1991 mg/Kg	OBG-TB-25 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 0 - 2 ft. mg/Kg
Compound									
Aroclor 1248	:				[3.1]	[37.1]	0.3	[2]	0.1 J
Aroclor 1254 Total PCBs			 [3848]	- 0	1 1	1	_		-
			[2: 24]	}		ı	ı	-	-
				-					
RACEF									

Date Printed: 03/20/2000 15:03:54
DBF File: N:024721535\SRNTEMPDATA.DBF
FXP File: N:024721535\SRNTABLEPRS.FXP

File Number: 3247.21535

6 of 12

Page

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.

Surface Soil Data Summary () Tabie 3-5A Former IFG Facility Syracuse, NY

Detected PCB Data

				Defected rob Data	CD Data	-			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 0 - 1 ft. mg/Kg	S#1 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#10 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#2 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#3 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#4 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft, mg/Kg	S#5 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg
Compound									-
Aroclor 1248		1	[16]	[13]	[1.8]	[3.9]	[4]	[4.9]	[5.4]
Arocior 1254 Total PCBs		1	1 -	[1.3]	[1.8]	[3.9]		[40]	 [54]
						,			[]
							-		
				*					
R									

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria. NOTES: J - estimated value, N - 1

Date Printed: 03/20/2000 15:03:54
DBF File: N:0247/21535/SRNTEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247,21535

7 of 12

Table 3-5A
Former IFG Facility Syracuse, NY

Surface Soil Data Summary

_					Detected	Detected PCB Data				
	,	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	S#6 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#7 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#8 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S#9 COMP N. Property Area 10/15/1993 0.0 - 0.5 ft. mg/Kg	S-11 COMP N. Property Area 05/30/1996 0.0 - 5.0 ft. mg/Kg	S-12 COMP N. Property Area 05/30/1996 0.0 - 5.0 ft. mg/Kg	SS-99-06 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg
	Compound							ļ		
	Aroclor 1248		- .	[6.3]	[2.7]	[3.1]	[3.6]	I	!	[2600 J]
	Aroclor 1254		1	1	1	-	·	0.032	0.027	[]
	Total PCBs		1	[6.3]	[2.7]	[3.1]	[3.6]	0.032	0.027	I
				000000000000000000000000000000000000000						
2-0000000										
000000										
-0000000										
A60000										
<u> </u>										
3000100										
RACER0										
060529	NOTES: J - estimated va	llue, N - tentative	J - estimated value, N - tentatively identified, not dete	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	C-no criteria, SB - si	te background.			:	

yo 8 Page

12

File Number: 3247,21535

Table 3-5A
Former IFG Facility
Syracuse, NY

Surface Soil Data Summary Detected PCB Data

				Detected I CD Data	CD Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-07 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-08 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-09 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-10 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-11 N. Property Area 107,6/1999 0 - 1 ft. mg/Kg	SS-99-12 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-13 N. Property Area 10726/1999 0 - 1 ft. mg/Kg
Compound									· · · · · · · · · · · · · · · · · · ·
Aroclor 1248		-		[200 J]	[30]	[5]	[31]	[3]	[3]
Aroclor 1254 Total PCBs		1	0.2	1 1	1 1	. . .			72 I
						I	I	1	1
									-
RACER									

Page 9 of 12

File Number: 3247.21535

Date Printed: 03/20/2000 15:03:54

DBF File: N/0/247/215/5/SRIVTEMPDATA.DBF

FXP File: N/0/247/215/5/SRIVTABLEPRS.FXP

RACER0060530

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-5A
Former IFG Facility
Syracuse, NY
Surface Soil Data Summary

Detected PCB Data

				Detected PCB Data	CB Data				
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 0 - 1 ft. ng/Kg	SS-99-14 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-15 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-16 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-17 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-18 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-20 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound						٠			
Aroclor 1248		I				***			0.7.1
Aroclor 1254		1	0.7.1	02.1	0.4	6.3	[7]	[18]	
Total PCBs		1	1	ŀ	ŀ	1	-		-
ŕ									
RACER									

Page 10 of 12

File Number: 3247.21535

Date Printed: 03/20/2000 15:03:54
DBF File: N:0247/21535/SRIVTEMPDATA.DBF
FXP File: N:0247/21535/SRIVTABLEPRS.FXP

ACER006053

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - πο criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-5A Former IFG Facility Syracuse, NY

Surface Soil Data Summary **Detected PCB Data**

		l			Detected t CD Data	CD Data					
	ઝ ∢ ઝ ઍ ⊃	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-21 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 0 - 1 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	SS-99-01 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-02 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-03 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	
Compound										1	
Aroclor 1248			-		[44]	0.1	0.002 J	[10]	-	[2]	
Aroclor 1254			1	0.3	1	1	1	. 1	0.4	<u> </u>	
Total PCBs			-	•	-	1	-	-	1	****	_
											_
	•										
										-	
										•	
RACER											
.: NOTES:	J - estimated value,] [] - Exceeds TAGM	N - tentatively Recommende	J - estimated value, N - tentatively identified, not detected/analyzed, - Exceeds TAGM Recommended Soil Cleanup criteria.	detected/analyzed, NC	NC - no criteria, SB - site background	background.					

11 of 12 Page

File Number: 3247.21535

Surface Soil Data Summary () Tabie 3-5A Former IFG Facility Syracuse, NY

Detected PCB Data

	Samp				OBG-TB-45		OBG-TB-47	
	Area Samt Samt Units	Area Sample Date Sample Depth Units	Recommended Soil Cleanup mg/Kg	SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	
Сотроии								
Aroclor 1248	18		1	[20 J]	1	0.3.1	011	
Aroclor 1254	54		1	, , ,	0.03		: 1	
Total PCBs				1	ŀ	1		
						•		
RACEI								
SELON R0060533	J - estimated value, N - tentatively identified, not detected/analyzed, N - Exceeds TAGM Recommended Soil Cleanup criteria.	tentatively commende	v identified, not ded Soil Cleanup criter	etected/analyzed, NC	NC - no criteria, SB - site background.	background.		

Date Printed: 03/20/2000 15:03:54
DBF File: N:024721535/SRNTEMPDATA.DBF
FXP File: N:024721535/SRNTABLEPRS.FXP

File Number: 3247.21535

12 of 12

Page

() Tabie 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary **Detected PCB Data**

	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	HA-6 Bldg. 08/10/1995 6.0 - 8.0 ft. mg/Kg	BH-32 Bidg. ASWS Trench 04/02/1996 9.0 - 10.8 ft. mg/Kg	BH-33 Bldg. ASWS Trench 04/02/1996 8.0 - 9.7 ft. mg/Kg	BH-34 Bidg. ASWS Trench 04/03/1996 10.0 - 10.8 ft. mg/Kg	BH-35 Bidg. ASWS Trench 04/03/1996 9.0 - 10.3 ft. mg/Kg	BH-36 Bldg. ASWS Trench 04/03/1996 10.5 - 12.2 ft. mg/Kg	BH-37 Bldg. ASWS Trench 04/03/1996 10.0 - 12.1 ft. mg/Kg
Compound								1))
Aroclor 1016	5	10	1	1		***		0.48	
Aroclor 1242	ć	10	-		-	ï	1	2	
Aroclor 1248	}	10	0.41	1.2	7.6	[32]	[2700]	J	[4300]
Araclor 1254	1	10	ļ	ı	1	, 1	·	1	[202]
Aroclor 1260	(10	1		-	1	1	1	-
Total PCBs		10	0.41	12	7.6	[32]	[2700]	0.48	[4300]
BACED									
33 SELON 0060534	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identified, not o	ected/analyzed,	NC - no criteria, SB - site background.	background.				

NOTES:

Date Printed: 03/20/2000 15:04:25
DBF File: N:0247/21535/SRIVTEMPDATA DBF
FXP File: N:0247/21535/SRIVTABLEPRS.FXP

File Number: 3247.21535

1 of 32

() Table 3-5B Former IFG Facility Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	BH-38 Bldg. ASWS Trench 04/04/1996 12.1 - 12.8 ft. mg/Kg	BH-52 Bidg. ASWS Trench 04/12/1996 7.5 - 8.7 ft. mg/Kg	BH-53 Bldg. ASWS Trench 04/12/1996 12.5 - 12.9 ft. mg/Kg	BH-54 Bldg. ASWS Trench 04/12/1996 12.0 - 12.8 ft. mg/Kg	BH-11 Bldg, Oil Sumps/Tanks 08/02/1995 11.0 - 12.1 ft. mg/Kg	BH-11 Bldg. Oil Sumps/Tanks 08/02/1995 08/02/1995 11.0 - 12.1 ft. 11.0 - 12.0 ft. 70 - 80.ft. mg/Kg mg/Kg	BH-13 Bldg. Oil Sumps/Tanks 08/04/1995 7.0 - 8.0 ft. mg/Kg
Compound									,
Aroclor 1016		10		1		-			
Aroclor 1242		10	1	-	-	-	1	1	-
Aroclor 1248		10	0.33	0.8	0.036	1.1	[38]	1.2	[47]
Aroclor 1254		10	1	1	1	-	·	! !	[]
Aroclor 1260		10		1	I	0.027		ı	1
Total PCBs		10	0.33	0.8	0.036	1.127	[38]	1.2	[47]
					-				
									000
NOTES: J - estimated valu	re, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed,] - Exceeds TAGM Recommended Soil Cleanup criteria.	etected/analyzed, NC	NC - no criteria, SB - site background.	background.				

File Number: 3247.21535

2 of 32

Table 3-5B
Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	BH-14 Bldg, Oil Sumps/Tanks E 08/07/1995 7.0 - 8.0 ft.	BH-15 Bldg. Oil Sumps/Tanks 08/02/1995 7.0 - 9.0 ft. mg/Kg	BH-16 Bldg, Oil Sumps/Tanks 08/03/1995 9.0 - 11.0 ft. mg/Kg	BH-15 BH-16 BH-17 Bldg, Oil Sumps/Tanks Bldg, Oil Sumps/Tanks Bldg, Oil Sumps/Tanks O8/03/1995 7.0 - 9.0 ft. 5.0 - 7.0 ft. mg/Kg mg/Kg mg/Kg	BH-18 Bldg. Oil Sumps/Tanks 08/04/1995 7.0 - 7.9 ft. mg/Kg	BH-18 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks 08/04/1995 7.0 - 7.9 ft. mg/Kg mg/Kg mg/Kg	BH-21 Bldg. Oil Sumps/Tanks 08/08/1995 8.0 - 9.0 ft. mg/Kg
Compound									
Aroclor 1016		10				-			
Aroclor 1242		10	1	1	-		ı	ı	
Aroclor 1248		10	3.2	[21]	0.37	6.3	0.061	[13]	3.2
Araclor 1254		10	1	-	1	ı	1		
Aroclor 1260		10	-	1			****	1	1
Total PCBs		10	3.2	[21]	0.37	63	0.061	[13]	3.2
					,				
RACER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ly identified, not or led Soil Cleanup crite	letected/analyzed, NC	- no criteria, SB - site b	ackground.				

Date Printed: 03/20/2000 15:04:25
DBF File; N:0247/2153/SRNTEMPDATA.DBF
EXP File; N:0247/2153/SRNTABLEPRS.FXP

3 of 32

() Table 3-5B Former IFG Facility Syracuse, NY

Syracuse, NY Subsurface Soil Data Summary

,		١
(١
ļ		
ì		
,	į	Ľ
٠	Š	
•	ċ	į
í		

	S S S S J	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	BH-22 Bldg, Oil Sumps/Tanks I 08/04/1995 8.0 - 9.0 ft.	3H-23 3ldg. Oil Sumps/Tanks 8/04/1995 1.0 - 7.7 ft. ng/Kg	BH-25 Bldg, Oil Sumps/Tanks 04/01/1996 3.0 - 5.3 ft. mg/Kg		BH-27 Bldg. Oil Sumps/Tanks 04/02/1996 7.5 - 9.0 ft. mg/Kg	BH-27 Bldg. Oil Sumps/Tanks O402/1996 7.5 - 9.0 ft. 7.5 - 9.0 ft. 7.0 - 8.5 ft. mg/Kg mg/Kg	BH-29 Bldg, Oil Sumps/Tanks 10402/1996 7.0 - 8.5 ft. mg/Kg
Сотроила						•				ı
Aroclor 1016	9.		10				1			
Araclor 1242	12		- 01	1	ı	1	1			1
Aroclor 1248	90		10	7.7	0.35	0.26	0.4	9.6	0.27	0.12
Araclor 1254	4		01	-	-	-	1	I		-
Aroclor 1260	0.	TO THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE	10	1	1	0.068	ı	I	1	-
Total PCBs			10	7.7	0.35	0.328	0.4	9.6	0.27	0.12
RACER0										
NOTES:	J - estimated value, l	N - tentativel Recommend	J - estimated value, N - tentatively identified, not detected/analyzed - Exceeds TAGM Recommended Soil Cleanup criteria.	cted/analyzec	I, NC - no criteria, SB - site background	ackground.				

Date Printed: 03/20/2000 15:04:25 DBF File: N/U247/21535/SRUTEMPDATA DBF FXP File: N/U247/21535/SRUTABLEPRS.FXP

4 of 32

(Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

John	Jara
-	-
٥	3
ζ)
Δ	4
₹	,
9	9
ξ	3
3	3
4	٥

	Sample ID Area Sample Deta	TAGM Recommended	BH-30 Bldg. Oil Sumps/Tanks	BH-39 Bldg. Oil Sumps/Tanks B	BH-40 Bldg. Oil Sumps/Tanks	BH-40 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks	BH-42 Bldg. Oil Sumps/Tanks	BH-43 Bidg. Oil Sumps/Tanks	BH-45 Bildg, Oil Sumps/Tanks
	Sample Date Sample Depth Units	Soll Cleanup mg/Kg	04/02/1996 (8.5 - 9.5 ft. 1 mg/Kg r	04/04/1996 12.8 - 13.8 ft. mg/Kg	04/09/1996 13.0 - 13.8 П. mg/Kg	04/09/1996 12.0 - 13.5 ft. mg/Kg	04/10/1996 7.0 - 7.7 ft. mg/Kg	04/10/1996 11.0 - 12.5 ft. mg/Kg	04/10/1996 15.0 - 17.0 ft. mg/Kg
Compound									
Aroclor 1016		10		1		-			
Aroclor 1242		10	1	-	1	1	-	ı	•
Aroclor 1248		10	0.49	99:0	0.082	[25]	2.7	1.1	0.061
Arocior 1254		01	1		-	, ,]	1		1000
Aroclor 1260		10		1		I	1		-
Total PCBs		10	0.49	990	0.082	[25]	2.7		0.061
		-							
RACER									
NOTES:	ed value, N - tentative ds TAGM Recommen	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	detected/analyzed, NC	- no criteria, SB - site	background.				

RACER0060538

Date Printed: 03/20/2000 15:04:25 DBF File: N:U24721535/SRNTEMPDATA DBF FXP File: N:U24721535/SRNTABLEPRS.FXP

File Number: 3247.21535

5 of 32

() Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	BH-49 Bldg, Oil Sumps/Tanks E 04/12/1996 10.8 - 11.9 ft.	DBG-TB-17 Bldg, Paint Room 77/19/1999 8 ft. ng/Kg	OBG-TB-15 Bldg.Sump#2 07/16/1999 14-16 ft. mg/Kg	OBG-TB-15 Bldg. Sump #2 07/16/1999 3 - 5 ft. mg/Kg	OBG-TB-15 Bldg. Sump #2 07/16/1999 7-9 ft. mg/Kg	OBG-TB-15 Bldg, Sump #2 07/16/1999 9 - 11 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 4 - 6 ft. mg/Kg
Compound									
Aroclor 1016		10			Ī	-	-	-	
Aroclor 1242 Aroclor 1248		10	0.11	0.002 J	0.003 J	02.5		0	
Aroclor 1254 Aroclor 1260		10	1	1	-	ı	- 1		. 1
Total PCBs		10	0.11	I I	I I	I I		1 1	1 1
	-		-						
					1				
							•		
R/	ene date da succession	000000000000000000000000000000000000000							

Date Printed: 03/20/2000 15:04:25
DBF File: N/0247/21535/SRIVTEMPDATA.DBF
FXP File: N/0247/21535/SRIVTABLEPRS.FXP

RACER0060539

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

P-Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

6 of 32

Former IFG Facility Table 3-5B Syracuse, NY

Subsurface Soil Data Summary

52
ĊŢ.
А
CB
Ÿ
4
굯
<u>ٽ</u>
ũ
프
3

					-					
		Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 6 - 8 ft. mg/Kg.	OBG-TB-14 Bldg. Sump #3 07/16/1999 8 - 10 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 2 - 4 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 4 - 6 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 6 - 8 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 1 - 3 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 5 - 7 ft. mg/Kg
Compound										
Aroclor 1016	9		10	1						
Aroclor 1242	2		10	1		-		1	-	-
Aroclor 1248	∞		10	3	6	2	1	0.5	5 U	0.0
Aroclor 1254	4		01		ł			? -	}	6.0
Aroclor 1260	0		10	1	1	-		-		
Total PCBs			10	1	1	1	1	1	1 1	1 1
							-			
RACER										
NOTES:	J - estimated value	e, N - tentativel M Recommend	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	cted/analyzed,	NC - no criteria, SB - site background.	e background.				

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/21535/SRITEMPDATA.DBF FXP File: N:0247/21535/SRITABLEPRS.FXP

File Number: 3247.21535

7 of 32

Table 3-5B
Former IFG Facility
Syracuse, NY

Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-19 Bidg. Sump #7 077201999 7 - 9 ft.	OBG-TB-01 Bldg. Sump #8 07/06/1999 3 - 5 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 5 - 7 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 7 - 9 ft. mg/Kg	P-13 IWT Area 07/16/1985 7.0 - 9.0 ft. mg/Kg	WT-13 IWT Area 12/12/1985 2.0 - 4.0 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg.
Compound									ı
Aroctor 1016		10		1					
Aroclor 1242		- 01	1	-	I	1	1	81	_
Aroclor 1248		10	[140]	0.5	0.5	0.5	0.14	1	0.007 J
Aroclor 1254		10	1	T	1	1	1	1	
Aroclor 1260		10			1	1	1	1	1
Total PCBs		10	1	1	1	•	0.14	1.8	
									-
RACERO							٠		
NOTES:	ed value, N - tentative s TAGM Recommen	J - estimated value, N - tentatively identified, not dete	detected/analyzed, N(rria.	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	e background.				

Date Printed: 03/20/2000 15:04:25
DBF File: N:U24721535/SRUTEMPDATA DBF
FXP File: N:U24721535/SRUTABLEPRS.FXP

32

% of

Page

Table 3-5B Former IFG Facility Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup n mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 6 - 8 ft. mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-30 OBG-TB-30 IWT TCE Storage Area IWT TCE Storage Area 10/19/1999 4 - 6 ft. 6 -8 ft. mg/Kg
Compound									
Aroclor 1016		10		-			-		
Aroclor 1242		10	1	1	1	1	1	1	
Aroclor 1248		10	0.01 J	0.004 J	0.004 J	[190]	0.3	0.009 J	0.01
Aroclor 1254			1	1	1	1		1	1
Aroclor 1260		10	1	**************************************		-		l	1
Total PCBs		10	1	1	1	-	1	1	1
RACE									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	vely identified, not a	detected/analyzed, NC ria.	no criteria, SB - site	background.				

Date Printed: 03/20/2000 15:04:25 DBF File: N/3247/21535/SRNTEMPDATA DBF FXP File: N/3247/21535/SRNTABLEPRS.FXP

File Number: 3247,21535

33

of of

Table 3-5B Former IFG Facility Syracuse, NY Subsurface Soil Data Summary

ubsurface Soil Data Summar Detected PCB Data

	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-38 IWT TCE Storage Area 10/21/1999 12 - 14 ft. mg/Kg	OBG-3 OBG-3 OBG-3 OBG-3 Area LC PCB Dredgings Site LC PCB Dredgings Site 11/20/1986 11/20/1986 2 - 4 ft. 10 - 12 ft. 10 - 12 ft. 10 - 18/Kg mg/Kg mg/Kg	OBG-3 LC PCB Dredgings Site 11/20/1986 10 - 12 ft. mg/Kg	OBG-3 LC PCB Dredgings Site 11/20/1986 2 - 4 ft. mg/Kg	OBG-3 LC PCB Dredgings Site 11/20/1986 4 - 6 ft. mg/Kg	OBG-3 LC PCB Dredgings Site 11/20/1986 8 - 10 ft. mg/Kg	OBG4 LC PCB Dredgings Site 11/20/1986 4 - 6 ft.
Compound))
Aroclor 1016		10				B117			
Aroclor 1242		10	-	1		-			l
Aroclor 1248		10	0.003 J	-	ı	1	ı	-	
Aroclor 1254		10	1	-	1	-	I	1	
Aroclor 1260		10		1	-	:	1	-	ı
Total PCBs		10	-	24	1.5	[58]	[30]	7.1	[241]
NOTES: J-esti	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identified, not de ided Soil Cleanup criteri	rected/analyzed, NC a.	- no criteria, SB - site b	ackground.				

Date Printed: 03/20/2000 15:04:25
DBF File: N:024721535/SNUXTEMPDATA DBF
FXP File: N:024721535/SRUXTABLEPRS.FXP

10 of 32

Page

Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary Detected PCB Data

				Detected I CD Data	Data				
· .	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-4 LC PCB Dredgings Site L 11/20/1986 8 - 10 ft. mg/Kg	OBG-6 LC PCB Dredgings Site 11/10/1986 2 - 4 ft. ng/Kg	OBG-6 LC PCB Dredgings Site 11/10/1986 4 - 6 ft. mg/Kg	OBG-6 OBG-6 OBG-7A OBG-7A OBG-7A LC PCB Dredgings Site LC PCB Dredgings	DG-6 C PCB Dredgings Site L. 1/10/1986 116 - 10 ft. 11	BG-7A C PCB Dredgings Site 1. 1/20/1986 1 1-12 ft. 2	BG-7A C PCB Dredgings Site 170/1986 - 4 ft.
Compound									•
Aroclor 1016		10						***	
Aroclor 1242 Aroclor 1248		10 10	1 1	1 1	1 1	1 1	1	-	1
Aroclor 1254 Aroclor 1260		10	1 1	1 1	1 1	1		I I	
Total PCBs		10	1.1	[61]	[467]	[187]	[89]	F3	
							l.		
				200000000000000000000000000000000000000	20000000000000000000000000000000000000				

Page 11 of

32

Date Printed: 03/20/2000 15:04:25
DBF File: N:0247/21535/SRIVTEM/PDATA DBF
FXP File: N:0247/21535/SRIVTABLEPRS.FXP

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

NOTES:

File Number: 3247,21535

Tabře 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary **Detected PCB Data**

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-7A CLC PCB Dredgings Site L 11/20/1986 14 - 6 ft. 8 mg/Kg n	OBG-7A SLC PCB Dredgings Site 11/20/1986 8 - 10 ft. mg/Kg	OBG-7B • LC PCB Dredgings Site 11/20/1986 10 - 12 ft. mg/Kg	OBG-7B OBG-7B LC PCB Dredgings Site LC PCB Dredgings Site 11/20/1986 10 - 12 ft. 6 - 8 ft. mg/Kg	OBG-7C OBG-7C OBG-7C OBG-7C LC PCB Dredgings Site LC PCB Dredgings Site LC PCB Dredgings Site L1/20/1986 11/20	OBG-7C LC PCB Dredgings Site 1 11/20/1986 1 - 6 ft.	OBG-7C LC PCB Dredgings Site 11/20/1986 6 - 8 ft.
Compound									0
Aroclor 1016	•	10	-					****	
Aroclor 1242		10	1	1		-		1	-
Aroclor 1248		10	1		-	I	1	-	
Aroclor 1254		10			;		_	****	
Aroclor 1260		10	-	1	1	1	ı	١	
Total PCBs		10	[11.2]	8.0	3.1	[216]	[21:4]	[15.8]	[37.1
RACE									
NOTES: J - estimate	d value, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	detected/analyzed, NC ria.	- no criteria, SB - site	background.	,			

File Number: 3247.21535

12 of 32

Page

Date Printed: 03/20/2000 15:04:25
DBF File: N/0247/21535/SRN/TEMPDATA DBF
FXP File: N/0247/21535/SRN/TABLEPRS.FXP

Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	003-1 N. Property Area 12/05/1985 2.0 - 4.0 ft. mg/Kg	003-1 N. Property Area 12/05/1985 6.0 - 8.0 ft. mg/Kg	003-10 N. Property Area 12/12/1985 6.0 - 8.0 ft. mg/Kg	003-2 N. Property Area 12/05/1985 2.0 - 4.0 ft. mg/Kg	003-2 N. Property Area 12/05/1985 4.0 - 6.0 ft. mg/Kg	003-3 N. Property Area 12/06/1985 2.0 - 4.0 ft. mg/Kg	003-4 N. Property Area 12/06/1985 mg/Kg
Compound .									,
Aroclor 1016		10	1						
Aroclor 1242		01	1	0.5	4.2	1	[17]	9.1	
Aroclor 1254		10 10	[16] 	1 3	1	[46]	1	l	1
Aroclor 1260		10	I	1	1	10			
Total PCBs		10	[16]	0.5	42	[6'08]	[21]	26	[35.6]
									,

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:25

DBF File: N:024721535/SRI/TEMPDATA.DBF

FXP File: N:024721535/SRI/TABLEPRS.FXP

File Number: 3247.21535

Page 13 of 32

() Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary Detected PCB Data

				Detected PCB Data	CB Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	003-4 N. Property Area 12/06/1985 8.0 - 10.0 ft. mg/Kg	003-5 N. Property Area 12/06/1985 10.0 - 12.0 ft. mg/Kg	003-5 N. Property Area 12/06/1985 4.0 - 6.0 ft. mg/Kg	003-5 N. Property Area 12/06/1985 6.0 - 8.0 ft. mg/Kg	003-5 N. Property Area 12/06/1985 8.0 - 10.0 ft. mg/Kg	003-6 N. Property Area 12/06/1985 6.0 - 8.0 ft. mg/Kg	003-7 N. Property Area 12/06/1985 4.0 - 6.0 ft. mg/Kg
Compound									
Aroclor 1016		10	B						
Aroclor 1242		10	1	0.54	[260]	4	1.8	ļ	[750]
Aroclor 1248		10	3.2		I	1	-	61	, ,
Aroclor 1254		10	ŀ	1	1	-	1	-	1
Aroclor 1260		10	-	-	6.2	-	-	I	1
Total PCBs		10	3.2	0.54	[566.2]	4	1.8	19	[750]
NOTES: J - estimate	d value, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	detected/analyzed, NCria.	? - no criteria, SB - site	background.				

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/2153S/SRIATEMPDATA.DBF FXP File: N:0247/2153S/SRIATABLEPRS.FXP

File Number: 3247.21535

32

14 of

Page

RACER0060547

Table 3-5B
Former IFG Facility
Syracuse, NY

Subsurface Soil Data Summary

Detected PCB Data

	1								
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	003-8 N. Property Area 12/12/1985 2.0 - 4.0 ft. mg/Kg	003-8 N. Property Area 12/12/1985 4.0 - 5.5 ft. mg/Kg	003-8 N. Property Area 12/12/1985 5.5-7.5 ft. mg/Kg	003-8 N. Property Area 12/12/1985 7.5 - 9.5 ft. mg/Kg	003-8 N. Property Area 12/12/1985 9.5 - 11.5 ft. mg/Kg	003-9 N. Property Area 12/12/1985 4.0 - 6.0 ft. mg/Kg	003-9 N. Property Area 12/12/1985 6.0 - 8.0 ft. mg/Kg
Compound									
Ároclor 1016		10				.1			
Aroclor 1242		- 01	[27]	[55]	1.2	[410]	0.52	[8000]	[2400]
Aroclor 1248		10	-		1	-		-	1
Aroclor 1254		10	1	1	-	-	1	1	
Aroclor 1260		10	0.53	1.2		5.9	I	1	-
Total PCBs		10	[27.53]	[562]	12	[415.9.]	0,52	[8000]	[2400]

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Page 15 of 32

File Number: 3247.21535

Date Printed: 03/20/2000 15:04-25 DBF File: N/0247/21535/SRIVTEMPDATA DBF FXP File: N/0247/21535/SRIVTABLEPRS.FXP

RACER006054

()
Table 3-5B
Former IFG Facility
Syracuse, NY

Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

				T Bassas	CD Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	122.0 N. Property Area 11/01/1991 17 ft. mg/Kg	123.4 N. Property Area 11/01/1991 8 ft. mg/Kg	124 N. Property Area 11/01/1991 8 N. mg/Kg	124.0 N. Property Area 11/01/1991 8 ft. mg/Kg	127.1 N. Property Area 11/01/1991 10 ft. mg/Kg	127.41 N. Property Area 11/01/1991 6 ft. mg/Kg	129.5 N. Property Area 11/01/1991 10 ft. mg/Kg
Compound									
Aroclor 1016 Aroclor 1342		10	1	1			1	1	
Aroclor 1248		. 10		1 1		1 1	1 1	1	1
Aroctor 1254		10	-	1	***	1	! !	l I	
Aroclor 1260 Total PCBs		10 10	 [87]	[190]	[006]	[15]	[81]	[01]	— [130]
RACERO									

Date Printed: 03/20/2000 15:04:25
DBF File: N\0.3472.155\SRRITEMPDATA.DBF
FXP File: N\0.3472.155\SRRITABLEPRS.FXP

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.

NOTES:

File Number 3247 2

16 of 32

() Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

Detected PCB Data

				Detected I CD Data	CD Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	129.5 N. Property Area 11/01/1991 5 ft. mg/Kg	35 S N. Property Area 04/18/1996 7 ft. mg/Kg	37E S N. Property Area 04/19/1996 4.0 ft. mg/Kg	37E S N. Property Area 04/19/1996 5 ft. mg/Kg	37E S N. Property Area 04/19/1996 6 ft. mg/K.g	39 S N. Property Area 04/18/1996 5 ft. mg/Kg	39 S N. Property Area 04/18/1996 6 ft. mg/Kg
Compound									
Aroclor 1016		10	1	*	1				, bas
Aroclor 1242		10	-	1	l	ı	1	[10.5]	7.5
Aroclor 1248		10	l	1.7	[10.6]	[16]	2.4		-
Aroclor 1254		01	1	-		1		;	
Aroclor 1260		10	1	-	1	ı	1	1	-
Total PCBs		10	4	17	[10.6]	[16]	2.4	[10.5]	7.5
						•			
RACE				-					

Date Printed: 03/20/2000 15:04:25
DBF File: N:024721535\SRNTEMPDATA.DBF
FXP File: N:024721535\SRNTABLEPRS.FXP

File Number: 3247.21535

17 of 32

Page

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

NOTES:

() Table 3-5B Former IFG Facility

Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Area Sample Date Sample Depth Units	Recommended Soil Cleanup mg/Kg	N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	D-1 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-10 N. Property Area 04/27/1990 10.0 - 12.0 ft. mg/Kg	B-10 N. Property Area 04/27/1990 2.0 - 4.0 ft. mg/Kg	B-10 N. Property Area 04/27/1990 4.0 - 6.0 fl. mg/Kg	B-10 N. Property Area 04/27/1990 6.0 - 8.0 ft. mg/Kg	B-10 N. Property Area 04/27/1990 8.0 - 10.0 ft. mg/Kg	
Compound										
Aroclor 1016		10		1	1			*****		\neg
Aroclor 1242		10	[5200]	[2500]	[36]	[21]	[1200]	[460]	[2400]	35000
Aroclor 1248		10	1	1		ļ	1	. 1	.	Ø
Aroclor 1254		10	1	1		1	- 1	l	-	3,450
Aroclor 1260		10	1	I	-	-	1	1	ı	99
Total PCBs		10	[5200]	[2500]	[36]	[21]	[1200]	[460]	[2400]	3000000
									•	erdsor.
										30000000
									-	1000000
										666,000
										1000
										6.000
RACE										
NOTES: J.	J - estimated value, N - tentatively identified, not detected/analyzed, not detected/analyzed, Roceeds TAGM Recommended Soil Cleanun criteria.	ly identified, no	:cted/analyzed,	NC - no criteria, SB - site background	te background.					-

Page 18 of 32

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/21535/SRNTEM/PDATA.DBF EXP File: N:0247/21535/SRNTABLEPRS.FXP

Subsurface Soil Data Summary () Table 3-5B Former IFG Facility Syracuse, NY

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	B-11 N. Property Area 04/27/1990 2.0 - 4.0 ft. mg/Kg	B-11 N. Property Area 04/27/1990 4.0 - 6.0 ft. mg/Kg	B-11 N. Property Area 04/27/1990 6.0 - 8.0 ft. mg/Kg	B-11 N. Property Area 04(27/1990 8.0 - 10.0 ft, mg/Kg	B-13 N. Property Area 04/27/1990 6.0 - 8.0 ft. mg/Kg	B-14 N. Property Area 04/27/1990 8.0 - 10.0 ft. mg/Kg	B-15 N. Property Area 04027/1990 20.0-4.0 ft. mg/Kg
Compound									
Aroclor 1016		10		1					
Aroclor 1242		01	[1200]	[3300]	8.3	[2]]	[33]	7.2	1961
Aroclor 1248		10	1	1		`. 			
Aroclor 1254		01	1	1	-	ı	1	1	1
Aroclor 1260		10		1	1	-		-	1
Total PCBs		10	[1500]	[3300]	8.3	[21]	[33]	7.2	[99]
			-						
-									
BACER									
NOTES:	ue, N - tentative GM Recommen	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	etected/analyzed, NC ia.	NC - no criteria, SB - site background	background.				

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/21535/SRNTEMPDATA.DBF FXP File: N:0247/21535/SRNTABLEPRS.FXP

RACER0060552

File Number: 3247.21535

19 of 32

Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary Detected PCB Data

	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	B-15 N. Property Area 04/27/1990. 8.0 - 10.0 ft. mg/Kg	B-16 N. Property Area 04/27/1990 2.0 - 4.0 ft. mg/Kg	B-2 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	B-2 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-3 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	B-3 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-3 N. Property Area 04/18/1990 8.0 - 10.0 ft. mg/Kg
Сотроинд	:								
Aroclor 1016		10		1		1		1	
Aroclor 1242 Aroclor 1248		10	[25]	9	[3500]	[2600]	[0096]	[1100]	
Aroclor 1254		01	1	l					:]
Aroclor 1260		10	1		1		-	1	
Total PCBs		10	[25]	9	[3500]	[2600]	[0096]	[1100]	7

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

RACER0060553

Date Printed: 03/20/2006 15:04.25

DBF File: N:V3.47/21535/SRI/ITEMPDATA.DBF

FXP File: N:V3.47/21535/SRI/ITABLEPRS.FXP

File Number: 3247,21535

20 of 32

Page

Tabie 3-5B Former IFG Facility Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	B-4 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	B-4 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-5 N. Property Area 04/18/1990 2.0 - 4.0 ft. mg/Kg	B-5 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	B-5 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-6 N. Property Area 04/18/1990 2.0 - 4.0 ft. ng/Kg	B-6 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg
Compound	i								
Aroclor 1016 Aroclor 1242		10					1 3	Γ	****
Aroclor 1248		10	[62]		[e] 	140	ا و	7	6
Aroclor 1254		10	1	1	1	1			
Aroclor 1260 Total PCBs		10		 F1601	1 2		- ,		
			7			[0 5 1]	0		6
RACER			-						
NOTES: J - estimated valu	ie, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed, Exceeds TAGM Recommended Soil Cleanup criteria.		NC - no criteria, SB - site background.	background.				

Date Printed: 03/20/2000 15:04:25 DBF File: N/024721535/SRIVTEMPDATA.DBF FXP File: N/024721535/SRIVTABLEPRS.FXP

File Number: 3247.21535

Page 21 of 32

() Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

Detected PCB Data

						C - D - M - C - C - C - C - C - C - C - C - C				
		Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	B-6 N. Property Area 04/18/1990 6.0 - 8.0 ft. mg/Kg	B-7 N. Property Area 04/18/1990 4.0 - 6.0 ft. mg/Kg	BH-1 N. Property Area 08/14/1995 9.0 - 10.0 ft. mg/Kg	BH-2 N. Property Area 08/14/1995 8.0 - 10.0 ft. mg/Kg	LC-3-11 N. Property Area 11/01/1991 5 - 5.5 ft. mg/Kg	LC-4-11 N. Property Area 11/0/1/1991 4 - 5.5 ft. mg/Kg	LC4-13 N. Property Area 11/01/1991 6 - 6.5 R. mg/Kg
Compound	pu pu									
Aroclor 1016	1016	-	10		-					
Aroclor 1242	1242		01	[1500]	[12]	I	1	1		
Aroclor 1248	1248		10	-	I	4.6	17	-		
Arodor 1254	1254		01	1	I		: 1]	l	I
Aroclor 1260	1260		10	1	I	-	1			
Total PCBs	:Bs		10	[1500]	[12]	4.6	3.7	2.7	l 8	
RACER										
NOTES: 0060555		ie, N - tentativel	J - estimated value, N - tentatively identified, not dek	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. - Exceeds TAGM Recommended Soil Cleanup criteria.	7 - no criteria, SB - site	e background.		į		

File Number: 3247.21535

32

22 of

Page

Date Printed: 03/20/2000 15:04:25
DBF File: N:02472 1535/SRNTEMPDATA.DBF
FXP File: N:024721535/SRNTABLEPRS.FXP

Table 3-5B
Former IFG Facility

Syracuse, NY
Subsurface Soil Data Summary

Detected PCB Data

	Complett								
	Area Area Sample Date Sample Depth Units	Recommended Soil Cleanup mg/Kg	LC-4-20 N. Property Area 11/01/1991 9.5 - 10 ft. mg/Kg	LC-5-13 N. Property Area 11/01/1991 6 - 6.5 ft. mg/Kg	LC-5-17 N. Property Area 11/01/1991 8 - 8.5 ft. mg/Kg	LC-5-3 N. Property Area 11/01/1991 1 - 1.5 ft. mg/Kg	LC-6-13 N. Property Area 11/01/1991 6 - 6.5 ft. mg/Kg	LC-6-13 N. Property Area 11/01/1991 9 - 9.5 ft. mg/Kg	LC-6-3 N. Property Area 11/01/1991 1 - 1.5 ft. mg/Kg
Compound									
Aroclor 1016 Aroclor 1242		10	1 1	1 1	1 1				
Aroclor 1248		10		I	1	I	ı		
Aroclor 1254 Aroclor 1260		10	1	1	1	1	-		1
Total PCBs		01	[2100]	4.6	23	[12]	2.5	91	3.6
									,
RACER									

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/2153/SRIVTEMPDATA.DBF FXP File: N:0247/2153/SRIVTABLEPRS.FXP

RACER0060556

NOTES:

J. estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.

23 of 32

Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary

_
-23
ಷ
\Box
8
U
ቯ
Ţ
2
ټ
=
2
_

	Sample ID	TAGM	St at Sao	25 01 000	76 dr 000	26 010		ı	
	Area Sample Date Sample Depth Units	Recommended Soil Cleanup mg/Kg	N. Property Area 10/19/1999 10 - 12 ft. mg/Kg	ODG-15-25 10/19/1999 2 - 4 ft. mg/Kg	N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	O.D.C1.D-2.0 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	Obc-18-2/ N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 12 - 14 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg
Compound									
Aroclor 1016		10		-		-11			
Aroclor 1242		10	90'0	1	1	I	-	[44]	-
Aroclor 1248		10	1	0.2	1	0.005 NJ	ı		٠ .
Aroclor 1254		10	:	1	1	-	0.3	1	ı I
Aroclor 1260		10	1	-		1	1	-	-
Total PCBs		01	1	l	1	1	J	-	
				•					

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:25
DBF File: N/3247/21535/SRIVIEM/PDATA.DBF
FXP File: N/3247/21535/SRIVIABLEPRS.FXP

File Number: 3247,21535

24 of 32

Page

RACER006055

Tabie 3-5B Former IFG Facility Syracuse, NY

Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

Sam			OBG-TB-29	OBG-TB-29	OBG-TB-41	0BG-TB-41	OBG-TB-42	OBG-TB-42	P.7
유민국의	Area Sample Date Sample Depth Units	Recommended Soil Cleanup mg/Kg	N. Property Area 10/19/1999 2 - 4 ft. mg/Kg	N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	N. Property Area 10/21/1999 10 - 12 ft. mg/Kg	N. Property Area 10/21/1999 6 - 8 ft. mg/Kg	N. Property Area 10/25/1999 32 - 34 ft. mg/Kg	⁴ rea	N. Property Area 07/28/1985 4.0 - 6.0 ft. mg/Kg
									,
l	!	10				-		-	
		10	1	I	-	-	-	-	-
:		10	0.3	0.3	0.003 J	0.008 J	0.2.J	0.02	ļ
		10	1		1	-	1	! !	1
į.		10		!		1	1	-	-
		10	1	-	1	1	ı	ı	[25]
223042									
30000									
33333						,		,	
30000									
3333									
20000000									
						-			

Date Printed: 03/20/2000 15:04-25
DBF File: N:0247/21535/SRN/TEMPDATA.DBF
FXP File: N:0247/21535/SRN/TABLEPRS.FXP

SELON ACER0060558

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

Page 25 of 32

Syracuse, NY Subsurface Soil Data Summary () Tabie 3-5B Former IFG Facility

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T01-1 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-2 N. Property Trench 11/01/1999 8 n. mg/Kg	T01-3 N. Property Trench 11/02/1999 8.5 ft. mg/Kg	T01-4 N. Property Trench 11/02/1999 9 ft. mg/Kg	T02-1 N. Property Trench 11/03/1999 8 N. mg/Kg	T02-2 N. Property Trench 11/03/1999 5.5 ft. mg/Kg	N. Property Trench 11/03/1999 9 ft. mg/Kg
Compound									
Aroclor 1016		10				***			
Aroclor 1242		10	1	1	1	1	1	1	-
Aroclor 1248		10	[1200 J]	[1500]	[1000]	6	2	[26]	[2700]
Aroclor 1254		- 01	Ŧ	1		ı	. 1	·	
Aroclor 1260		10	1	-		• 1	1	-	-
Total PCBs		10	-		1	1	ı		1
DACEDI									
NOTES: J - estimated va	alue, N - tentative AGM Recommen	J - estimated value, N - tentatively identified, not detected/analyzed, Exceeds TAGM Recommended Soil Cleanup criteria.	etected/analyzed, NC ia.	NC - no criteria, SB - site background.	background.				

Date Printed: 03/20/2000 15:04:25
DBF File: N:024721535\SRIVTEMPDATA.DBF
FXP File: N:024721535\SRIVTABLEPRS.FXP

File Number: 3247.21535

26 of 32

RACER0060559

Tabie 3-5B Former IFG Facility Syracuse, NY Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T02-4 N. Property Trench 11/04/1999 5 ft. mg/Kg	T03-1 N. Property Trench 11/03/1999 6 ft. mg/Kg	T03-2 N. Property Trench 11/03/1999 7 ft. mg/Kg	T03-3 N. Property Trench 11/05/1999 5.5 ft. mg/Kg	T03-4 N. Property Trench 11/05/1999 6 ft. mg/Kg	T03-5 N. Property Trench 11/05/1999 4 ft. mg/Kg	T03-6 N. Property Trench 11/09/1999 4 ft. mg/Kg
Compound)
Aroclor 1016		10							
Aroclor 1242			-		I	l	-	[1400.1	1 3
Aroctor 1248		10	0.9	[17]	[62]	-	1	[]. 	.
Aroclor 1254		10	1			[981	LF 66J	1	
Aroclor 1260		. 10		ı	1	,	-	-	-
Total PCBs		10	1		1	1	1		
	*								
		-							
NOTES: J - estimated	value, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed,	detected/analyzed, NC	NC - no criteria, SB - site background.	background.				

File Number: 3247.21535

32

27 of

Page

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-5B Former IFG Facility Syracuse, NY

Subsurface Soil Data Summary Detected PCB Data

		- 6							
	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup 1 mg/Kg	T04-1 N. Property Trench 11/04/1999 2.5 ft. mg/Kg	T04-2 N. Property Trench 11/04/1999 6 ft. mg/Kg	T04-3 N. Property Trench 11/05/1999 3 ft. mg/Kg	T05-1 N. Property Trench 11/11/1999 3.5 ft. mg/Kg	T05-2 N. Property Trench 11/11/1999 3.5 ft. mg/Kg	T06-1 N. Property Trench 11/08/1999 8 ft. mg/Kg	T07-1 N. Property Trench 11/08/1999 8 ft. mg/Kg
Compound						٠			
Aroclor 1016	91	10	E. a.						
Aroclor 1242	42	10	1	1	1	-	-	168001	[330.1]
Aroclor 1248	48	10	[1500]	[34]	[150]	0.06	0.02 J	. 1	
Aroclor 1254	54	10	ı	1	,	1	1	1	-
Aroclor 1260	20	10	-	-	1	-	-	-	I
Total PCBs		01	ı	1	1	1	1	1	1
RACER0									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background	rely identified, not	t detected/analyzed, NC	7 - no criteria, SB - site	background.				

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:25 DBF File: N:0247/21535/SRIVTEMPDATA.DBF FXP File: N:0247/21535/SRIVTABLEPRS.FXP

File Number: 3247.21535

Page 28 of 32

Former IFG Facility Syracuse, NY Table 3-5B

Subsurface Soil Data Summary **Detected PCB Data**

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T08-1 N. Property Trench 11/09/1999 9 ft. mg/Kg	T08-2 N. Property Trench 11/09/1999 9 ft. mg/Kg	T08-3 N. Property Trench 11/09/1999 8 ft. mg/Kg	T09-1 N. Property Trench 11/09/1999 110 ft. mg/Kg	T10-1 N. Property Trench 11/09/1999 5.5 ft. mg/Kg	T11-1 N. Property Trench 11/10/1999 8 ft. mg/Kg	T12-1 N. Property Trench 11/10/1999 4 ft. mg/Kg
Сотроинд									
Aroclor 1016		10	1		\$ ****				
Aroclor 1242		01	[380]]	[1600]	[84]	[230.1]	I	[190]	-
Aroclor 1248		10	I	1	i	ı	3		[3800]
Aroclor 1254			1	I	ı		1		I
Aroclor 1260	-	10	ı	1	1	-	-	1	-
LOIAL PCBS		01	1	1	1	1	1	1	
	•								

NOTES: J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:25
DBF File: N:0247/21535/SRNTEMPDATA DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247,21535

29 of 32

Syracuse, NY Subsurface Soil Data Summary ()
Table 3-5B
Former IFG Facility

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T12-2 N. Property Trench 11/10/1999 12 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	HA-4 SE Property Area 08/10/1995 9.0 - 9.5 ft, mg/Kg
Compound									
Aroclor 1016		10		-					
Aroclor 1242		10	1	1	ı	-			
Aroclor 1248		10	[4300]	3.1	· 0.02 J	0.009 J	[24 J]	0.005 J	0.39
Aroclor 254		10	1	1	1	1	· -	1	-
Aroclor 1260		10	1	1	-	-	l	1	-
Total PCBs		10	1	-	1	ı	1	1	0.39
					,				
			-						
RACER									

Date Printed: 03/20/2000 15:04:25
DBF File: N/0247/2153/SRNTEMPDATA.DBF
FXP File: N/0247/2153/SRNTABLEPRS.FXP

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.
 [] - Exceeds TAGM Recommended Soil Cleanup criteria.

Page 30 of 32

Subsurface Soil Data Summary () Tabie 3-5B Former IFG Facility Syracuse, NY

Detected PCB Data

		l							
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended te Soil Cleanup pth mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 5 - 6 ft. mg/Kg	OBG-TB-33 SW Property Area 10/20/1999 5 - 6 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 10 - 12 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg
Compound									
Aroclor 1016	9	10			1				free
Aroclor 1242	12	10	1		1	0,04 J	ı	•	
Aroclor 1248	81	10	0.005 J	0.06	0.002 J	I	0.002 J	0.04	0.3
Aroclor 1254	.4	01	1	1	-	1	1 1 1		? -
Aroclor 1260	0:	10	1		-	1	1	****	-
Total PCBs		10	-	ı	1	1	1	1	1
							•		
							•		
RACER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed,	tively identified, no	ot detected/analyzed, NC	NC - no criteria, SB - site background.	background.				

Date Printed: 03/20/2000 15:04:25
DBF File: N:0247/2153/SR/NTEMPDATA.DBF
FXP File: N:0247/2153/SR/NTABLEPRS.FXP

File Number: 3247.21535

31 of

Page

RACER0060564

I - Exceeds TAGM Recommended Soil Cleanup criteria.

Tapie 3-5B
Former IFG Facility
Syracuse, NY
Subsurface Soil Data Summary

Detected PCB Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 8 - 10 ft. mg/Kg	HA-1 Thinner Tank Area 08/10/1995 6.0 - 7.0 ft. mg/Kg	OBG-TB-46 Thinter Tank Area 11/11/1999 4 - 6 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	
Compound							
Aroclor 1016		10					
Aroclor 1242			ı	1	I		
Aroclor 1248		10	0.005 J	0.14	0.2	0.009 J	
Aroclor 1254		10	1	-	-	I	
Aroclor 1260		10		-	-	-	
Total PCBs		10	1	0.14	I	-	
RACE							

Date Printed: 03/20/2000 15:04:25 DBF File: N/3247/21535/SRNTEMPDATA.DBF FXP File: N/3247/21535/SRNTABLEPRS.FXP

File Number: 3247,21535

32 of 32

Page

RACER0060565

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - πο criteria; SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Former IFG Facility Syracuse, NY () Table 3-6

Detected Oil & Grease and Petroleum Hydrocarbon Data Soil Data Summary

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup	BH-31 Bidg. ASWS Trench 04/02/1996 8.0 - 9.0 ft. mg/Kg	BH-32 Bidg, ASWS Trench 04/02/1996 9.0 - 10.8 ft. mg/Kg	BH-33 Bldg. ASWS Trench 04/02/1996 8.0 - 9.7 ft. mg/Kg	BH-34 Bldg. ASWS Trench 04/03/1996 10.0 - 10.8 ft. mg/Kg	BH-35 Bldg. ASWS Trench 04/03/1996 9.0 - 10.3 ft. mg/Kg	BH-36 Bldg. ASWS Trench 04/03/1996 10,5 - 12.2 ft. mg/Kg	BH-37 Bldg. ASWS Trench 0403/1996 10.0 - 12.1 ft. mg/Kg
Compound	:								
Oil and Grease SAE 30W		NC NG	440	10000	2400	23000	25000	360	1700
-									
					-				
RACEROO									

1 of 14 Page File Number, 3247.21535

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Former IFG Facility Syracuse, NY Table 3-6

Soil Data Summary

Detected Oil & Grease and Petroleum Hydrocarbon Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup	BH-38 Bldg. ASWS Trench 04/04/1996 12.1 - 12.8 ft. mg/Kg	BH-52 Bldg. ASWS Trench 04/12/1996 7.5 - 8.7 ft. mg/Kg	BH-11 Bidg. Oil Sumps/Tanks 08/02/1995 11.0 - 12.1 ft. mg/Kg	BH-11 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks 08/02/1995 11.0 - 12.1 ft. 7.0 - 8.0 ft. mg/Kg mg/Kg	BH-14 Bldg. Oil Sumps/Tanks 08/07/1995 7.0 - 8.0 ft. mg/Kg	BH-15 Bidg. Oil Sumps/Tanks 08/02/1995 7.0 - 9.0 ft. mg/Kg	BH-14 BH-15 BH-17 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks O8/07/1995 08/02/1995 08/03/1995 08/0
Compound								s 3	,
Oil and Grease		NC	-						
SAE 30W		NC	320	120.1	32000	52000	80000	24000	280
									-
RACEI									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	rely identified, not ended Soil Cleanup crite	ccted/analyzed,	NC - no criteria, SB - site background.	background.		,		

Date Printed: 03/20/2000 15:04:56
DBF File: N:3247/21535/SRIVTEMPDATA. DBF
FXP File: N:3247/21535/SRIVTABLEPRS.FXP

File Number: 3247,21535

4 2 of

Table 3-6
Former IFG Facility Syracuse, NY

Soil Data Summary

1			Detected Of	l & Grease and Po	Jil & Grease and Petroleum Hydrocarbon Data	arbon Data				
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup	BH-18 Bidg. Oil Sumps/Tan 08/04/1995 7.0 - 7.9 ft. mg/Kg	BH-19 Fanks Blds, Oil Sumps/Tanks F 08/07/1995 C 8.0 - 9.0 ft.	BH-20 ks Bldg. Oil Sumps/Tank 08/08/1995 7.0 - 8.0 ft. mg/Kg	BH-20 BH-21 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks 08/08/1995 08/08/1995 8.0 - 9.0 ft. mg/Kg mg/Kg		BH-23 Bldg. Oil Sumps/Tanks 08/04/1995 7.0 - 7.7 ft. mg/Kg	BH-22 BH-23 BH-25 Bldg. Oil Sumps/Tanks 08/04/1995 08/04/1995 08/04/1995 1.0 - 7.7 R. 30 - 5.3 R. mg/Kg mg/Kg mg/Kg	
Compound		į)	
Oil and Grease	Se	NC	,			-				
SAE 30W		NC	13000	16000	17000	11000	44000	11000	370	
BAPER										
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identified, no	ot detected/analyzed, Niteria.	NC - no criteria, SB - site background.	e background.					

Date Printed: 03/20/2000 15:04:56 DBF File: N/324721535/SRNTEMPDATA.DBF FXP File: N/324721535/SRNTABLEPRS.FXP

7

3 of

(Table 3-6
Former IFG Facility

					-				
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup	BH-26 Bldg. Oil Sumps/Tanks 1 04/01/1996 5.0 - 7.0 ft.	3H-27 31dg. Oil Sumps/Tanks 14/02/1996 7.5 - 9.0 ft. ng/Kg	BH-28 Bldg. Oil Sumps/Tanks 04/02/1996 7.5 - 9.0 ft. mg/Kg	BH-29 Bldg. Oil Sumps/Tanks 04/02/1996 7.0 - 8.5 ft. mg/Kg	BH-30 Bldg. Oil Sumps/Tanks 04/02/1996 8.5 - 9.5 ft. mg/Kg	BH-30 BH-39 BH-41 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks 04/02/1996 04/02/1996 04/09/1996 8.5 - 9.5 ft. 13.0 - 13.8 ft. 12.0 - 13.5 ft. mg/Kg mg/Kg	BH-41 Bldg. Oil Sumps/Tanks 04/09/1996 12.0 - 13.5 ft. mg/Kg
Compound									
Oil and Grease	ase	NC					***		Attion
SAE 30W		NC	2700	3000	2100	1600	48000	280	320
						-			
		N.							
RACER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background	ely identified, not	detected/analyzed, NC	- no criteria, SB - site b	ackground.				

Date Printed: 03/20/2000 15:04:56
DBF File: N:0247/21535/SRI/TEMPDATA.DBF
FXP File: N:0247/21535/SRI/TABLEPRS.FXP

File Number; 3247.21535

4 of 14

Page

0569

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Former IFG Facility Syracuse, NY

Soil Data Summary

Detected Oil & Grease and Petroleum Hydrocarbon Data

								i	
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup	BH-42 Bldg. Oil Sumps/Tanks B 04/10/1996 7.0 - 7.7 ft.	1H43 Ildg. Oil Sumps/Tanks 4/10/1996 1.0 - 12.5 ft. ng/Kg	BH-45 Bldg. Oil Sumps/Tanks 04/10/1996 15.0 - 17.0 ft. mg/Kg	BH-45 Bldg. Oil Sumps/Tanks Bldg. Oil Sumps/Tanks D4/10/1996 15.0 - 17.0 ft. 10.0 - 10.8 ft. 10.0 - 10.0 ft. 1	WT-10 IWT Area 12/10/1985 1.5 - 3.0 ft. mg/Kg	WT-10 IWT Area 12/10/1985 3.0 - 4.5 ft. mg/Kg	WT-10 IWT Area 12/10/1985 4.5 - 6.0 ft. mg/Kg
Compound									,
Oil and Grease		NC				1	440	360	080
SAE30W		NC	7300	2000	430	350	· 1	200	
						-			

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

5 of 14 Page

Date Printed: 03/20/2000 15:04:56
DBF File: N/024721535/SRIVIEMPDATA.DBF
FXP File: N/024721535/SRIVIABLEPRS.FXP

File Number: 3247.21535

	Sample ID		WT 11						
	Area Sample Date Sample Depth Units	Recommended Soil Cleanup	W1-11 IWT Area 12/16/1985 2.0 - 4.0 ft. mg/Kg	W.F.II IWT Area 12/16/1985 4.0 - 6.0 ft. mg/Kg	WT-11 IWT Area 12/16/1985 6.0 - 8.0 ft. mg/Kg	WT-12 IWT Area 12/17/1985 4.0 - 6.0 ft. mg/Kg	WT-12 IWT Area 12/17/1985 6.0 - 8.0 ft. mg/Ke	WT-13 IWT Area 12/17/1985 2.0 - 4.0 ft.	WT-13 IWT Area 12/17/1985 4.0 - 6.0 ft.
Compound						1	5	By Ng	mg/kg
Oil and Grease	0.000	NC	380	160	280	200	220	180	280
SAE 30W		SC SC		1	1	ı	1	1	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. SOOOS NOTES:

🛭 - Exceeds TAGM Recommended Soil Cleanup criteria.

6 of 14 Page

File Number: 3247,21535

Date Printed: 03/20/2000 15:04:56 DBF File: N/0247/21535/SRNTEMPDATA.DBF FXP File: N/0247/21535/SRNTABLEPRS.FXP

Former IFG Facility

Syracuse, NY

Soil Data Summary

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. :: NOTES: 10060572

I - Exceeds TAGM Recommended Soil Cleanup criteria.

oţ **~** Page

14

File Number: 3247.21535

Date Printed: 03/20/2000 15:04:56
DBF File: N:0247/21535/SRI\TEMPDATA.DBF
FXP File: N:0247/21535/SRI\TABLEPRS.FXP

Former IFG Facility Syracuse, NY () Table 3-6

Soil Data Summary

			Detected Oil &	& Grease and Petroleum Hydrocarbon Data	roleum Hydrocan	bon Data			
•	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup	OBG-1 LC PCB Dredgings Site 11/24/1986 2 - 4 ft. mg/Kg	OBG-1 OBG-1 OBG-2 OBG-2 OBG-2 OBG-2 OBG-3 Site LC PCB Dredgings Si	OBG-1 LC PCB Dredgings Site 11/24/1986 8 - 10 ft. mg/Kg	OBG-2 LC PCB Dredgings Site 11/20/1986 0 - 2 ft. mg/Kg	OBG-2 LC PCB Dredgings Site 11/20/1986 2 - 4 ft. mg/Kg	OBG-2 1. LC PCB Dredgings Site 1.120/1986 6 - 8 ft. mg/Kg	OBG-3 LC PCB Dredgings Site 11/20/1986 0 - 2 ft. mg/Kg
Compound									
Oil and Grease		NC	09	180	185	1013	306	169	1638
SAE 30W		NC	1	-	1	1	1	-	1
								•	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:56
DBF File: N:0247/21535/SRNTEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247.21535

14 g of

Page

RACER0060573

Former IFG Facility Syracuse, NY () Taure 3-6

Detected Oil & Grease and Petroleum Hydrocarbon Data Soil Data Summary

				OBG-3	OBG-3	OBG-3)BG-4	7 9 9 0	
	Area Sample Date Sample Depth Units	Recommended Soil Cleanup	LC PCB Dredgings Site 1 11/20/1986 10 - 12 ft. mg/Kg	LC PCB Dredgings Site 11/20/1986 2 - 4 ft. mg/Kg	e LC PCB Dredgings Site 11/20/1986 4 - 6 ft. mg/Kg	LC PCB Dredgings Site	CPCB Dredgings Site 1 1/20/1986 1-2 ft.	C PCB Dredgings Site 1 11/20/1986 2 - 4 ft.	Decade Company Site 1/20/1986
Compound					1		.	94.6	SVS.
Oil and Grease		NC NC	1179	4506	5440	494	8305	2097	52
		2		l		1	1	1	1

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:04:56
DBF File: N/024721535/SRNTEMPDATA.DBF
FXP File: N/024721535/SRNTABLEPRS.FXP

File Number: 3247.21535

7 oţ 6

Page

NOTES: RACER0060574

Table 3-6
Former IFG Facility

Syracuse, NY Soil Data Summary	Detected Oil & Grease and Petroleum Hydrocarbon Data
-----------------------------------	--

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup	OBG-4 LC PCB Dredgings Site 11/20/1986 8 - 10 ft. mg/Kg	OBG-4 OBG-5 LC PCB Dredgings Site LC PCB Dredgings Site 11/20/1986 11/20/1986 0 - 2 ft. 8 - 10 ft. mg/Kg mg/Kg	OBG-5 LC PCB Dredgings Site 11/20/1986 10 - 12 ft. mg/Kg	OBG-5 LC PCB Dredgings Site LC PCB Dredgings Site 11/20/1986 10-12 ft. 10-12 ft. 10-17 ft.	OBG-5 LC PCB Dredgings Site 11/20/1986 4 - 6 ft. mg/Kg	OBG-5 OBG-5 OBG-5 OBG-6 LC PCB Dredgings Site LC PCB Dredgings Site L1720/1986 11/20/1986 11/10/1986 4 - 6 ft 6 - 8 ft. 0 - 2 ft. mg/Kg mg/Kg	BG-6 C PCB Dredgings Site 1/10/1986 - 2 ft.
Compound									
Oil and Grease		NC	439	113	57.	370	79	32	622
SAE30W		NC	-	1	1	1	1	1	
									•
									-
RACE									

Date Printed: 03/20/2000 15:04:56 DBF File: N:0247/2153/SRIVTEMPDATA.DBF FXP File: N:0247/2153/SRIVTABLEPRS.FXP

ER0060575

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

10 of 14

Former IFG Facility Syracuse, NY Table 3-6

Soil Data Summary

L				Detected Oi	Detected Oil & Grease and Petroleum Hydrocarbon Data	etroleum Hydro	carbon Data	·		
.		Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup	OBG-6 LC PCB Dredgings S 11/10/1986 10 - 12 ft. mg/Kg	OBG-6 Site LCPCB Dredgings S 11/10/1986 12 - 14 ft. mg/Kg	OBG-6 lite LCPCB Dredgings S 11/10/1986 14 - 16 ft. mg/Kg	OBG-6 OBG-6 OBG-6 OBG-6 OBG-6 LC PCB Dredgings Site 11/10/1986 11/	OBG-6 : LCPCB Dredgings Si 11/10/1986 2 - 4 ft. mg/Kg	OBG-6 11/10/1986 4 - 6 ft. mg/Kg	OBG-6 CPCB Dredgings Site LC PCB Dredgings Site LC PCB Dredgings Site LL PCB Dredgings
٥	Сотроипа	:								
Ō	Oil and Grease		NC	480	420	558	481	924	8803	3403
<u> </u>	SAE30W		אכ	ı	I	1	I	1	-	
RACEF										
₹ 10060576	NOTES: J - estimated valu	ле, N - tentativel	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	detected/analyzed, N	NC - no criteria, SB - site background.	e background.				

Date Pinited: 03/20/2000 15:04:56
DBF File: N/0247/2153/SRRITEMPDATA.DBF
FXP File: N/0247/2153/SRRITABLEPRS.FXP

File Number: 3247.21535

11 of 14

Table 3-6
Former IFG Facility
Syracuse, NY

Syracuse, NY Soil Data Summary

Detected Oil & Grease and Petroleum Hydrocarbon Data

		$\overline{}$	33888	;\$\delta\delta\delta.	32302	\$10000	3303455	650000	800	2600.6	\$5,000	50.000	1 (1884)	
OBG-6 OBG-7A OBG-7A OBG-7A OBG-7A OBG-7A OBG-7A LC PCB Dredgings Site LC PCB Dred														
edging														
-7A CB Dr 1/1986 1/1.		287												
0BG 11/20 8 - 10 mg/K		``												
ss Site														
edging		.												
7.1A CB Dr /1986 ft.		215												
OBG LCP 11/20 6 - 8		7												
gs Site														365 865
redgin														
7.7A CB D 0/1986 ft.		520												
0BO 11/2 11/2 mg/l		"												
gs Site														
redgin 5														
3-7A PCB D 20/198 I.f.		2650												
11.7.1 11.7.1 11.7.1														
ngs Si														
Dredgi 86														
16-7A PCB 1 20/19 12 ft		221												
ings Si														
Dredg 86														
BG-7A CPCB /20/19 -2 ft.		284	1											
.≆ 97∷9 E														5000 6000 2000
gings S						2011 2016 2016								
Dredg 986														
BG-6 CPCB 1/10/1: - 10 ft		1805	1					(0.0000 (0.0000 (0.0000)						
O → − ∞ E								1860 1860 1860		38.68				
	•													
TAGM Recommended Soil Cleanup														
AGM ecomin oil Cle		S S	ŭ Z							20°08 30°08				
						838 838 838								
Sample ID Area Sample Date Sample Depth Units								366. 366.3 368.3						
Samp Area Samp Samp Units														
		3												
		rease					98.00 98.00							
	Compound	Oil and Grease	SAE 30W											
	Comj	Oila	SAE										:	
							reserve.	oute teth	este a distribui		1/00/00 h	,000003e	3000000°	RACER

Page 12 of 14

File Number: 3247,21535

Date Printed: 03/20/2000 15:04:56 DBF File: N:0247/21535/SRIVTEMPDATA.DBF FXP File: N:0247/21535/SRIVTABLEPRS.FXP

ACER006057

NOTES:

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - по criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.

Syracuse, NY () Table 3-6

Former IFG Facility

Soil Data Summary

Detected Oil & Grease and Petroleum Hydrocarbon Data

	Sample ID	TAGM	000.30	ar 500	2000	ar one			
	Area Sample Date Sample Depth Units	Recommended Soil Cleanup	LC PCB Dredgings Site 1 11/20/1986 10 - 2 ft. mg/Kg	OBC-76 LCPCB Dredgings Site 11/20/1986 10 - 12 ft. mg/Kg	Dec./B Decigngs Site LCPCB Dredgings Site LCPCB Dredgings Site LLPCB Bredgings Site LLPCB Bredgings Site 11/20/1986 11/20/1986 10-12 ft. 2-4 ft. 4-6 ft. mg/Kg mg/Kg	OBG-7B LCPCB Dredgings Site 1. 11/20/1986 4-6 ft. 6 mg/Kg	DHG-7B CC PCB Dredgings Site 11/20/1986 5 - 8 ft. ng/Kg	OBG-7B OBG-7B OBG-7C LCPCB Dredgings Site LCPCB Dredgings Site 11/20/1986 11/20/1986 11/20/1986 6-8 ft. 2-4 ft. mg/Kg mg/Kg	DBG-7C CC PCB Dredgings Site 11/20/1986 2 - 4 ft. ng/Kg
Compound									
Oil and Grease	Sc	NC	262	205	62	66	5459	45	199
SAE30W		NG	-	1		1		-	
RACEF									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	vely identified, not de inded Soil Cleanup criteri	etected/analyzed, NC·ia.	- no criteria, SB - site b	oackground.				

Date Printed: 03/20/2000 15:04:56
DBF File: N:0247/21535/SRN/TEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

13 of 14

Former IFG Facility Syracuse, NY Table 3-6

Soil Data Summary

Detected Oil & Grease and Petroleum Hydrocarbon Data

	Sample ID	TAGM	OBG-7C	OBG-7C	OBG-7C	003-1	003-1	1-£00
	Sample Date Sample Depth Units		11/20/1986 11/20/1986 4 - 6 ft. mg/Kg	Sile LCPCB Dreagings Sile LCPCB Dreagings Sile in Property Area 11/20/1986 12/05/1985 11/20/1986 12/05/1985 11/20/1986 11	E LC PCB Dreagings Sit 11/20/1986 8 - 10 ft. mg/Kg	e N. Froperty Area 12/05/1985 2.0 - 4.0 ft, mg/Kg	N. Property Area 12/05/1985 4.0 - 6.0 ft. mg/Kg	N. Property Area 12/05/1985 8.0 - 10.0 ft. mg/Kg
Compound								
Oil and Grease		NC	815	56	171	400	006	200
SAE 30W		NC	1	-	1	ı		
			-					
	·							
RACE								

Page 14 of 14

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

NOTES:

Date Printed: 03/20/2000 15:04:56
DBF File: N-V247/21535/SRNTEMPDATA.DBF
FXP File: N-V247/21535/SRNTABLEPRS.FXP

() Table 3.7 Former IFG Facility Soil Data Summary Syracuse, NY

Detected Metals Data

	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	BH-10 COMP Bldg. Paint Room 08/09/1995 1.0 - 2.0 ft. mg/Kg	BH-46 Bldg. Paint Room 04/11/1996 4.0 - 5.0 ft. mg/Kg	BH-47 Bldg. Paint Room 04/11/1996 4.0 - 6.0 ft. mg/Kg	OBG-TB-12 Bldg. Paint Room 07/13/1999 11 - 13 ft. mg/Kg	OBG-TB-12 Bldg. Paint Room 07/13/1999 5 - 7 ft. mg/Kg	OBG-TB-13 Bldg, Paint Room 07/14/1999 15 - 17 ft. mg/Kg	OBG-TB-13 Bldg. Paint Room 07/14/1999 7 - 9 ft. mg/Kg
Compound									
Aluminum		SB			-	1			
Antimony		SB	1	I	ï	1		1	
Arsenic		7.5		2.9 J	4.9 J	2.6	3.6	3.1	4.3
Barium		300	1		64.2.1	ı	ı		2: -
Beryllium		0.16			1	1	-	-	-
Cadmium		10	l	0.28	0.29	ı	1	I	
Calcium		SB	1	-	1	ı	1	1	J
Chromium			12.1	13.1	15.2	38.1.3	20.5 J	11.7.1	1161
Cobalt		30		-	1	1	1	I	. 1
Copper		25	8.	1	1	14.6	101	18651	
Kron		2000		1	I		: 1		T case
Lead		400	1	7.7	8.1	4.9	7.3	4.3	1.0
Magnesium		SB		-	1	1	ı	L	! !
Manganese		SB	I		-	ı	1	1	
Mercury		0.1	1		1	-	ı	1	1
Nickel		13	833	[16.8]	[661]	[13.8]	[19.7]	[139]	[13.7.1
Potassium		SB		1				1	
Selenium		2	I	0.56 J	043.1	1		1	I
Silver		SB	-	1		1		-	1
Sodium		SB	ı	1	1	1		-	1
Thallium		SB	-	1	-	1		1	1
Cyanide		NG	ŀ	1	1	1	1	247.3	2.2.J
Vanadium		150	-	-	1	I			
Szinc		20	1	1	1	[32.5.]	[49.6]	[26.4]	[282]
:R00								,	
NOTES: J - estima	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background.	ily identified, not	t detected/analyzed, Nt	C - no criteria, SB - sit	e background.				
- Excet	- Exceeds TAGM Recommended Soil Cleanup criteria	ded Soil Cleanup crit	teria.		•				

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:24
DBF File: N/324721535/SRIXTEMPDATA.DBF
FXP File: N/324721535/SRIXTABLEPRS.FXP

File Number: 3247.21535

1 of 25

Table 3-7
Former IFG Facility
Syracuse, NY Detected Metals Data Soil Data Summary

				בנבבובת זה	Detected Metals Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-13 Bldg. Paint Room 07/14/1999 9 - 11 ft. mg/Kg	OBG-TB-16 Bldg. Paint Room 07/19/1999 1 - 3 ft. mg/Kg	OBG-TB-16 Bldg. Paint Room 07/19/1999 5 - 7 ft. mg/Kg	OBG-TB-17 Bldg. Paint Room 07/19/1999 10 - 12 ft. mg/Kg	OBG-TB-17 Bldg. Paint Room 07/19/1999 4 - 8 ft. mg/Kg	BH-4 COMP Bldg. Plating Area 08/08/1995 1.0 - 5.0 ft. mg/Kg	BH-5 Bldg, Plating Area 08/10/1995 1.0 - 3.0 ft. mg/Kg
Compound									
Aluminum		SB					1	-	
Antimony		SB	1	1	1	-	-	I	I
Arsenic		7.5	5.8	3.6	6.5	2.5	4.2		1
Barium		300	1	1	ı	1	I	1	-
Beryllium		0.16	-	1	ı	1	1	1	1
Cadttium		10	1	1	1	1	1	1	ļ
Calcium		SB			I	1	1	ı	1
Chromium		50	10.8.1	10.2 J	[74.5 J]	13.2.5	15.63	31.1	21.1
Cobalt		30	1		-	1	l	-	1
Copper		25	17.8	20.1	[207]	[331]	[689]	[r0c]	21.1
		2000				1	1	-	1
Lead		400	3.6	5	8.9	4.5	6.3		ı
Magnesium		SB	1	1	1	1	-	-	I
Manganese		SB	1	ı	1	1	1	1.	1
Mercury		0.1	-		-	I	1	1	1
Nickel		[3	[15.4]	[147]	[145]	[61]	[31.4]	[32.1]	[23.1]
Potassium		SB	1	ı	1		-		1
Selenium		2	1	1	1	1	i	1	1
Silver		SB	1				-	-	1
Sodium		SB		1	ı	1		1	-
Thallium		SB	1		-	-	I	1	
Cyanide		NO	1	1	7,11	1685	614.1	3.1	1
Vanadium.		150	l	1	1		-		1
Zinc		20	[25]	[30]	[52.2]	[29.6]	[383]	-	
							00000000000000000000000000000000000000		

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria. NOTES:

2 of 25 Page

File Number: 3247.21535

Table 3-7 Former IFG Facility Syracuse, NY

Detected Metals Data Soil Data Summary

					min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	BH-6 COMP Bldg. Plating Area 08/09/1995 1.0 - 2.0 ft. mg/Kg	BH-7 COMP Bldg. Plating Area 08/09/1995 1.0 - 2.0 ft. mg/Kg	BH-9 COMP Bldg. Plating Area 08/09/1995 3.0 - 5.0 ft. mg/Kg	OBG-TB-15 Bidg. Sump #2 07/16/1999 12 - 14 ft. mg/Kg	OBG-TB-15 Bldg. Sump #2 07/16/1999 14 - 16 ft. mg/Kg	OBG-TB-15 Bldg, Sump #2 07/16/1999 3 - 5 ft. mg/Kg	OBG-TB-15 Bldg. Sump #2 07/16/1999 5 - 7 ft. me/Ke
Compound								1	
Aluminum		SB							
Antimony		SB	1	-	-	1	1	-	
Arsenic		7.5		!	1	4.7	5.4	7 2	26
Barium		300	-	1	1	: 1	;	ν·.΄	0.7
Beryllium		0.16	1	I	-]	-		
Cadmium		01	1	1	-	1	 	1	
Calcium		SB	I	ı		-	1		ı
Chromium			18.7	[1203]	10.1	23.3.1	16.61	1906	13 9 7
Cobalt		30		-	!	1		; ? :	
Соррег		25	21.3	[43.1]	[38]	661	21.1	23.7	- S-6
Iron		2000				-	1		?
Lead		400	1			7.8	8.7	10.8	1 9
Magnesium		SB				1			
Manganese		SB	1	1		1	-	-	
Mercury		0.1	1	-	1	1	1		1
Nickel		13	[49.1]	[4000.1]	[14.1]	[20.6]	f30.1	[286]	11.3
Potassium		SB		-		-	I		
Selenium		2	1	1	1	-		-	-
Silver		SB			**************************************	-	-	-	-
Sodium		SB	1	1	1	1	-	•	-
Thallium		SB	1				-	-	1
Cyanide		NC	1	11	1	1	1	1	1
Vanadium		150	1	ļ				1	
ou MACER		20	ı	1	1	[48.6]	[48.2.]	[66.8]	[695]
99NOTES: J - estimated	d value, N - tentative	J - estimated value, N - tentatively identified, not det I - Exceeds TA GM Recommended Soil Cleanun criteria	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. Il - Exceeds TAGM Recommended Sail Cleanun criteria	- no criteria, SB - site	background.				
		aca son Cicaliup Gille	ili.						

3 of 25

File Number: 3247.21535

Table 3-7
Former IFG Facility
Syracuse, NY
Soil Data Summary

Soil Data Summary Detected Metals Data

			3	Tanana	Detected intelated Data				
	Sample ID Area Sample Date Sample Dette Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-15 Bldg, Sump #2 07/16/1999 7 - 9 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 10 - 12 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 2 - 4 ft. mg/Kg	OBG-TB-14 Bldg, Sump #3 07/16/1999 4 - 6 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 6 - 8 ft. mg/Kg	OBG-TB-14 Bidg, Sump #3 07/16/1999 8 - 10 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 2 - 4 ft.
Compound	:								
Aluminum		SB	1	1			1	1	
Antimony		SB		1	I	1	1	:	1
Arsenic		7.5	9	1.7	7.2	4.8	3.8	3.7	1.6
Barium		300	1	1	1	1	; I	:: 1	2: I
Beryllium		0.16		-	-	I	1	-	
Cadmium		10	1	1	1	1		-	
Calcium		SB	-		1	I	J	-]
Chromium		50	27.3.1	711	f 6	12.3 J	15.1.3	17.8.1	7.8.1
Cobalt		30	-	1	ı	1	1	j	<u>,</u>
Copper		25	20.7	12.4	63	10.6	14.8	17.3	4.8
Iron		2000	1		1	ı	-		
Lead		400	96	3	4.6	4.3	5.5	9:9	2.9
Magnesium		SB	1		-	- 1	1	I	
Manganese		SB	1	1	1.	ı	1	1	-
Mercury		0.1	-	1	1	-	1	I	1
Nickel		13	[33.2.]	7	[15.5.]	12.5	12.4	[17.3.]	5.91
Potassium		SB	-	1	-	-	1	1	1
Selenium		2	I	I	1	-	-	-	
Silver		SB	1		1	-	-		-
Sodium		SB		1	1	1	_	1	1
Thallium		SB		1	***	-		1	ı
Cyanide		NG		1	1	j		-	1
Vanadium		150	-		S (10.0) accessorance of the contraction	1			1
SIN CEF		20	[62.1.]	14.4	11.2	[21.2.]	[40]	[47]	[42.3.]
OOONOTES: J - estimat	 J - estimated value, N - tentatively identified, not detected/analyzed, N D - Exceeds TAGM Recommended Soil Cleanup criteria. 	ely identified, not	cted/analyzed, N	C - no criteria, SB - site background	ite background.				
3									

Date Printed: 03/20/2000 15:05:24
DBF File: N:\024721535\text{SRN/TEMPDATA.DBF}
FXP File: N:\024721535\text{SNRN/TEMPDATA.FXP}

4 of 25

() Table 3-7 Former IFG Facility Soil Data Summary Syracuse, NY

				Detected]	Detected Metals Data				
	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 4 - 6 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 6 - 8 ft. mg/Kg	OBG-TB-19 Bidg. Sump #7 07/20/1999 1 - 3 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 5 - 7 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 7 - 9 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 9 - 11 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 1 - 3 ft. mg/Kg
Compound	:			·	`				-
Aluminum		SB						1 1 1	
Antimony		SB	1	-	I	ı	•	ı	
Arsenic		7.5	3.3	3.4	3.2	3.6	5.2	2.3	2.5
Barium		300	1	ŀ	1	1	1	-	1
Beryllium		0.16		1	-		1	1	1
Cadmium		10	ł	1	1	1	I	1	1
Calcium		SB	1	-	-	I	i	1	1
Chromium		. 20	13.3.1	28.7 J	13.6.1	12.2 J	30.5.1	13.7.1	12.3.1
Cobalt		30			1	1	1	I	<u> </u>
Copper		25	15.4	24.2	12.5	11.1	[291	14.2	- 6
Iron		2000	1	-	I	I		1	. 1
Lead		400	13.2	32.5	7.6	6.7	10.9	4,9	5.7
Magnesium		SB	1	1		1	-	I	1
Manganese		SB	1	i	1	1	1	1	1
Mercury		0.1	1	1		l	I	1	1
Nickel		. [3	[15,4]	[264]	12.3	119	[29.6]	12.3	10.1
Potassium		SB	1			1			1
Setenium		2	1	1	-	I	l	1	
Silver		SB	ı	ŀ	I	-	1		
Sodium		SB	-	1	1	1	1	1	
Thallium		SB·	ļ	-	-	-	1		
Cyanide		NO	-	J	1	1	1		
Vanadium		150	ļ	ļ	-	-			
e ACER		20	[363]	[54.4]	[38.6]	[29.5]	[6:65]	[28.6]	[44.6]
33 33 30 30 30 30 30 30 30 30 30 30 30 3	J - estimated value, N - tentatively identified, not detected/analyzed, P [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identified, no ided Soil Cleanup cri	ot detected/analyzed, Niteria.	NC - no criteria, SB - site background	site background.				
_									_

25 5 of Page File Number: 3247.21535

Date Pinted: 03/20/2000 15:05:24
DBF File: N/3247/2153/SRI/TEMPDATA DBF
FXP File: N/9247/2153/SRI/TABLEPRS.FXP

Detected Metals Data Former IFG Facility Soil Data Summary Table 3-7 Syracuse, NY

	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 3 - 5 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 5 - 7 ft. mg/Kg	OBG-TB-01 Bidg. Sump #8 07/06/1999 7 - 9 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 9 - 11 ft. mg/Kg	HA-10 IWT Area 08/10/1995 10.5 - 12.0 ft. mg/Kg	HA-11 IWT Area 08/10/1995 4.0 - 4.6 ft. mg/Kg	HA-12 IWT Area 08/11/1995 10.0 - 10.5 ft. mg/Kg
Compound									
Aluminum		SB			-		:	1	1
Antimony		SB	ï	1	1	1	1		1
Arsenic		7.5	3.6	3.5	4.2	6.2	···	-	1.8
Barium		300	-	-		1	1		37
Beryllium		0.16	1	1	I	1	١	I	. 1
Cadmium		10	-	1	1	1	1	0.63	
Calcium		SB	1	I	1	1	ı]	i
Chromium		50	15.13	14.5 J	17.71	34.6.1	3.1.1	44.1	50.4
Cobalt		30	 	ı	1	i I			
		, ·			•		'		1
Copper		25	18.9	86	11.4	[30.7]	101	[37.1]	1
Iron		7000	ŀ	1	ı	ı	I	i	!
Lead		400	10.3	6.5	4.8	11.8	ı	ı	4.7
Magnesium		SB	1	1		1	ļ	1	1
Manganese		SB	1	-	I	1	1	-	I
Mercury		0.1	-	-	-	1	1		
Nickel		13	[14.4]	11.9	12.9	[34.1]	5.1	[32.1]	1
Potassium		SB	1	-	-	-	ı		ı
Selenium		2	ı		1	1	-		ı
Silver		SB			-				-
Sodium		SB	ı	1	1	1	1	I	-
Thallium		SB		-	1	-	1		
Cyanide		NC	1	1	1	1		0.92	
√Vanadium √Vanadium		150	1	1		-	1	-	1
ouizeri		20	[28.8.]	[27.4.]	[30:5]	[67]	ı	1	
006									
NOTES: J. estimated vi	alue, N - tentative	ly identified, no	ot detected/analyzed, N	J. estimated value, N. tentatively identified, not detected/analyzed, NC - no criteria, SB - site background	ite background,				
T CANCEUR IT	ACIVI RECUIIIIETII	- Exceeds 1 Acivi Recommended Son Cleanup criteria.	teria.						_

25 Jo 9 Page

Former IFG Facility Soil Data Summary Syracuse, NY () Table 3-7

Detected Metals Data

	Sample ID Area Sample Date Sample Doth Units	TAGM Recommended Soil Cleanup mg/Kg	HA-9 IWT Area 08/10/1995 6.0 - 7.0 ft. mg/Kg	SS-99-22 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-23 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-24 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-25 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-26 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-27 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	
Сотроипа	:							1))	
Aluminum		SB		1		9570				Т
Antimony		SB	ŀ	I	1		ı	I	1	3833
Arsenic		7.5		4.6	5.8	4.6	6.7	[771]	[127]	888
Barium		300	1	1	ı	65,9	;]	[;;; =]	[17:7]	655
Beryllium		0.16	1	1	I	(0.47.1)	-	ı		9503
Cadmium		01	1	1	1	0.2.5	1		 	355
Calcium		SB	1	1	1	53900	1	-	ı	5365
Chromitm		50	6.9.1	17.8	20.8	22.9 J	18.3	1320001		900
Cobalt	andre van National Communication of the Communicati	30		ı	I	9	I		2 -	855
Copper		25	13.1	19.9	61	17.6	[37.2.]	[4790.1		pione.
Iron		2000		1	l	[16900]	. 1		i 1	esse:
Lead		400	1	12.5	62	- 63 - 63	7	7171	— [23	1,007
Magnesium		SB	1	-		17800	1	1	-	
Manganese		SB	1	1	1	404	ï	1		20.00
Mercury		0.1		-	1	I	ı	I	1	333.
Nickel		I3	9.6 J	[19.1]	[173]	[17]	[18.5]	[6630]	[27.8.]	2,000
Potassium		SB	1	-	1	2300	. 1		L	oor -
Selenium		2	1	1	1	0.63	1	1	ı	
Silver		SB	1	I	1	-	1		**************************************	
Sodium		SB	1		ı	228	1	1	1	
Thallium		SB	1	1	-	-	1		1	
Cyanide		NC	1	-	ŀ	1	1	9.1	_	
Vanadium		150	I	I	1	20.2	-	1	-	
onZZ EB				[84.6]	[50.8]	[47.2.]	[51.7]	[5880]	Lord	
S NOTES: J.	J - estimated value, N - tentatively identified, not detected/analyzed,	ly identified, not	t detected/analyzed, l	NC - no criteria, SB - site background.	site background.					
	[] - Exceeds TAGM Recommended Soil Cleanup criteria.	ded Soil Cleanup crit	teria.		0			,		

7 of 25

File Number: 3247,21535

Date Printed: 03/20/2000 15:05:24
DBF File: N:024721535/SRNTEMPDATA.DBF
FXP File: N:024721535/SRNTABLEPRS.FXP

Table 3-7
Former IFG Facility
Syracuse, NY
Soil Data Summary
Detected Metals Data

		,							
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-28 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-29 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-30 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-31 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg
Сопроип									
Aluminum		SB	1				14		
Antimony		SB	1	1		ı			
Arsenic		7.5	4.9	9	4.8	[13.9]	3.6	,	15
Barium		300	-	I	1	,	6	,	ĵ.
Beryllium	Total Mark No. 10 page page page page	0.16		I	1	1	1		
Cadmium		10	1	-			l	I	I
Calcium		SB	1	١	1	1		1	I
Chromium		50	28.4	39	15.2	[59.1]	 20.8	- 1	
Cobalt	de Ladastin Gastino Jorga	30		1	-		i. I	<u>.</u>	7.01
Copper		25	14.7	21.5	16	[17.8.]	16.8		
Iron		2000	1	1			DOT -	277	
Lead		400	33.2	33.2	17.3	45.6	- 2		- 22
Magnesium		SB	1		-	1	-	ì	
Manganese		SB	1	1	-	1	I	1	1
Mercury		0.1	1	1	1	1	1	١	-
Nickel		13	[69]	[26.8]	[14.9]	[41.2]	[19.2]	7.2	11811
Potassium		SB	1	-	1	. 1	, -	<u> </u>	
Selenium		2	l	1	-		i		
Silver		SB			1	1	I	1	
Sodium		SB	-	1	1	1	1	-	1
Thallium		SB	ŀ	1	-	1	-		1
Cyanide		NC	1	1	1	L	I		ı
Vanadium		150	1			1		ı	-
ouizi Aveel		20	[137]	[86,1.]	[52.5]	[117]	[43.3.]	15.9	[34.2]
R000						:		,	
90NOTES: J - estimated valu	e, N - tentativel	J - estimated value, N - tentatively identified, not detected/analyzed, N - Exceeds TAGM Recommended Soil Cleanun criteria	letected/analyzed, N(IC - no criteria, SB - site background.	background.				
		the state of the s	į						

Page 8 of 25

Table 3-7
Former IFG Facility
Syracuse, NY
Soil Data Summary

Syracuse, NY	Soil Data Summary	Detected Metals Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 4 - 6 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 6 - 8 ft. mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 6-8 ft. mg/Kg
Compound									
Aluminum		SB	1		1.				1
Antimony		SB	1	i	1	1	1		
Arsenic		7.5	3.1	2.8	4.1	6.2	2.3	3.9	2.2
Barium		300	1	-	-	1	1	1	-
Beryllium		0.16	-	1	-	1	-	-	-
Cadmium		10	1	1	-		1		-
Calcium		SB	ŀ	1	ļ		1	-	
Chromium		50	15	16.13	15.1	26.7.1	111	12.4	8.2
Cobalt		30	ŀ	ı		***	ŀ	-	-
Соррег		25	14.5	13	13.5	[44.3.]	12.4	11.5	12.3
Iron		2000	-	-		-	-	-	-
Lead		400	5.5	5.1	5.2	18.8	3.9	4.7	r.
Magnesium		SB	1	-	-	1	-	1	-
Manganese		SB	-		1	1	ı	l	•
Mercury		0.1		-		-			-
Nickel		13	[143]	[13.7.]	[14,9]	[6:55]	10,4	[14:1]	7.5
Potassium		SB	-	-		-		1	-
Selenium		2	1	1	-	-	-	1	I
Silver		SB	1		-			-	***
Sodium		SB	-	ı	-	1	-	1	
Thallium		SB		1	1-	1		1	-
Cyanide		NC	1	1		1	1	1	1
√ anadium		150	ł	444	-		-	***	-
u MČERO		20	[36.5]	[34.3.]	[33.5]	[553.1]	[26.6]	[28.5]	18.4
ONOTES: J - estimated value	ie, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	letected/analyzed, NC ia.	- no criteria, SB - site	background.				
l									

Page 9 of 25

Ta...e 3-7 Former IFG Facility

Former IFG Facility
Syracuse, NY

Soil Data Summary Detected Metals Data

			!!	*** ***********************************	Vals Dala				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-38 IWT TCE Storage Area 10/21/1999 112 - 14 ft. mg/Kg	OBG-TB-38 IWT TCE Storage Area 1 10/21/1999 mg/Kg	3-17 N. Property Area (0/05/1990 5,0 - 7.0 ft. ng/Kg	BH-1 N. Property Area 08/14/1995 9.0 - 10.0 ft. mg/Kg	BH-2 N. Property Area 08/14/1995 8.0 - 10.0 ft. mg/Kg	BH-3 N. Property Area 08/11/1995 14.0 - 14.5 ft. mg/Kg	OBC-TB-25 N. Property Area 10/19/1999 0 - 1 ft.
Compound									
Aluminum		SB	****						
Antimony		SB			-	-	l	-	I
Arsenic	170012000000000000000000000000000000000	7.5	1.9	3.8	-	[48]		1 :	1.
Barium		300	1		1 24 1	[Or.]	"		4./
Beryllium		0.16	ļ	-	; ! !	201	77	70	1
Cadmium		01	1	-	anna.		I	-	1
Calcium		SB	ı	1	-		l	1	1
Chromiun		50	7,7 J	17.3.1	178 423.1	u.csi	 13000 TI		1
Cobalt		30	1	-		[r=c]	[rone#]	F 67	46.6
Соррег		25	12.4	10.6	1	[200.1]	 76600.11	 137.11	 (ak 7:1
Iron	And the second s	2000		,	ı	. 1		7	7.22
Lend		400	3.1	3.8	0.471	12	1	1 5	
Magnesium		SB	-	- -		1		:	<i>a.</i> 01
Manganese		SB	-	-	1	1		1	1 1
Mercury		0.1	1	-	-	[0.11]	ı		
Nickel		13	73	8.6	[24,523]	[140.3]	F1300.11	11.16	1785
Potassium		SB	-	ı				[remail	- Total
Selenium		2		1	1	[23.1]	11	0.87.1	I
Silver	***************************************	SB	1	-	-	. 1	· -	* 3	l
Sodium		SB	-		1		-		1
Thallium		SB		-	ı	1	1		
Cyanide		NC	ı	-	1	0.85	1		-
Vanadium		150		1	-	1	1	1	
e S ACE		20	16.3	[229]	-	1	1	1	[74.6]
900TES: J - estimated value	e, N - tentativel	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	etected/analyzed, NC - a.	no criteria, SB - site	background.				
9									

PDATADBF

Date Printed: 03/20/2000 15:05:24
DBF File: N/3247/2153/SRIVITEMPDATA DBF
FXP File: N/3247/21535/SRIVITABLEPRS.FXP

File Number: 3247.2

Page 10 of 25

Detected Metals Data Former IFG Facility Soil Data Summary Syracuse, NY Table 3-7

				Detected Metals Data	etals Data				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-25 N. Property Area 10/19/1999 10 - 12 ft. mg/Kg	OBG-TB-25 N. Property Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 12 - 14 ft. mg/Kg
Compound									
Aluminum		SB	ł		1	1	-		****
Antimony		SB	-	1	1	-	1	-	ı
Arsenic		7.5	2.9	3.6	6.3	[9.9]	1.7	3.8	2.3
Barium		300	1	-	1	-	-	1	i
Beryllium		0.16	-	-		-	-	1	1
Cadmium		- 01	1	1	1	1	1		-
Calcium		SB	-		-		-	-	1
Chromium		50	14.5	61	48.7	25.9	8.5	26.5	11.2
Cobalt		30	-	-	-	-	-	1	1
Copper		25	12.1	[49.2.]	[32.1]	[62]	8.5	[28.2]	19.2
lon		2000		-	1	ı	1	-	-
Lead		400	5.1	8.5	21.2	23.8	3	18	4.3
Magnesium		SB	ŀ	1		1	١,	. 1	-
Manganese		SB	1	1	1	-	. 1	1	1
Mercury		0.1	1	I	-	-			-
Nickel		13	[14.3.]	[189]	[35.1]	[26.6]	6.9	[54.1]	9.7
Potassium		SB	i	ŀ	1	1	ı	1	1
Selenium		2	I	l	ı	1	1	ı	-
Silver		SB	ŀ	1	I	ŀ	I	ı	ı
Sodium		SB	1	1	ı	ı	1	1	1
Thallium		SB	ı	1	I	ı	ŀ	1	I
Cyanide		NO	ı	1	ı	1.	1	1	-
Vanadium		150	ľ	i	i	ŀ	l	1	1
Zinc J		20	[30.6]	[684]	[95.7.]	[115]	14	[41.4]	[515]
2006									

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria. SO NOTES:

25]] of Page

() Table 3-7 Former IFG Facility

Detected Metals Data Syracuse, NY Soil Data Summary

				Detected Metals Data	iciais Dala				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 0 - 1 fl. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 12 - 14 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 0 - 2 ft. mg/Kg
Compound									
Aluminum		SB		. 1		-			1
Antimony		SB	1		ı	1	ļ	1	1
Arsenic		7.5	4.3	2.5	5	3.7	2.6	2.5	3.2
Barium		300	J	1	ı	-	I	1	1
Beryllium		0.16	-	-	-		1	-	-
Cadmium		10	1	1	1	1	-	1	1
Calcium		SB	1	1	1				
Chromitum		50	23.2	9.2	[106]	22.6	15.4	- 66	1601
Cobalt		30	-			-	1	1	-
Соррег		25	[32.9]	12.6	[47.9]	19.4	7.1	7.1	12.5
Iron		2000			1	-	1	-	1
Lead		400	17.2	3.8	10.6	8.2	3.6	4.2	3.7
Magnesium	-	SB	ł	1	-		1	1	1
Manganese		SB	ı	-	ı	1	1	1	1
Mercury		0.1	-	-		-		I	1
Nickel		13	[213]	10.3	[50:5]	[23.4]	12,3	1,6	9.6
Potassium		SB	1	1	ran.	-	-		-
Selenium		2	ī	1	1	1		1	1
Silver		SB	1	1		1	1	1	-
Sodium		SB	1	ı	1	1	1	ı	-
Thailium		SB	1	1	ŀ	1	1	1	
Cyanide		NC		1	1	2	1	1	-
Vanadium		150	i	i	!	ı	!	ļ	1
om ACERO		20	[212]	[29.2.]	[66.6]	[20]	15.1	[49.2.]	[26.6.]
ONOTES: J - estimated valued in the control of the	ue, N - tentativel GM Recommenc	J - estimated value, N - tentatively identified, not dete	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	C - no criteria, SB - sit	e background.				

12 of 25 Page File Number: 3247.21535

() Table 3-7 Former IFG Facility Syracuse, NY

Soil Data Summary Detected Metals Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 10 - 12 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 34 - 36 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 6 - 8 ft. mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 0 - 1 ft. mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 10 - 12 ft. mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 32 - 34 ft. mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 6 - 8 ft. mg/Kg
Compound									
Aluminum		SB				-	1	1	-
Antimony		SB	1	1	-	I	ı	1	1
Arsenic		7.5	2.8	6.1	5.1	3.3	2.7	3.7	9
Barium		300	ı	1	1	ı	1		ı
Beryllium		0.16			1	-	1	-	ı
Cadmium		10	1	1		1	1	1	ı
Calcium		SB		-	I	1	ı	1	1
Chromium		- 20	8.5 J	8.4 J	29,4 J	14.8.5	10.9.1	16.61	30.1.1
Cobalt		30		-	I	-	ŀ	I	-
Соррет		25	12.9	9.6	22.7	13.7	10.8	14.7	23.6
Iron		2000		-	-	1	-	-	1
Lead		400	3.1	2.9	66	1.8	3.6		10,4
Magnesium		SB		-	1	1		1	1
Manganese		SB	I	1	1	-	-	1	1
Mercury		0.1	-	1	-	-	1	1	1
Nickel		I3	7.4	7.3	[26,3.]	[13.1.]	10.9	[16.5]	[28.5]
Potassium		SB	-	·	1	* -			-
Selenium		2		1	ı	-	1	-	1
Silver		SB				-	1	1	-
Sodium		SB	1	1	1	ı	1	-	
Thallium		SB				-	-	-	-
Cyanide		NC	1	1	1	ı	1	1	
√Vanadium √Vanadium		150		1	ame.		-	-	1
DIIZ.		20	16.2	17.8	[53.7.]	[52.7.]	[21.4]	[35]	[543]
ROO									
O NOTES: J - estimated valu	ie, N - tentativel	ly identified, not	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background.	no criteria, SB - sit	e background.				

Page 13 of 25

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-7
Former IFG Facility

Detected Metals Data Syracuse, NY Soil Data Summary

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-06 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-07 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-08 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-09 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-10 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-11 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-12 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									
Aluminum		SB				1	11800	-	
Antimony		SB	-	-	-	ı	1		-
Arsenic		7.5	[10.5]	4.5	4.5	2.9	[14.6]	[15]	2.7
Barium		300]	-	ı	ı	228		
Beryllium		0.16		And district the second control of the secon	-	1	[0.94 J]		-
Cadmium		10	1	1	1		0.3.1	1	
Calcium		SB				1	16900	1	-
Chromium		50	[1770]	26.4	[76.2.]	41	40.2.1	21.6	14.2
Cobalt		30	1	1		1	6.2 J		-
Copper		2.5	[267]	[303]	[59.3]	[96.2.]	[31.7.]	21.3	11.8
Iron		2000			1	-	[31200]		-
Lead		400	40.6	13.1	17	45.5	31.7	15.5	7.8
Magnesium		SB	1116	ł	+	1	7040		-
Manganese		SB	H	ł	ŀ	1	228	1	1
Mercury		0.1	0.095		0.029 J	0.054	0.069		1
Nickel		13	[443]	[21.9]	[121]	[32.6]	[35.4]	[20.6]	11.8
Potassium		SB	1	1	1		1550	-	-
Selenium		2	1	-	1	1	[2.4]	1	1
Silver		SB	1	1	1	1			-
Sodium		SB	1	1	j	-	568	1	1
Thallium		SB	1	ı	1	1	0.4 J	-	1
Cyanide		NO	-	1	0.98	1	1	ı	1
Nanadium →		150	•	1	1	1	28.1	1	
ow ACCERO		20	[394]	[635]	[109]	[307]	[841]	[35.7]	[25]
90 90 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	e, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed, N [] - Exceeds TAGM Recommended Soil Cleanup criteria.	letected/analyzed, NC	IC - no criteria, SB - site background.	background.				

14 of 25

Date Printed: 03/20/2000 15:05:24 DBF File: N'024721535\SRNTEMPDATA DBF FXP File: N'024721535\SRNTABLEPRS.FXP

() Tavie 3-7 Former IFG Facility Syracuse, NY

Detected Metals Data Soil Data Summary

					man or other				
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-13 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	T01-1 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-2 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-3 N. Property Trench 11/02/1999 8.5 ft. mg/Kg	T01-4 N. Property Trench 11/02/1999 9 ft. mg/Kg	T02-1 N. Property Trench 11/03/1999 8 ft. mg/Kg	T02-2 N. Property Trench 1.103/1999 5.5 ft. mg/Kg
Compound								ı	
Atuminum	:	SB	8360		1			11500	
Antimony		SB	i	I	1	-	1	222	
Arsenic		7.5	4.2	[14.5]	[9.4]	4.2	43	[657]	[21.1]
Barium		300	65.2	. 1	· ·	! !	<u>)</u>	[3:7]	[21.1]
Beryllium		0.16	[0.44.J]	-	I	1	-	[[] [] [] [] [] [] [] [] [] [
Cadmium		10	0.22.1	1	1	1		[r cc:v]	I
Calcium		SB	76600	1	1	I	ı	23,600	-
Chromium		.50	37.9.1	[95.8.]	[512]	27.9	101	33.5	- Luseuri
Cobalt		30	9	1	. 1	I		533	[^0/7]
Соррег		25	22.1	[114]	[232001	[76.2.]	22.1	0.5	13140.1
Iron		2000	[14300]	I	. 1	. !	.	[4500]	F OLT 2
Lead		400	8.2	59.5	291	21.2	73	[/// (4.5900] 8	
Magnesium		SB	19200	-	-	1	۱ ا	3540	
Manganese		SB	383		1	1	-	213	
Mercury		0.1		0.06 J	[0.16]	0.036 J	0.035 J	[0.13.1	0.085.1
Nickel		I3	[72,7]	[191]	[1180]	[36]	[22.2]	[82.6]	[5334]
Potassium		SB	2210	1	1		· ·	1120	
Selenium		7	0.54.J	-	1	1		[2.9.]	
Silver		SB	l	-	1	-	-	1	-
Sodium		SB	204	1	1	1	1	369	
Thallium		SB	1	-	1	-	X 2000 000000 0000000000000000000000000	0.97 J	-
Cyanide		NG	1	ı	1.2	1			57.7
Vanadium		150	20.4	ı	-	1		24.2	-
ouzcei		20	[67.1.]	[468]	[24000]	[789]	[52.1]	[461]	[348]
							:		•
- Excee	 J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. I - Exceeds TAGM Recommended Soil Cleanup criteria. 	y identified, not led Soil Cleanup crite	detected/analyzed, No eria.	C - no criteria, SB - site	: background.				

15 of 25

File Number: 3247,21535

() Table 3-7

Former IFG Facility	Syracuse, NY	Soil Data Summary	Detected Metals Data
Former	Syra	Soil Da	Detecter

		8							
	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	T02-3 N. Property Trench 11/03/1999 9 ft. mg/Kg	T02-4 N. Property Trench 11/04/1999 5 ft. mg/Kg	T03-1 N. Property Trench 11/03/1999 6 ft. mg/Kg	T03-2 N. Property Trench 11/03/1999 7 ft. mg/Kg	T03-3 N. Property Trench 11/05/1999 5.5 ft. ng/Kg	T03-4 N. Property Trench 11/05/1999 6 ft. mg/Kg	T03-5 N. Property Trench 11/05/1999 4 ft. mg/Kg
Compound									
Aluminum		SB		-		3670	***		
Antimony		SB		1	1	1	-	-	1
Arsenic		7.5	[16]	43	[45.5]	6.5	7.3	1771	[167]
Barium		300	1			83		[]	f
Beryllium		0.16	-	-	1	[0,19.1]	1	-	-
Cadmium		10		1	-	0.781	1		1
Calcium		SB	1	-	1	264000		1 1	
Chromium		50	[17200]	29.1	[18]	30.05	1778.1	1,704.1	1,000
Cobalt		30	1	1	· -	221	7 		[201]
Соррег		25	[3530]	134.7.1	114501	100511		TACARI	
Tron		2000	7		CACLT	[1976]		[776+]	[0017]
Lead		400	377) -	۶ -	[10100]		1 3	
Magnesium		CB.		211	77	21.3	19.4	01.1	51.1
The Property of the Property o		an.			ļ	8//0	ł	ŀ	-
Manganese		SB	i	1	1	235		1	1
Mercury		0.1	[0.14 J]	0.027 J	[0.12 J]	0.055 J	0.043 J	0.033 J	0.078 J
Nickel		13	[7940]	[25.1]	[506]	[242]	[1040]	[1040]	[6351
Potassium		SB	1		-	32.5 J	1		1
Selenium		2	-	1	ı	1	1	-]
Silver		SB	İ	-	1	0.23 J			
Sodium		SB	1	1	1	5400	1	I	1
Thallium		SB	4	-	-			1	1
Cyanide		NC	132	1	1		0.98	1,6	5.8
Vanadium		150		**************************************		4.1		-	ı
owizi RACER		20	[1440]	[63.7]	[2410]	[53300]	[8470]	[0662]	[1800]
NOTES:	J - estimated value. N - tentatively identified not detected/analyzed. NC - no criteria. SR - site hackground	ely identified no	t detected/analyzed, NC	C - no criteria. SB - site	backeround				
	[] - Exceeds TAGM Recommended Soil Cleanup criteria.	nded Soil Cleanup crit	leria,		oggue de la company de la comp				

Date Printed: 03/20/2000 15:05:24
DBF File: N/U247/21535/SRNTEMPDATA.DBF
FXP File: N/U247/21535/SRNTABLEPRS.FXP

16 of 25

Table 3-7
Former IFG Facility Soil Data Summary Syracuse, NY

Detected Metals Data

				Detected Metals Data	cials Data				
	Sample ID Area Sample Date Sample Detti	TAGM Recommended Soil Cleanup mg/Kg	T03-6 N. Property Trench 11/09/1999 4 ft. mg/Kg	T04-1 N. Property Trench 11/04/1999 2.5 R. mg/Kg	T04-2 N. Property Trench 11/04/1999 6 ft. mg/Kg	T04-3 N. Property Trench 11/05/1999 3 ft. mg/Kg	T05-1 N. Property Trench 11/11/1999 3.5 R. mg/Kg	T05-2 N. Property Trench 11/11/1999 3.5 ft. mg/Kg	T06-1 N. Property Trench 11/08/1999 8 ft. mg/Kg
Compound									
Aluminum		SB		1					
Antimony		SB	1	-	***	-	 	Ι .	I
Arsenic		7.5	4.7	[9.9]	[13.8]	[21]	76		
Barium		300			[[12]	0.7	5.5	5.2
Beryllium		0.16	1	ı	١	1			
Cadmium		10	;	1	1				ı
Calcium		SB	-	1	-	-			J
Chromium		. 50	342.3	[3170]	[436]	[355]		1301	
Cobalt		30	1	1	, , 1		7.1.77	r (c)	frncze]
Copper		25	22.6	[4990.1	1.0083			:	-
Iron		2000	1			[0107]	14.0	16.8	[781]
Lead		400	26.61	184	242		;		ı
Magnesium		SB			-	*	ſc	122J	253J
Manganese		SB				-	ı	1	-
Mercury		0.1	0.059 J	[0.12.1]	0.064.7			1.	1
Nickel		13	123 1 1	[3820.1	5.500.1	[0.14]	1 2	1	1
Potassium		SR]]	[2+02-]	Fanci	[756]	[5,02]	.	[1580]
Selenium		2	1		- 1		ı	1	-
Silver		SB	1	1		-			1
Sodium		SB	1	1	1				1
Thallium		SB		1		-			
Cyanide		NC	1	102	ı	-	i]	<u>.</u>]	
Vanadium		150		-	1	-	I		
SII IZ RACEF		20	[(2.7.1)]	[2520]	[1330]	[3510]	[33.9.1]	[33.6.1]	
1									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed,	ly identified, no	ot detected/analyzed, NC	NC - no criteria, SB - site background.	background.				
96	 Exceeds 1 AGM Recommended Soil Cleanup criteria. 	ded Soul Cleanup cri	teria.						

Page 17 of 25

() Table 3-7 Former IFG Facility

Soil Data Summary Syracuse, NY

Semple Compound	ļ				Detected Metals Data	etals Data				
Abunium SB		Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	T07-1 N. Property Trench 11/08/1999 8 ft. mg/Kg	T08-1 N. Property Trench 11/09/1999 9 ft. mg/Kg	T08-2 N. Property Trench 11/09/1999 9 ft. mg/Kg	T08-3 N. Property Trench 11/09/1999 8 ft. mg/Kg	T09-1 N. Property Trench 11/09/1999 10 ft. mg/Kg	T10-1 N. Property Trench 11/09/1999 5.5 ft. mg/Kg	T11-1 N. Property Trench 11/10/1999 8 A. mg/Kg
Abunium SB	Compound									
Autoniowy Still [129] [119] 45 34 44 Joseph Still [129] [119] 45 34 44 Joseph Still [129] [119] 45 34 44 Joseph Still [129] [119] 45 34 Joseph Still [129] [119] 45 34 Joseph Still [129] [119] 45 34 Joseph Still [129] [129] [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129] [129] Joseph Still [129]	Aluminum		SB	ı					-	1
Autonic 135 [113 [124 5] [115 1] 4.5 3.4 4.4 Berylliam 0.16	Antimony		SB	1		ı	ı			1
Berlinm 350 —	Arsenic		7.5	[11]	[12.9]	[11.9]	4.5	3.4	4.4	[7.8]
Beryllium 0.16	Berium		300	1	1	ı	1		_	,
Colonium SB —	Beryllium		0.16		-	-	-	1	1	-
Calcinim SiB —	Cadmium		10	1	-	1	ı	1		_
Optionitism 36 (D440 II) [39 (9) II (3753 III) 36 III 203 III Cobalt 30 — — — — — — Coppar 20 — — — — — — Coppar 200 — — — — — — Indeposition 38 — — — — — — Magnesium SB — — — — — — — Magnesium SB —	Calcium		SB	-	-		1	1	1	I
Copert 30 </td <td>Chromium</td> <td></td> <td>50</td> <td>[2480.1]</td> <td>[2910.1]</td> <td>[34900.1]</td> <td>1775.11</td> <td>361</td> <td>20.1</td> <td>11 05661</td>	Chromium		50	[2480.1]	[2910.1]	[34900.1]	1775.11	361	20.1	11 05661
Copper 23 (2460 l) (341 l) (6990 l) (270 l) 194 lifs 155 Lon 2000 —	Cobalt		30	-	. 1		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<u>.</u>	*	Icocarl
Lond 2000 — </td <td>Copper</td> <td></td> <td>25</td> <td>[2460]</td> <td>[541]</td> <td>[6990]</td> <td>[270]</td> <td></td> <td></td> <td></td>	Copper		25	[2460]	[541]	[6990]	[270]			
Lead Magnesium 400 61.21 19.1.5 57.1.1 174.1 13.1 68.3 Magnesium SB — — — — — — — Magnesium SB —	Iron		2000		**************************************	. 1	. 1	1		[21.7]
Magnesium SB —	Lead		400	61.2.1	19.13	57.1.3	17.43	13.1	6.8.1	28.7.1
Manganese SB —	Magnesium		SB		-		-	}	-	-
Mercury O 1 —	Manganese		SB	I	1	1	1		1	I
Notest 13 [11340] [11240] [1930] [584] [206] [1931] Polassium Selentium 2 — — — — — Selentium 2 — — — — — — Subrat SB — — — — — — Sodium SB — — — — — — Cyanide NC — — — — — — Cyanide NC — — — — — — Vanadium 150 — — — — — — Vanadium 150 — — — — — — Vanadium 150 — — — — — — — Vanadium 20 (4903) (4223) (47304) (47304) (4501) (4901)	Mercury		0.1	-		1		1	1	-
Potassium SB —	Nickel		13	[1190]	[1240]	[19700]	[584]	[20.6]	[193]	[1720]
Selentium 2 —	Potassium		SB	-	1	1		-	1	1
Silver SB — </td <td>Selenium</td> <td></td> <td>2</td> <td></td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td>I</td>	Selenium		2		-	1	-	-		I
Sodium SB — </td <td>Silver</td> <td></td> <td>SB</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td>1</td>	Silver		SB		-	-	-		1	1
Thailium SB —	Sodium		SB	-	1	1	1	1	1	
Cyanide NC — 1.3.1 13.2 0.68.3 6.2 — Vanadium 150 — — — — — — Zince 20 [496.J] [42.J] [4730.J] [145.J] [49.J] NOTES: J - estimated value, N - tentatively identified, — - not detected/analyzed, NC - no criteria, SB - site background. B - site background. B - Exceeds TAGM Recommended Soil Cleanup criteria.	Thallium		SB		-	1			+	I
Variadium 150 -	Cyanide		NG	-	133	13.2	0.68 J	6.2	1	13.2
Zinc [4730.3] [145.1] [4730.3] [49.1] [49.1] NOTES: J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background.			150	1	1	-			*********** 	1
NOTES:			20	[496.1]	[422.1]	[4730.1]	[145.J]	[85.4.1]	[49.1]	[447.1]
	NOTES:	J - estimated value, N - tentativel	ly identified, no ded Soil Cleanup cr	ot detected/analyzed, Niteria.	C - no criteria, SB - sit	e background.				

25 18 of Page

() Table 3-7 Former IFG Facility

Detected Metals Data Syracuse, NY Soil Data Summary

	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	T12-1 N. Property Trench 11/10/1999 4 ft. mg/Kg	T12-2 N. Property Trench 11/10/1999 12 ft. mg/Kg	HA-2 NE Property Area 08/11/1995 10.5 - 11.0 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 6 - 8 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 0 - 1 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg
Compound									
Aluminum		SB				1	-		
Antimony		SB	1		1	1	-		ı
Arsenic		7.5	5.6	[16.9]	2.8	4.6	3.4	5.7	3.5
Barium		300	1	-	70	1	1	: I	2
Beryllium		0.16	1		ı	1			-
Cadmium		10		1	1	-	-		l .
Calcium		SB	1	ı	1	ı	-		
Chromium		50	[853.]]	[14200.1]	151	27.3	18.8	30.7.1	1001
Cobalt		30	1	-				· .	7,747
Conner		25		1,00001	110	- 56			,
Tron		2000		10727	717	777	7-4-7	[176]	9.11.
non.		0007			1			1	ŀ
Lead		400	52.J	208 J	6.8	10.8	11.8	31.9	4.5
Magnesium		SB	1	!	-		1	1	-
Manganese		SB	i	1	-	-	1		1
Mercury		0.1				1	1	1	1
Nickel		13	[514]	[14400]	116.11	[24.8]	[163]	[33]]	
Potassium		SB	-		-	. 1	-	-	
Selenium		2			-	-	i	-	-
Silver		SB				1	-	1	
Sodium		SB	1	1	-		-	ı	
Thallium		SB	-	-				1	-
Cyanide		NC	11.8	166	-	1	1		
Vanadium		150		·	1	-	-	-	
Suiz RAC		20	[5653]	[2720.1]	1	[53.2.]	[49.]	1200.1	1001
ER0									
060 NOTES:	I - estimated value N - tentatively identified not detected/analyzed NC . no extensis CD . sits knobsesses	iv identified not	detected/analyzed MC	ano criterio CD - cita	Luchandon				
	J - Exceeds TAGM Recommended Soil Cleanup criteria.	ded Soil Cleanup crit	i delecteuranaryzeu, inc. eria.	, - NO GIUGIIA, 3D - SIU.	: Dackground.				

Date Printed: 03/20/2000 15:05:24
DBF File: N:024721535\SRNTEMPDATA.DBF
FXP File: N:024721535\SRNTABLEPRS.FXP

19 of 25

Table 3-7
Former IFG Facility Syracuse, NY

Detected Metals Data Soil Data Summary

	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1599 12 - 14 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	SS-99-14 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-15 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound			į						
Aluminum		SB	-					***	
Antimony		SB	1		ı		1		
Arsenic		7.5	2.4	5	4.1	2.3	6.8	63	4.8
Barium		300	1	-	-		: 1	! ; <u>!</u> ;	
Beryllium		0.16				l	-	-	-
Cadmium		10	1		1	•	1	1	
Calcium		SB	1		ı	1	1	1	-
Chromium		50	11.51	282.1	15.5.1	10.1.3	26.61	27.9	21.6
Cobalt		30		1	-	1		1	
Соррег		25	11.6	19.6	14.6	10.7	[25.9.]	[27.2.]	[25.9.]
Iron		2000	1		1	-	· 1	. 1	· ·
Lead		400	4.1	8.5	6.5	3.8		29	25.2
Magnesium		SB	ļ	1	-			1	1
Manganese		SB		1	1	-			1
Mercury		0.1		**************************************	1		-	ı	1
Nickel		13	10,4	[29,7.]	[16.4]	93	[99]	[26]	[22]
Potassium		SB			1				. 1
Selenium		2	-	1	1	l	1		ı
Silver		SB	1.		-	-			-
Sodium		SB	-	1	ı	1	1	1	1
Thallium		SB	ŀ	1	1	-			1
Cyanide		NC	:	1	-	1	l	ı	
Vanadium		150	-		-		1	1	1
euz ACER		20	[26.8]	[57.9]	[36.7]	[23.5]	[56.8]	[158]	11531
0060 NOTES:	1 colored to the second	7 1 2 2 2 2 2 2 2							
	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identificd, noi ided Soil Cleanup crit	t detected/analyzed, N(cria.	C - no criteria, SB - site	e background.				

25 20 of Page

File Number: 3247.21535

Table 3-7
Former IFG Facility
Syracuse, NY
Soil Data Summary

OBG-TB-23 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg [24.9] 26.6 20.6 OBG-TB-22 SE Property Area 10/18/1999 6 - 8 ft. mg/Kg 14 5.7 ŀ OBG-TB-22 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg [26.9] 23.8 9.2 HA-8 SE Property Area 08/11/1995 5.5 - 7.0 ft. mg/Kg 0.65 J 20 J HA-7 SE Property Area 08/10/1995 7.0 - 8.0 ft. mg/Kg **Detected Metals Data** 0.93 17.1 SS-99-17 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg [21500] 8 61 [0.67 J] [65.1] 037.5 [612] 33000 0.036 J 038J 12400 [978] SS-99-16 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg [302] [29.1] 33.3 TAGM Recommended Soil Cleanup 25 2000 400 . 30 10 SB mg/Kg SB 0.1 SB CB Sample ID Area Sample Date Sample Depth Units Manganese Cadmium Magnesium Antimony Chromium Selenium Aluminun Сотроин Beryllium Barium Potassium Thallium Vanadium Mercury Cyanide Arsenic cad Calcium Nickel Sodium Cobalt Zinc Silver

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

□ - Exceeds TAGM Recommended Soil Cleanup criteria.

Page 21 of

25

Taöle 3-7 Former IFG Facility Soil Data Summary Syracuse, NY

Detected Metals Data

							,		
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 6 - 8 ft. mg/Kg	SS-99-18 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-19 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-20 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-21 SE Property Area 10726/1999 0 - 1 R. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 4 - 6 ft.
Сотроина								1))
Aluminum		SB					13300	******	
Antimony		SB	1	1	ï	1	145	1	1
Arsenic		7.5	3.6	[92.8]	4.9	5.8	[162]	2.1	2.3
Barium		300	1	1		1	82.5		<u> </u>
Beryllium		0.16		-	I	1	10 66 11	-	
Cadmium		10	ı	1	I	1	[1]		I
Calcium		SB	1	1	I	ı	23400	1	
Chromium		- 20	14	31.4	22.7	21.5	26.6.1	74	7.0
Cobalt		30	-	-	1		8.4)
Соррег		25	13,4	[4] \$1	10.8	[603]	138.1		1 3
Iron		2000	1	, -		- Const	[23]	Col	01
Lead		400	5.3	48.3	10.8	31.3	50.8	7.8	٤.
Magnesium		SB	1		1	ı	9610	1	}
Manganese		SB	1	1	-	-	474	ł	1
Mercury		0.1	-	**************************************	1	1	0.025 J	1	1
Nickel		13	[13.9]	[54]	[21]	[203]	[38]	12.7	[2.9
Potassium		SB	1	-	1	************ !	2490	1	-
Selenium		2	1	1	1		1.4		1
Silver		SB	1		-	1	1		-
Sodium		SB	1	-	-		177		1
Thallium		SB		-		***	-	-	-
Cyanide		NC	1	1			-	0.68	-
Vanadium		150	-	-	-	-	27.9	1	-
Zinc		20	[31.9]	[892]	[53.1]	[129]	[440]	.14	9.91
				:					

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:24
DBF File: N:024721535\SRNTEMPDATA.DBF
FXP File: N:024721535\SRNTABLEPRS.FXP

File Number: 3247.21535

22 of 25

Page

RACER0060601

Table 3-7
Table 3-7
Former IFG Facility
Syracuse, NY
Soil Data Summary

	3			Detected N	Detected Metals Data				
	Sample ID Area Sample Date Sample Dett	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 0 - 1 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 5 - 6 ft. mg/Kg	OBG-TB-33 SW Property Area 10/20/1999 5 - 6 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 10 - 12 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 4 · 6 ft. mg/Kg
Compound									,
Aluminum		SB	1 1 1						
Antimony		SB	1	I	1	-	1	-	 !
Arsenic		7.5	3.2	4.2	4.4	2.4	2.2	1.9	2.4
Barium		300	1	1	1	1	ļ	: 1	i I
Beryllium		0.16	1		1	1	I	1	
Cadmium		10	1	I	1	1	1		
Calcium		SB		1	I	1	1	1	•
Chromium		50	[75]	14.4	14,6	13.7.1	1431	1911	2.1.81
Cobalt		30	1	1	-			7011	£ 17 + 1
Соррет		25	[25.8]	20.7	14.2		! *	=	ē
Iron		2000	1	1	-	<u> </u>]		1.6
Lead		400	24.5	5.7	55	49	; <u> </u>	00	1 .
Magnesium		SB	1	1	-	<u></u>	7711	27	/0
Manganese		SB	-	1	1	l !	! !		ı
Mercury	MANA TALON SURVINION WAS ARRESTED AND A SURVINION OF THE	0.1	-	1	1		-		l
Nickel		13	[30.6]	[14.6]	[14.7]	11.5	113.1.1		10031
Potassium		SB	1	-		1		:	
Selenium		2	1	1	1	ı	I		1 1
Silver		SB				1	1	-	1
Sodium		SB	1	1	1	-	-	•	
Thallium		SB	1		-	-	-	1	-
Cyanide		NC	-	1	0.73	-	•	-	
		150	-	-	1	-	1	1	ı
Zinc		20	[73.4.]	[283]	[31.7.]	[284]	[43]	151	[38.9]
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ly identified, nc ded Soil Cleanup cri	ot detected/analyzed, N(C - no criteria, SB - sit	e background.				

Date Printed: 03/20/2000 15:05:24
DBF File: N:024721535\SRRTEMPDATA.DBF
FXP File: N:024721535\SRRTABLEPRS.FXP

RACER0060602

23 of 25

Table 3-7
Former IFG Facility Syracuse, NY

Detected Metals Data Soil Data Summary

	Sample ID Area Sample Date Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 8 - 10 ft. mg/Kg	SS-99-01 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-02 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-03 · SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-04 SW Property Area 10/26/1999 0 - 1 n. mg/Kg
Compound						•			1
Aluminum		SB			****	-	8930		
Antimony		SB	1	1	-				
Arsenic	*	7.5	2.2	2.4	1.7	5.8	4.7	3.6	3.5
Barium		300	1	7-1		-	48.4	?; <u> </u>	
Beryllium		0.16	-	ı	I	1	F0.45 II	1	
Cadmium		01	1		1		[ccio]		
Calcinm		SB	-	-		l	1,441	_	1
Chrominm			1001	1.000			16/00		-
Cobalt) (7.7.7	F 7.04	(T 147	[100]	7107	[108]	[134]
Cogait		20	1	1	ì	1	5.4 J	ŀ	!
Copper		25	69	10.5	11.8	[35.8]	[39.1]	661	[73]
Iron		2000	-				[15000]		
Lead		400	4.8	4,4	3	115	26	46.5	1.1.8
Magnesium		SB	1				8180	-	
Manganese		SB	-		1	1	303		
Mercury		0.1	I	-			0.042		
Nickel		13	- 66	[184]	Pδ	145.8.1	0.042 fdn.3.1	- Fo cos	
Potassium		CB.					[[]] .	[o.co]	[ond]
Catanina		an .	l	ı		-	1460	-	
Cilmin		7 د د د د د د د د د د د د د د د د د د د	i		1	1	860	I	1
Silver		90	1	1	-	ŀ	;	1	;
Sodium		SB	1	1	1	1	109.5	1	1
Thallium		SB	-	ļ	-			-	
Cyanide		NC	1	1	-		-	-	
Vanadium		150			-		19.1	J	
SIIZ RACI		20	[39,6]	[29.1]	19.4	[1500]	[123]	[94.9.1	
ER0									
060 NOTES:	1 - estimated value N - tentatively identified	ton a montified		edio CO circuito ou	- Proposition of				-
	[] - Exceeds TAGM Recommended Soil Cleanup criteria.	nded Soil Cleanup crite		INC - 110 GINGITA, S.B SINE DACKEROUNG.	s background.		,		

25

24 of

Page

Date Printed: 03/20/2000 15:05:24

OBF File: N:0247/21535/SRIVITEMPDATA DBF

FXP File: N:0247/21535/SRIVITABLEPRS.FXP

Table 3-7
Former IFG Facility **Detected Metals Data** Soil Data Summary Syracuse, NY

	Sample ID Area Sample Date Sample Depth Units	I AGM Recommended Soil Cleanup mg/Kg	SS-99-05 Thinner Tank Area 10/26/1999 0 - 1 ft. mg/Kg
Compound			
Aluminum		SB	13600
Antimony		SB	
Arsenic		7.5	4.5
Barium		300	693
Beryllium		0.16	[0.63 J]
Cadmium		10	0.22.1
Calcium		SB	0608
Стотит		50	19.3.1
Cobalt		30	9,1
Copper		25	18.5
Iron		2000	[20500]
Lead		400	13.7
Magnesium		SB	
Manganese		SB	524
Mercury		0.1	0.029 J
Nickel		13	[182]
Potassium		SB	
Scienium		2	1.2
Silver		SB	
Sodium		SB	97.5.1
Thallium		SB	
Cyanide		NC	
Vanadium		150	25.8
ouiz RACEI		20	[56.8]
זר		i	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

25 of 25

Page

Date Printed: 03/20/2000 15:05:24
DBF File: N/0247/21535/SRINTEMPDATA DBF
FXP File: N/0247/21535/SRINTABLEPRS.FXP

NOTES:

Former IFG Facility () Table 3-8A Syracuse, NY

Soil Data Summary

Detected Method 8021 Volatile Organic Compound Data

			Detected Mich	ictiidu ouzi 🔻 diatile Organic Compound Data	e Organic Comp	ound Data				
рыхолид	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-12 Bidg, Paint Room 07/13/1999 11 - 13 ft. mg/Kg	OBG-TB-12 Bldg, Paint Room 07/13/1999 5 - 7 ft. mg/Kg	OBG-TB-13 Bldg. Paint Room 071141999 15 - 17 ft. mg/Kg	OBG-TB-13 Bldg, Paint Room 07/14/1999 7 - 9 ft. mg/Kg	OBG-TB-13 Bldg, Paint Room 07/14/1999 9 - 11 ft. mg/Kg	OBG-TB-16 Bldg, Paint Room 07/19/1999 1 - 3 ft, mg/Kg	OBG-TB-16 Bidg, Paint Room 07/19/1999 5 - 7 ft. mg/Kg	
Compound										_
1,1-Dichloroethane		0.2	!	;		1	1			_
1,2-Dichlorobenzene		7.9	1	I	I	1	-		ı	
Benzene		90.0	1	-	-	-		,	1	_
Chlorobenzene		1.7	1		-	-	-			
Chloroform		0.3	i	1	1	i	1	1	-	_
Methylene chloride Ethylbenzene		0.1 5.5	1 1	1 1	1 1	1 1	1 -	1 1	1 1	
Tetrachloroethene Toluene		1.4 1.5	1 1	1 1	1 1		1 :	1 1		
Trichloroethene Xylene (total)		0,7 1.2	[22] -	[A4] 	0.039	0.032	[5]	690'0	[D91]	
cis-1.2-Dichloroethene trans-1.2-Dichloroethene		0.25	[4.1]	1 1	9600	0,071	T	0.005	1	
		}		l	7:00.	6,000	ı	I	1	
									-	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

I - Exceeds TAGM Recommended Soil Cleanup criteria.

RACER0060606

17 <u>Г</u> Page

Date Printed: 03/20/2000 15:05:57
DBF File: N/3247/21535/SRIVTEMPDATA. DBF
FXP File: N/3247/21535/SRIVTABLEPRS.FXP

Table 3-8A Former IFG Facility

Syracuse, NY	Soil Data Summary	Detected Method 8021 Volatile Organic Compound Data
--------------	-------------------	---

					,				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-17 Bldg. Paint Room 07/19/1999 10 - 12 ft. mg/Kg	OBG-TB-17 Bldg. Paint Room 07/19/1999 4 - 8 ft. mg/Kg	OBG-TB-15 Bidg. Sump #2 07/16/1999 5 - 7 ft. mg/Kg	OBG-TB-14 Bidg. Sump #3 07/16/1999 10 - 12 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 2 - 4 ft. mg/Kg	OBG-TB-14 Bidg, Sump #3 07/16/1999 4 - 6 ft, mg/Kg	OBG-TB-14 Bidg. Sump #3 07/16/1999 6 - 8 ft. mg/Kg
Сотроипа									
1,1-Dichloroethane 1,2-Dichlorobenzene		0.2 7.9	1 1	1 1	1 1	1 1			1 1
Вепzепе		90:0	-		1	1	1	-	-
Chlorobenzene Chloroform		1.7 0.3	1 1	1 1	1	1 1		1	1
Methylene chloride Ethylbenzene		0.1 5.5	1	1 1	1 1	1 1	N 1500 N 9000	I I :	
Tetrachloroethene Toluene		1.5	1 1	0.001	1000	11		1 1	
Trichloroethene Xylene (total)		0.7	1	0.038	1 1	[33]	0113	0.0151	0.011
cis-1,2-Dichloroethene trans-1,2-Dichloroethene		0.25 0.3	[2.8]	0.017	1 1	1 1	0.008.3	0.003	0.005
								I	I

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:57
DBF File: N/0247/21535/SRNTEMPDATA.DBF
FXP File: N/0247/21535/SRNTABLEPRS.FXP

NOTES: RACER0060607 File Number: 3247.21535

17 2 of

Page

() Table 3-8A Former IFG Facility

Syracuse, NY	Soil Data Summary

			Detected M		ethod 8021 Volatile Organic Compound Data	pound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 10 - 12 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 2 - 4 n. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 4 - 6 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 6 - 8 ft. mg/Kg	OBG-TB-05 Bldg. Sump #6 07/09/1999 8 - 10 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 1 - 3 ft. mg/Kg	OBG-TB-19 Bidg, Sump #7 0720/1999 5 - 7 R.
Compound									•
1,I-Dichloroethane		0.2			1				
1,2-Dichlorobenzene		7.9	l	l	-			1	
Benzene		90.0	-	1	1		1	1	-
Chlorobenzene		1.7	1		-		ı	-	
Chloroform		0.3			I	I		1	
Methylene chloride		0.1	0.025 N	0.012N	0,003 N	0.003 N	0.023 N	-	! !
Ethylbenzene		5.5	**************************************		-	ŀ	1	-	-
Tetrachloroethene		1.4				1			
Toluene		1.5	*	l	I	-			l
Trichioroethene			0.000	0,000		0		1	1
Veiland (tatal)			7	Anna.	6,000	0,006	0,008	0.005	0.005
Aylene (total)	A de l'all'antides de l'all'antides de l'all'antides de l'all'antides de l'all'antides de l'all'antides de l'al	7'1		1	-	1	į	i	ı
cis-1,2-Dichloroethene		0.25	0.003	0.002	1	ı	0,001	i	-
trans-1,2-Dichloroethene		0.3	ł	-	ł			-	-
RACER									•
NOTES: J - estimated v	value, N - tentative	J - estimated value, N - tentatively identified, not dete	ot detected/analyzed, iteria.	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background [] - Exceeds TAGM Recommended Soil Cleanup criteria.	site background.				

Date Printed: 03/20/2000 15:05:57 DBF File: N:0247/21535/SRIVTEMPDATA.DBF FXP File: N:0247/21535/SRIVTABLEPRS.FXP

File Number: 3247.21535

3 of 17

() Table 3-8A Former IFG Facility Syracuse, NY

Soil Data Summary

			Detected Me	thod 8021 Volat	Detected Method 8021 Volatile Organic Compound Data	pound Data			:	
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 7 - 9 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 9 - 11 ft. mg/Kg	OBG-TB-01 Bidg. Sump#8 07/06/1999 1 - 3 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 3 - 5 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 9 - 11 ft. mg/Kg	SS-99-22 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-23 IWT Acea 10/27/1999 0 - 1 ft. mg/Kg	
Compound		·								
1,1-Dichloroethane		0.2	• • • • • • • • • • • • • • • • • • • •			- American		B-144	1	
1,2-Dichlorobenzene		7.9	1		1	1	1	-		
Benzene		0.06		-	-	!	I	ı	ı	
Chlorobenzene		1.7	1	1	1	1	1	-		
Chloroform		0.3	-	1		1	ı	1	1	
Methylene chloride		0.1	1	0.002 N	0.002 N	0.002 N	0.002 N	N 110.0	0.003 N	
Ethylbenzene		5.5	0.053 N		1	1	0.00	1	-	
Тетасћјогоетнепе		1.4	1	-	1	-	-	1	1	
Toluene		1.5			1	-	-	I	1	
Trichloroethene		0.7	1	0.008	1	-	1	1	1	
Xylene (total)		1.2	0.26 N		1	· 	0.068	-	-	
cis-1,2-Dichloroethene		0.25	0.017	0.027	1			1	1	
trans-1,2-Dichloroethene		0.3		1		-			-	
						described and the second of th				

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

17 оĮ 4 Page

Date Printed: 03/20/2000 15:05:57
DBF File: N:0247/21535/SRI/IEMPDATA. DBF
FXP File: N:0247/21535/SRI/IABLEPRS.FXP

RACER0060609

Former IFG Facility Table 3-8A Syracuse, NY

Soil Data Summary

Detected Method 8021 Volatile Organic Compound Data

			AT. T DODGE OF	mano teo noma.	oraciic organic compound Data	Journa Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-26 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-27 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-28 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-29 IWT Area 10/27/1999 0 - I.ft. mg/Kg	SS-99-30 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-31 IWT Area 10/27/1999 0 - 1 ft, mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg
Compound									
1,1-Dichloroethane		0.2	-						
1,2-Dichtorobenzene		7.9	1	1	-		ı		
Benzene		90'0	-	-	-		1	-	-
Chlorobenzene		1.7	-			l	•		
Chloroform	doscores proportion de la company de la comp	0.3		1	1	1	-		
Methylene chloride		0.1	0.05 N	0.014NJ	0.035 NJ	N9000	0.005N	N E00 0	N 500 0
Ethylbenzene		5.5		1	1	1		:	
Tetrachloroethene	200	1.4	1		1		-	-	
Toluene		1.5			0.001 NJ	1		ļ	
Trichloroethene		0.7				1	1	1	0.00
Xylene (total)		1.2			-	-	1	1)
cis-1,2-Dichloroethene		0.25	I		1	-	ł		-
trans-1,2-Dichloroethene		0.3		1	-		1	1	ı

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds TAGM Recommended Soil Cleanup criteria.

5 of Page

17

File Number, 3247.21535

Date Printed: 03/20/2000 15:05:57
DBF File: N:024721535\SRITEMPDATA.DBF
FXP File: N:024721535\SRITABLEPRS.FXP

Detected Method 8021 Volatile Organic Compound Data

Former IFG Facility	Syracuse, NY	Soil Data Summary

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 4 - 6 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 6 - 8 ft.	OBG-TB-30 IWT TCE Storage Area 10/19/1999
Compound)	0	9\\A.\\
1,1-Dichloroethane		0.2	1						
1,2-Dichlorobenzene		- 62			•	1	! !		100
Вепхепе		90:00	-	. 1	1	1			0,013
Chlorobenzene		1.7		ı	-	-		I	
Chloroform		0.3	1	1	-	-			
Methylene chloride		0.1	0.018 N	0.002 N	0.001 N	0.002 N		N 500 0	-
Ethylbenzene		5.5	-	I	1		-	110000	-
Tetrachloroethene		1.4	I	***	•	-			-
Toluene		1.5		I	1	-	-		
Trichloroethene	200	0.7	1	2000	0.007	0.003	1,0000		1
Xylene (total)		12		1			17007	CIO'O	-
cis-1,2-Dichloroethene		0.25	i	111			i . i		1
trans-1,2-Dichloroethene		0.3	1	I	1	I	-	DAY!	I
								I	-
		·							
RACEF									
NOTES: J - estimated val	lue, N - tentative) GM Recomment	J - estimated value, N - tentatively identified, not detected/analyzed, N	ietected/analyzed, NC·ria.	C - no criteria, SB - site background	background.				

Date Printed: 03/20/2000 15:05:57 DBF File: N/024721535/SRNTEMPDATA DBF FXP File: N/024721535/SRNTABLEPRS.FXP

File Number; 3247,21535

6 of 17

Former IFG Facility Syracuse, NY Table 3-8A

Soil Data Summary

			Detected Met	Method 8021 Volatile Organic Compound Data	e Organic Comp	ound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-38 OB 10/21/1999 10/21/1999 4- mg/Kg mg	OBG-TB-38 OBG-TB-25 a IWT TCE Storage Area N. Property Area 10/21/1999 10/19/1999 4 - 6 ft. 0 - 1 ft. mg/Kg mg/Kg	OBG-TB-25 10/19/1999 0 - 1 ft.	OBG-TB-25 N. Property Area 10/19/1999 10 - 12 ft. mg/Kg	OBG-TB-25 N. Property Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg
Compound					:				
1,1-Dichloroemane		0.2	0.036 NJ	1	1	l		1	21.6
Liz-Dichigiobenzene Benzene		90.0	1 1	1 1	1 1		1 1	1	1
Chlorobenzene		17	-	1	ı	1	 		1 1
Chlorolom Methylene chloride		0.3	1 1	 0.023 NJ	N6600	 N £00'0	 0.002.NJ	0.006 N 0.007 N	 0.003 N
Ethylbenzene Tetrachloroethene		5.5		- 1		1 1	1 1	1	-
Toluene		1.5	1	l	0.003 N		-	l I	
Trichloroethene Xylene (total)		0.7	0.22	1 1	1000	: 1	1 1	1	1
cis-I.2-Dichloroethene trans-1.2-Dichloroethene		0.25 0.3	0.044	1 1	* l	1 1	l		l I
							I	I	-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria. NOTES:

7 of 17 Page

File Number: 3247.21535

Date Printed: 03/20/2000 15:05:57
DBF File: N/0247/21535/SRNTEMPDATA DBF
FXP File: N/0247/21535/SRNTABLEPRS.FXP

Former IFG Facility Table 3-8A

	į		Detected Me	ethod 8021 Volatile Organic Compound Data	le Organic Comp	ound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-26 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 12 - 14 ft. mg/Kg	OBG-TB-27 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 0 - 1 ft. mg/Kg	OBG-TB-28 N. Property Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 2 - 4 ft. mg/Kg
Compound									
1,1-Dichloroethane		0.2	į	ŀ	I	I	ł		!
1,2-Dichlorobenzene		7.9	1	-		ı	1	l	1
Benzene		90.0	ŀ	-	I	-		-	-
Chlorobenzene		1,7	1	-	I	1	I	I.	-
Chloroform		0.3			1	1.	1	1	-
Methylene chloride Ethylbenzene		0.1 5.5	0.001 N	0.002 N	0.003 N	NSI00	0.014 N	0.01 N	N81000
Tetrachloroethene		1,4	1	1	1	1	ı	1	
Toluene		1.5		1	1	-		1	1
Trichloroethene		0.7	1	-	1	1	ı	1	1
Xylene (total)		1.2	1	1	1	1	1		1
cis-1,2-Dichloroethene		0.25		+	1	1	ı	ļ	1
trans-1,2-Dichloroethene		0.3	1	1	-	1	1	1	1
								•	
					,				

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

of 17 ∞

Page

Date Printed: 03/20/2000 15:05:57 DBF File: N:024721535\SRI\TEMPDATA.DBF FXP File: N:024721535\SRI\TABLEPRS.FXP

RACER0060613

Former IFG Facility Syracuse, NY Table 3-8A

Soil Data Summary

			Detected Me	Method 8021 Volatile Organic Compound Data	le Organic Com	pound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 0 - 2 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 10 - 12 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 34 - 36 ft. mg/Kg	OBG-TB-41 N. Property Area 10/21/1999 6 - 8 ft. mg/Kg	OBG-TB-42 N. Property Area 10/25/1999 0 - 1 ft. mg/Kg	OBG-TB-42 N. Property Area 10,2511999 10 - 12 ft. mg/Kg
Compound									
1,1-Dichloroethane		0.2					1		
1,2-Dichlorobenzene		7.9	1	1				I	•
Benzene		0.06		1			-	1	1
Chlorobenzene		1.7	1	1		1	1	1	ı
Chloroform		0.3	-	-	1	1		-	1
Methylene chloride		0.1	0.002 N	0.037N	0.003 N	I	0.037N	0,004 N	0.002 N
Ethylbenzene		5.5	-	-	-		1	-	-
Tetrachloroethene		1.4	1	1	ı	l	1	1	-
Toluene		1.5			entered (Color of the Color of	1	0.001 N	1	ı
Trickloroethene		0.7	ŀ	1	0.004	[1.2.]	-		1
Xylene (total)		1.2		ı		1	-	ŀ	1
cis-1,2-Dichloroethene		0.25	l	J	1	1	Ţ	-	
trans-1,2-Dichloroethene		0.3	i	1	1			-	-

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds TAGM Recommended Soil Cleanup criteria.

Page

17 o of

Date Printed: 03/20/2000 15:05:57 DBF File: N:0247/21535/SRNTEMPDATA.DBF FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247.21535

Former IFG Facility Syracuse, NY Table 3-8A

Soil Data Summary

		Sample ID Area	TAGM Recommended	Detected Me OBG-TB-42 N. Property Area	Cethod 8021 Volatile Organic Compound Data OBG-TB-42 SS-99-06 SS-99-07 N. Property Area N. Property Area N. Property A.	le Organic Comp SS-99-06 N. Property Area	pound Data SS-99-07 N. Property Area	SS-99-08 N. Property Area	SS-99-09 N Property Area	SS-99-11 N Propert Ass
0.2 —		Sample Date Sample Depth Units		10/25/1999 32 - 34 ft. mg/Kg	10/25/1999 6 - 8 ft. mg/Kg	10/26/1999 0 - 1 ft. mg/Kg	10/26/1999 0 - 1 ft. mg/Kg	10/26/1999 0 - 1 ft. mg/Kg	10/26/1999 0 - 1 ft. mg/Kg	10,26/1999 0 - 1 ft. mg/Kg
7.9 —<	ponod	•							•	
1.79 ==	Dichloroethane		0.2							
0.06 — — — — — — — — — — — — — — — — — — —	Dichlorobenzene		62	1	1		-	-	1	-
1.7 — — — — — — — — — — — — — — — — — — —	zene	•	90.0				ı	1		
0.3 — — — — — — 5.5 — — — — — 1.4 — — — — 1.5 — — — — 0.7 — — — — 0.7 — — — — 0.25 — — — — 0.25 — — — — 0.3 — — — —	robenzene		1.7	1	1	1	•	1	-	
6.1 6,003 N 0,004 N 0,004 N 0,004 N 0,004 N 0,004 N 0,004 N 0,002 NJ 1.5 — — — — — — — 0.7 — — — — — — 0.25 — — — — — 0.3 — — — — —	гобогт		0.3	1	-	1	I	N 6100		I
5.5 —<	ylene chloride		0.1	0,003 N	0.003 N	0,006 N	0,004 N	0.014 N	0.002 NJ	0.016N
1.5 — — — — — — — — — — — — — — — — — — —	Ibenzene		5.5	1	-	ŀ	-	J		
1.5 — — — — — — — — — — — — — — — — — — —	chloroethene		1.4	1	1	-	1	ı	1	
1.2 — — — — — — — — — — — — — — — — — — —	ene		1.5	ŀ	1	-	****	1	1	J
1.2 — — — — — — — — — — — — — — — — — — —	loroethene		20	1	1	1	1	0,004	1	i
0.25	ne (total)		1.2						l	1
0.3	,2-Dichloroethene		0,25		1	1	ı	1	1	i
	-1,2-Dichloroethene		0.3	ı	-	1		1		1
			CONTRACTOR OF A CONTRACTOR OF THE	STATE OF THE PROPERTY OF THE P						

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

I - Exceeds TAGM Recommended Soil Cleanup criteria.

RACERO060615

ŏ 0 Page File Number: 3247.21535

Former IFG Facility () Tabie 3-8A Syracuse, NY

Detected Method 8021 Volatile Organic Compound Data Soil Data Summary

)				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-12 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	. T01-2 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01.4 N. Property Trench 11/02/1999 9 ft. mg/Kg	T02-2 N. Property Trench 11/03/1999 5.5 ft. mg/Kg	T02-4 N. Property Trench 11/04/1999 5 ft. mg/Kg	T03-1 N. Property Trench 11/03/1999 6 ft. mg/Kg	T03.4 N Property Trench 11/05/1999 6 ft. mg/Kg
Compound	·								
1,1-Dichloroethane		0.2							
1,2-Dichlorobenzene		7.9	1	ł	1	1	1		1
Benzene		90.0	1	-		0.001 J	I	1	
Chlorobenzene		1.7	1	1	1		1	1	-
СһІоговот		0.3	-	-	1	1	1		1
Methylene chloride		0.1	0.017N			l	0.002 N	-	
Ethylbenzene		5.5	1	[N II]	-	I	I	J	N 050 0
Tetrachloroethene		1.4	I		1	1	1	1	
Toluene		1.5	1	[110 NJ]	I	-	-	1	0.045 N
Trichloroethene		0.7	1	- 1	1.		;	1	0,053.1
Xylene (total)		1.2		[84 NJ]		ļ		I	0.33 N
cis-1,2-Dichloroethene		0.25	1	1	0.002.3			(0.47.1)	[0.45]
trans-1,2-Dichloroethene		0.3	i	1			-	0.011 J	0.009 J
									0.0000000000000000000000000000000000000

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

I - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:57 DBF File: N/0247/21535/SRNTEMPDATA.DBF FXP File: N/0247/21535/SRNTABLEPRS.FXP

File Number, 3247.21535

17 jo Ξ

Syracuse, NY Table 3-8A

Former IFG Facility

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T04-2 N. Property Trench 11/04/1999 6 ft. mg/Kg	T04-3 N. Property Trench 11/05/1999 3 ft. mg/Kg	T05-1 N. Property Trench 11/11/1999 3.5 ft. mg/Kg	T08-2 N. Property Trench 11/09/1999 9 ft. mg/Kg	T08-3 N. Property Trench 11/09/1999 8 ft. mg/Kg	T10-1 N. Property Trench 11/09/1999 5.5 ft. ng/Kg	T11-1 N. Property Trench 11/10/1999 8 ft. mg/Kg
Compound								ı))
1,1-Dichloroethane		0.2							
1,2-Dichlorobenzene		7.9	1	1	-	_	1		
Benzene		0.06	1	-	-	1	1	1	
Chlorobenzene		1.7	;			/131	-		
Chloroform		0.3		1	1		-		1
Methylene chloride		0.1	;	0.002 N	0.002 N	i	-	N 1000	
Ethylbenzene		5.5	0.71 N	I	1	1	0.021 N		1
Tetrachloroethene		1.4	1	1	1	-	1		J
Toluene		1.5	0.37 N	1		*****	N 000 U		
Trichloroethene		7.0	Î	0.004		•	V (200)		1
Xylene (total)		1.2	[4 N]	1	١	1	0.035 NI		l
cis-1,2-Dichloroethene		0,25			1	ł	2 1 Com	!	
trans-1,2-Dichloroethene		0.3	***	-	1	1	i		0,000
								ı	con.v

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

12 of 17 Page

Date Printed: 03/20/2000 15:05:57
DBF File: N/0247/21535/SRN/TEMPDATA.DBF
FXP File: N/0247/21535/SRN/TABLEPRS.FXP

File Number: 3247.21535

mng nundung sund, sund

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	Ti2-2 N. Property Trench 11/10/1999 12 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 6 - 8 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 0 - 1 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 6 - 8 n. mg/Kg
Compound	-								
1,1-Dichloroethane		0.2	1	1	1			***	
Benzene		0.06	I I		1 1		1	1	1
Chlorobenzene		1.7	1	-	1			1	- 1
Chloroform		0.3	-	0.005 N	0.004 N	1	1	1	
Methylene chloride		0.1	1	N 600'0	0.003 N	0.002 N	1	0.004 N	0.003 N
Ethylbenzene	200 000 000 000 000 000 000 000 000 000	5.5	[10 N]	-	1	-	-	1	
Tetrachloroethene 		1.4	1	ł	1	-	ı	1	
Toluene		1.5	[8.8 N]	I	ţ	-	ı		-
Trichloroethene		0.7	ł	1	1	1	[151]		1
Xylene (total)		1.2	[110N]					-	1
cis-1,2-Dichloroethene		0.25	[11]	1	1	1	I	1	1
trans-1,2-Dichloroethene		0.3	-	-	l	-	-	1	-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:57
DBF File: N:024721535\SR\\TEMPDATA.DBF
FXP File: N:024721535\SR\\TABLEPRS.FXP

File Number: 3247.21535

7 oę 13

Detected Method 8021 Volatile Organic Compound Data Soil Data Summary

	Sample ID Area Sample Date Sample Date Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	SS-99-15 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	OBG-TB-22 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg	SS-99-18 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									
1,1-Dichloroethane	thane	0.2							
1,2-Dichlorobenzene	enzene	7.9	1	-		ı	1	I	1
Benzene		0.06	1	-	-		1	-	ı
Chlombenzene	v	1.7	1	1	-			-	_
Chloroform		0.3		-		1	1	I	-
Methylene chlorid	londe	0.1	1	0.001 NJ	0.002 N	0.002 N	0.003 N	N900'0	0.003 N
Ethylbenzene		5.5	********** 1		-	I	1	1	
Tetrachloroethene	ene	1.4		1	1		i		-
Toluene		1,5		***	1	1	١	-	1
Trichloroethene	ž		[f 620]	1	1	-	1	i	
Xylene (total)	en de Marchana van Andre de Nacional de Compaña de Marchana de Compaña de Com	1.2		-	1	ı	1		
cis-1,2-Dichloroethene	roethene	0.25	1	-	0.019	+		1	
trans-1,2-Dichloroethene	loroethene	0.3	1		0.001	-	**************************************	1	-
				-					
RACER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ely identified, no 1ded Soil Cleanup cri	ccted/analyzed,	NC - no criteria, SB - site background.	e background.				

Dale Printed: 03/20/2000 15:05:57 DBF File: N/0247/21535/SRIVTEMPDATA DBF FXP File: N/0247/21535/SRIVTABLEPRS.FXP

WAR.

File Number: 3247,21535

14 of 17

Soil Data Summary

Detected Method 8021 Volatile Organic Compound Data

			דבובבונת ועובר	CONTRACT A DISCUIS OF BRIDE CONTINUE DISCRETE	congaine comp	ound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-19 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 0 - 1 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 5 - 6 ft. mg/Kg	OBG-TB-33 SW Property Area 10/20/1999 5 - 6 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg
Compound									
1,1-Dichloroethane		0,2							
1,2-Dichlorobenzene		7.9	***	I			J		
Benzene		90:0	A	1		1	1	1	-
Chlorobenzene		1.7	1	1	I	-	I	I	
Chloroform		0.3				1	1	-	-
Methylene chloride		0.1	0.006 N	0.003 N	0.001 N	0.003 N	-	0.001 N	0.029 NJ
Ethylbenzene		5.5			1	-	ŀ	i	-
Tetrachloroethene		1.4	1		1		1	1	ı
Toluene		1.5	-	-	1	-	I	1	N C00 0
Trichloroethene				ı	1	0.002	0000	1	0.02.3
Xylene (total)		1.2	-		-	-	-	I	-
cis-1,2-Dichloroethene		0.25	1	1	1	1		-	1
trans-1,2-Dichloroethene		0.3	i	i	1		-		

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

15 of Page

17

Date Printed: 03/20/2000 15:05:57
DBF File: N:0247/21535/SRNTEMPDATA. DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247.21535

Detected Method 8021 Volatile Organic Compound Data Soil Data Summary

)				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 10 - 12 R. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 8 - 10 ft. mg/Kg	SS-99-01 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-03 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									
1,1-Dichloroethane		0.2	***						
1,2-Dichlorobenzene		7.9	1		ı	-	ı	1	
Benzene		90:0	ł			1	1	1	
Chlorobenzene		1.7		1	l	1	1	1	-
Chloroform		0.3	1	•	-		1	1	1
Methylene chloride		0.1	ı	0.021 N	0,034 N	1	0.015 N	0.011.1	0.002 NJ
Ethylbenzene		5.5	i	ŀ	ł	-		-	
Tetrachloroethene		1.4	1	1	1	1	1	1	1
Toluene		1.5	İ	0.002 N	0.002 N			-	-
Trichloroethene		20	[21]	0.032	0,031	0.37	0.23	1	1
Xylene (total)		1.2	1	-	***		-	-	1
cis-1,2-Dichloroethene		0.25	1	1	1	1	1	1	i i i i i i i i i i i i i i i i i i i
trans-1,2-Dichloroethene		0.3	ŀ		1	-	-	-	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:05:57 DBF Fite: N:0247/21535/SRNTEMPDATA.DBF FXP Fite: N:0247/21535/SRNTABLEPRS.FXP

File Number; 3247.21535

17

16 of

Former IFG Facility Table 3-8A

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-04 SW Property Area 10/26/1999 0 - 1 R. mg/Kg
Сотроина			
1,1-Dichlorocthane		0.2	
1.2-Dichlorobenzene Benzene		7.9	
Chtorobenzene		1.7	-
Chloroform		0.3	**************************************
Methylene chloride Ethylbenzene		0.1 5.5	IN 100:0
Tetrachloroethene Toluene		1.4 1.5	-
Trichloroethene Xylene (total)		0.7	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene		025 03	1

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES

I - Exceeds TAGM Recommended Soil Cleanup criteria.

17 of Page

17

File Number: 3247.21535

Date Printed: 03/20/2000 15:05:57 DBF File: N:0247/21535/SRNTEMPDATA.DBF FXP File: N:0247/21535/SRNTABLEPRS.FXP

RACER0060622

Soil Data Summary

			Detected Meth	Detected Method 8260 Volatile Organic Compound Data	Organic Comp.	ound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	BH-27 Bldg, Oil Sumps/Tanks E 04/02/1996 7.5 - 9.0 ft.	BH-28 BH-46 s Bldg. Oil Sumps/Tanks Bldg. Paint Room 04/02/1996 04/11/1996 7.5 - 9.0 ft. 15.0 - 16.0 ft. mg/Kg mg/Kg	BH-46 Bldg, Paint Room 04/11/1996 15.0 - 16.0 ft, mg/Kg	BH-47 Bldg. Paint Room 04/11/1996 15.0 - 16.0 ft. mg/Kg	BH-47 Bldg. Paint Room 04/11/1996 7.0 - 9.0 ft. mg/Kg	BH-48 Bldg, Paint Room 04/12/1996 10.0 - 10.5 ft. mg/Kg	OBG-TB-12 Bldg, Paint Room 07(13/1999 11-13 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4		1					
1.2-Dicfilorobenzene			ì	i	-	-		1	•
1,2-Dichloroethene		0.25*	0.093	0.022	0.14 J	[0.56.1]	[1]	[0.31]	1
2-Butanone (MEK)		0.3	ļ	ı	1	. 1	, 1	, 1	
Acetone		0.2	0.022	0.017	0.021 J		1	0.014	1
Benzene Carbon disulfida		0.06	-	1	ı	1	1	1	ı
Ethylbenzene		5.5			1 1	1 1			-
Methylene chloride		0.1	0.005 J	0.003 J	ı	1	0.011 J	1	-
Tetrachloroethene		1.4	1	1	1				1
Toluene		1.5	0.002 J		1	-	-	-	ı
Trichloroethene		2.0	0.039	0.003 J	[14]	[9]	[150]	[42]	[26]
Vinyl chloride		0.2		0.011 J		1	0.044 J	1	ı
Xylene (total)		1.2 0.36	0.003.1	1	1	1	1	1	1
cis-1,z-Litation Gentleme	2014 2012 DEPENDENCE OF THE PERSON OF THE PE	C7'0	1		1	ł	1	1	[5.1]
trans-1,2-Dichloroethene		0.3		1	-	1	1	1	1
	200 and 100 miles and 100 mile								

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria. * - Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

l of Page

Ξ

Soil Data Summary

			Detected Met	Method 8260 Volatile Organic Compound Data	le Organic Comp	ound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-12 Bldg, Paint Room 07/13/1999 5 - 7 ft. mg/Kg	OBG-TB-12DL Bldg. Paint Room 07/13/1999 11 - 13 fl. mg/Kg	OBG-TB-13 Bldg. Paint Room 07/14/1999 9 - 11 ft. mg/Kg	OBG-TB-17 Bldg. Paint Room 07/19/1999 4 - 8 ft. mg/Kg	BH-6 COMP Bldg. Plating Area 08/09/1995 1.0 - 2.0 ft. mg/Kg	BH-7 COMP Bldg, Plating Area 08/09/1995 1.0 - 2.0 ft. mg/Kg	BH-9 Bldg, Plating Area 08/09/1995 6.0 - 8.0 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4	****	-		-	 	****	
1,2-Dichlorobenzene		7.9	I	ı	ı	0,0053	-	-	-
1,2-Dichloroethene		0.25*	1		-	-	0.054	0.039	
2-Butanone (MEK)		0.3	-	i	ŀ	1	1	1	
Acetone		0.2	-	The state of the s	1	1	· I		
Benzene		0.06	ĵ	1	1	1	1	1	-
Carbon disulfide		2.7		1	-	-	1	-	
Ethylbenzene		5.5	1	I	1	1	-	1	-
Methylene chloride		0.1		[0.19.J]	-	[0.15.1]		****	
Tetrachloroethene		1.4	1	i	1		1		ı
Toluene		1.5		1	-		30.83000.030800.0000.0000.0000.0000.000	0.21	-
Trichloroethene		0.7	[7.4]	[26]	[4]	0.0643	0.28	[0.73]	[73]
Vinyl chloride		0.2	ŀ	i		-	1		I
Xylene (total)		1.2	1		1	i	1	1	
cis-1,2-Dichloroethene		0.25	0.17 J	[5]	0.062 J			1	1
trans-1,2-Dichloroethene		0.3	-	1	0.062.1	1	-	1	-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

Exceeds TAGM Recommended Soil Cleanup criteria.
 Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

of 11 ~ Page

File Number: 3247.21535

Date Printed: 03/20/2000 15:06:26
DBF File: N/0247/21535/SRIVTEMPDATA.DBF
FXP File: N/0247/21535/SRIVTABLEPRS.FXP

NOTES:

RACER0060625

Soil Data Summary

			Detected Me	thod 8260 Volati	Method 8260 Volatile Organic Compound Data	nound Data			
	Sample ID Area Sample Date Sample Deth Units	TAGM Recommended Soil Cleanup mg/Kg		BH-1 N. Property Area 08/14/1995 9.0 - 10.0 ft. mg/Kg	BH-2 N. Property Area 08/14/1995 8.0 - 10.0 ft. mg/Kg	BH-3 N. Property Area 08/11/1995 14.0 - 15.5 ft. mg/Kg	SS-99-10 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	T02-1 N. Property Trench 11/03/1999 8 N. mg/Kg	T03-2 N. Property Trench 11/03/1999 7 11. me/Ke
Сотроинд)	,
1,1-Dichloroethene		0.4		-			444	0.002 J	
1,2-Dichlorobenzene		7.9	1	i	1	1	1	-	ı
1,2-Dichloroethene		0.25*	ļ		-	1	1	1	ı
2-Butanone (MEK)		03		1	1	1	-		0.007 J
Acetone		0.2		0.1	0.043 J			0.032	0.025 J
Benzene		90:0		1	0.018 J	1	0.0051	0.002.1	0.0013
Carbon disulfide		2.7	-		0.007 J	1	0.038 J	0.002 J	0.004 J
Ethylbenzene		5.5	0,025.1	-	0.021.3		1	0:0008 NJ	0:002.1
Methylene chloride		0.1	0.001 J	[0.14]	1	-	-	1	I
Tetrachloroethene		1.4	0.001.1	ł	1	1	0,012.1	-	i
Toluene		1.5		0.27	0.024 J	0.007	1	0.002 NJ	0.002 J
Trichloroethene		0.7	ì	ł	1		[46.1]	0.006.1	-
Vinyl chloride		0.2	ı	1	0.12 J		**		1
Xylene (total)		1.2	0.22.1	ı	0.11.7		1	0.002 NJ	0.006.3
cis-1,2-Dichloroethene		0.25	**************************************	1	1		[0.34]	0.027	1
trans-1,2-Dichloroethene		0.3		-	1	1		1	1
				-					

3 of Page

Π

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

^{[] -} Exceeds TAGM Recommended Soil Cleanup criteria.

Table 3-8B Former IFG Facility

Syracuse, NY	Soil Data Summary

			Detected M	Method 8260 Volatile Organic Compound Data	le Organic Comp	Sound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	HA-8 SE Property Area 08/11/1995 5.5 - 7.0 ft. mg/Kg	HA-1 Thinner Tank Area 08/10/1995 6.0 - 7.0 ft. mg/Kg	SS-99-05 Thinner Tank Area 10/26/1999 0 - 1 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 1.0 - 3.0 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 11.0 - 13.0 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 13.0 - 15.0 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 3.0 - 5.0 ft. mg/Kg
Compound)	
1,1-Dichloroethene		0.4	ı						
1,2-Dichlorobenzene		7.9	1	-	I	1	-		l
1,2-Dichloroethene		0.25*	-	-	I	1	I		
2-Butanone (MEK)		0.3	I	-	1	-		J .	-
Acetone	ine. Transport response to the contraction of the c	0.2	-	1	I	-			ı
Benzene		0.06			1	-	l .I		1
Carbon disulfide		2.7	-	I	-	-	-	_	-
Ethylbenzene		5.5	1	0.61.5	1	0.06			
Methylene chloride		0.1	-	ı	1			200.5	, , , , , , , , , , , , , , , , , , ,
Tetrachloroethene		1.4	1	1	0.002 J	!:		- 1	I
Toluene	Section (COV) in the appropriate that	1.5	0.068	[720]	1	0.015			100
Trichloroethene		0.7	-		1		1	l I	0.01
Vinyl chloride		0.2	1		I	l	-	-	
Xylene (total)		1.2	i	[193]	-	9.0	1.14	0.42	0.23
cis-1,2-Dichloroethene		0.25			1		1	1	
trans-1,2-Dichloroethene		0.3	1	ļ	1	1	1	1	
RACER									
NOTES: J - estimated Second	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ly identified, no ded Soil Cleanup cri ichloroethene, as the		NC - no criteria, SB - site background.	background.				

4 of 11

() Table 3-8B

Former IFG Facility

Syracuse, NY	Soil Data Summary

			Detected Me	Method 8260 Volatile Organic Compound Data	le Organic Comp	oound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-13 Thinner Tank Area 03/27/1986 5.0 - 7.0 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 7.0 - 9.0 ft. mg/Kg	T-13 Thinner Tank Area 03/27/1986 9.0 - 11.0 ft. mg/Kg	T-15 Thinner Tank Area 03/24/1986 11.0 - 13.0 ft. mg/Kg	T-15 Thinner Tank Area 03/Z41986 13.0 - 15.0 ft. mg/Kg	T-15 Thinner Tank Area 03/24/1986 5.0 - 7.0 ft. mg/Kg	T-15 Thinner Tank Area 03/24/1986 7.0 - 9.0 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			419-11	1		
1,2-Dichlorobenzene		7.9	1	-	I	ı	-		
1,2-Dichloroethene		0.25*	*************** !	1	I	ļ	1	ı	1
2-Butanone (MEK)		0.3	ı	1	1	ı	1	1	
Acetone		0.2				ı	-	-	-
Benzene		90:0	1	-1	-	1	1	1	
Carbon disulfide		2.7	1	-	-	1	-	1	ı
Ethylbenzene		5.5	[8]	[18:4]	4	[6.6]	[6.4]	[12.4]	[30.2.]
Methylene chloride		0.1	1		-	-	. 1	· · · · · ·	-
Tetrachloroethene		1.4	1		1	1	1	1	
Toluene		1.5	0.32	0.78	0.14	0.67	0.21	0.66	1.03
Trichloroethene		0.7	1		-	‡) 	
Vinyl chloride		0.2		**************************************		1	1	-	1
Xylene (total)		1.2	[60]	[127.2]	[24]	[55.2]	B721	1.67	1163.1
cis-1,2-Dichloroethene		0.25	1	1	. 1	. 1	• • • •		
trans-1,2-Dichloroethene		0.3	-	1	ı	1	1	1	
ŘÁČER									
NOTES:	llue, N - tentativel	ly identified, no	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background.	C - no criteria, SB - site	background.				

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

* - Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

File Number: 3247.21535

5 of 11

Soil Data Summary

Compound	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	Detected Met. T-15 Thinner Tank Area 03/24/1986 9.0 - 11.0 ft. mg/Kg	T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 T-16 03/24/1986 03/24/1986 1.0 - 13.0 f. mg/Kg mg/Kg mg/Kg	e Organic Compo	Dund Data T-16 Thinner Tank Area 03/24/1986 13.0 - 15.0 ft. mg/Kg	T-16 Thinner Tank Area 03/24/1986 3.0 - 5.0 ft. mg/Kg	T-16 Thinner Tank Area 03/24/1986 5.0 - 7.0 ft. mg/Kg	T-16 Thinner Tank Area 03724/1986 7.0 - 9.0 ft. mg/Kg
1,1-Dichloroethene		0.4							
1,2-Dichlorobenzene		67	1	1	1			1	
1,2-Dichloroethene		0.25*	-	!	1	-	1	1	ı
2-Butanone (MEK)		0.3			1				1
Acetone	-	0.2	1	-		-			
Benzene Carbon disulfide		2.7	1 1	1 1	1 1	1	ı	1	1
Ethylbenzene		5.5	[27]	0.01	[69]	3.2		7.8	
Methylene chloride		0.1	1	-	;	1	١		7
Tetrachloroethene		1.4	l	i	1	1	1	-	
Toluene		1.5	0.98	0.01	0.22	0.1	0.01	0.01	0.18
Trichloroethene		0.7	1	+	1	1	-		21.0
Vinyl chloride		0.2	1		-	I	1	-	-
Xylene (total)		1,2	[149]	0.01	[48]	[21.6]	0.23	621	150>1
cis-1,2-Dichloroethene		0.25	1		ı		1	, ,	- L 1
trans-1,2-Dichloroethene		0.3	1	1	I	1	1	1	I

File Number: 3247.21535

= oţ 9

Page

Date Printed: 03/20/2000 15:06:26 DBF File: N:0247/21535/SRIVTEM/DDATA.DBF FXP File: N:0247/21535/SRIVTABLEPRS.FXP

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

^{[] -} Exceeds TAGM Recommended Soil Cleanup criteria.

Soil Data Summary

Detected Method 8260 Volatile Organic Compound Data

					0			i	
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-16 Thinner Tank Area 03/24/1986 9.0 - 11.0 ft. mg/Kg	T-18A Thinner Tank Area 03/25/1986 2.0 - 3.0 ft. mg/Kg	T-18B Thinner Tank Area 03/25/1986 1.0 - 3.0 ft. mg/Kg	T-18B Thinner Tank Area 03/25/1986 7.0 - 9.0 ft. mg/Kg	T-18B Thinner Tank Area 03/26/1986 11.0 - 13.0 ft. mg/Kg	T-18B Thinner Tank Area 03/26/1986 13.0 - 15.0 ft. mg/Kg	T-18B Thinner Tank Area 03/26/1986 9.0 - 11.0 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4			-			-	1 100
1,2-Dichlorobenzene		7.9	ï	1	-	-		1	
1,2-Dichloroethene		0.25*		1	1		-	i	1
2-Butanone (MEK)		0.3		ï	1	-	-		-
Acetone		0.2		**************************************	1	-			1
Benzene		0.06	1	1	-	1	1	1	I
Carbon disulfide	_	2.7	1	-	-				1
Ethylbenzene		5.5	[84]	-	1	0.16	[37.6]	0.59	[48]
Methylene chloride		0.1	1	1				1	-
Tetrachloroethene		1.4	ì	1	1	;	1	1	-
Toluene		1.5	0.14	0,14	0.08	0.06	[2.5]	0.05	[3.5]
Trichloroethene		0.7	1	i	1	1	1		
Vinyl chloride		0.2	1	1		1	-	1	1
Xylene (total)		1.2	[46]		ı	[3.4]	[235]	[3.54]	[300]
cis-1,2-Dichloroethene		0,25	1		-		-		1
trans-1,2-Dichloroethene		0,3	•	1	-		1	1	1

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

оę ~ Page

Ξ

File Number: 3247.21535

Soil Data Summary

Detected Method 8260 Volatile Organic Compound Data

			המברבת זוצה:	1100 0000 0000	Action of the Conference Compound Data	Valla Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-21 Thinner Tank Area 03/25/1986 1.0 - 3.0 ft. mg/Kg	T-21 Thinner Tank Area 03/25/1986 10.0 - 12.0 ft. mg/Kg	T-21 Thinner Tank Area 03/25/1986 12.0 - 14.0 ft. mg/Kg	T-21 Thinner Tank Area 03/25/1986 14.0 - 16.0 ft. mg/Kg	T-21 Thinner Tank Area 03/25/1986 4.0 - 6.0 ft. mg/Kg	T-21 Thinner Tank Area 03/25/1986 6.0 - 8.0 ft. mg/Kg	T-23 Thinner Tank Area 03/27/1986 11.0 - 13.0 ft. mg/Kg
Compound						1			
1,1-Dichloroethene		0.4	-	-	****				-
1,2-Dichlorobenzene		7.9	ì	ı	-		1	ı	1
1,2-Dichloroethene		0.25*		ŀ	-		-	i	I
2-Butanone (MEK)		0.3	1	-	ı	I	1	-	
Acetone		0.2	-	j	-	1		1	ı
Benzene		0.06	ł	-	ı	ı	1	-	-
Carbon disulfide		2.7	-		-	1	1	-	ı
Ethylbenzene		5.5	1	[55]	[8.5]	[8]	-	3.2	[25.6]
Methylene chloride		0.1	1	1	1	1	-	-	1
Tetrachloroethene		1.4	ì	ı	1		1	1	1
Toluene		1.5	0.16	[2.3]	0.25	0.37	1	0.22	[1.92]
Trickloroethene		2.0	i	1	1	-	i		
Vinyl chloride		0.2	ļ	ŀ	1	-	-	1	1
Xylene (total)		1.2	1	[330]	[43.2]	[51.6]	0.02	[192]	[150]
cis-1,2-Dichloroethene		0.25	1		-	1	1		1
trans-1,2-Dichloroethene		6.3	ı	1		-	1	1	l
						٠			

8 of 11 Page

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

^{[] -} Exceeds TAGM Recommended Soil Cleanup criteria. * - Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

Former IEC Facility Table 3-8B

rottiet and racinty	Syracuse, NY	Soil Data Summary

			Detected Metl	Method 8260 Volatile Organic Compound Data	e Organic Comp	ound Data			
	Sample ID Area Sample Date Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-23 Thinner Tank Area 03/27/1986 13.0 - 15.0 ft. mg/Kg	T-23 Thinner Tank Area 03/27/1986 3.0 - 5.0 ft. mg/Kg	T-23 Thinner Tank Area 03/27/1986 9.0 - 11.0 ft. mg/Kg	T-24 Thinner Tank Area 03/31/1986 12.0 - 15.0 ft. mg/Kg	T-24 Thinner Tank Area 03/31/1986 9.0 - 11.0 ft. mg/Kg	T-26 Thinner Tank Area 03/27/1986 7.0 - 9.0 ft. mg/Kg	T-29 Thinner Tank Area 03/28/1986 11.0 - 13.0 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4						****	
1,2-Dichlorobenzene		7.9	1		1			-	! !
1,2-Dichloroethene		0.25*			ı	1	-	١	-
2-Butanone (MEK)		0.3	-	ı	-		-	ı	
Acetone		0.2		1	1		I	1	-
Benzene Corbon divileds		90.0	-	ı	1	1		1	1
Carvoll distilline			1	A Trans	1	ı	ļ	****	ı
Emylbenzene Modelland alledd		5.5	0.39	1	[61]		0.076	ı	[42.4]
recury refie childrine Tetrachloroethene		0.1 1.4		1	ı	1	1	ı	-
Toluene		1.5	-	0.01	[2.8]	[5.9]	[5.8]		5744.1
Trichloroethene		0.7		***	, , ,	·	[22]		[4:44]
Vinyl chloride		0.2	-	1	I	-	-	l	ı
Xylene (total)		1.2	[1.23.]	ţ	[317]	-	0.46		[240]
cis-1,2-Dichloroethene		0.25	1	-	I	1	-	ı	. 1
trans-1,2-Dichloroethene		0.3	1	-	1	-	I	I	1

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.
 Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

9 of 11 Page

Former IFG Facility Table 3-8B

Detected Method 8260 Volatile Organic Compound Data

Soil Data Summary Syracuse, NY

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-29 Thinner Tank Area 03/28/1986 13.0 - 15.0 ft. mg/Kg	T-29 Thinner Tank Area 03/28/1986 9.0 - 11.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 1.0 - 3.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 11.0 - 13.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 13.0 - 15.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 3.0 - 5.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 5.0 - 7.0 ft. mg/Kg
Compound									
1,1-Dichloroethene		0.4			-	***	-		
1,2-Dichlorobenzene		6.2	1	1			ı	I	1
1,2-Dichloroethene		0.25*	***	1	-	-	ŀ	1	ı
2-Butanone (MEK)		0.3	-	l	1	-	-	***	1
Acetone		0.2	1	1	1	***	-	1	1
Benzene		90:0	1	1	1			ı	1
Carbon disulfide		2.7		1	1		1		1
Ethylbenzene		5.5	[21.6]	0.22	0.01	[7.8.]	[35.6]	0.01	0.01
Methylene chloride		0.1	-	-	-	1	1	I	1
Tetrachloroethene		1.4	1	1	1		-	-	1
Toluene		1.5	1.25	0.02	0.01	0.53	1.25	0.01	0.01
Trichloroethene		0.7	I	1	1	1			į
Vinyl chloride		0.2	1		1	1	1		ı
Xylene (total)		1.2	[118]	0.87	0.01	[43.8]	[210]	10:0	10'0
cis-1,2-Dichloroethene		0.25	-	l	1	I	1	ï	ı
trans-1,2-Dichloroethene		0.3	1	i	1	1	-		-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

10 of 11 Page

Former IFG Facility () Table 3-8B

Syracuse, NY

Detected Method 8260 Volatile Organic Compound Data Soil Data Summary

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T-30 Thinner Tank Area 03/27/1986 7.0 - 9.0 ft. mg/Kg	T-30 Thinner Tank Area 03/27/1986 9.0 - 11.0 ft. mg/Kg	T-33B Thinner Tank Area 03/28/1986 13.0 - 15.0 ft. mg/Kg	T-34 Thinner Tank Area 03/28/1986 9.0 - 11.0 ft. mg/Kg
Compound						
I,1-Dichloroethene		0.4	I	1	ł	
1,2-Dichlorobenzene		7.9	ı	ı	1	T
1,2-Dichloroethene		0.25*	1	ı	I	•
2-Butanone (MEK)		0.3	1	-	1	ı
Acetone		0.2	i	i	i	
Benzene Carbon disulfide		0.06 2.7	1 1	1 1	1 1	
Ethylbenzene Mothering chlorida		5.5	10'0	0.26	0.034	
Tetrachloroethene		1.5 7.1	100		1 1	
Trichloroethene		E0 20		7000	1	
Vinyl chloride Xylene (total)		2.0 1.2 0.35	0.01	660	 0.19	0.033 —
trans-1,2-Dichloroethene		63	1		1	

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

* - Denotes criteria for cis-1,2-dichloroethene, as there is no total 1,2-Dichloroethene criteria.

11 of Page

File Number: 3247.21535

Table 3-9 Former IFG Facility Syracuse, NY Soil Data Summary

ata
ã
pu
⋾
ĕ
5
Ç
Ę
g
Ę
~
ij
10
5
÷
Š
2
82
ō
2
et
Σ
Ţ
ä
ತ
ē

			Defected Met	nou oz / o ocinivo	Detected Method 64/0 Semiyolatile Ofganic Compound Data	ompound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-15 Bldg. Sump #2 07/16/1999 7 - 9 ft. mg/Kg	OBG-TB-14 Blds. Sump #3 07/16/1999 4 - 6 ft. mg/Kg	OBG-TB-14 Bidg, Sump #3 07/16/1999 6 - 8 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 1 - 3 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 I - 3 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 3 - 5 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 5 - 7 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9	ŀ		1			į	-
2,4-Dimethylphenol		NC	ı	I	ı	1	1	1	1
2-Methylnaphthalene		36.4		-	-	-			****
2-Methylphenol		0.1	1	1	1	1	1	1	1
4-Bromophenyl phenyl ether		NC	,	***	ŀ	1	778	1	
4-Chloro-3-methylphenol		0.24	Ţ	1	ı	1	1	1	1
4-Methylphenol		6.0			-	1		-	-
Acenaphthene		50	l	1	-1	1	1	1	1
Acenaphthylene		41	1	i	i	•		•	1
Anthracene		50	1	1	1	i	1	0.043 J]
Benzo(a)anthracene		0.224	0.041 J	0.036 J	-		0.043 J	0.084 J	
Benzo[a]pyrene		0.061	0.044.1	0.035 J	1	1	0.037.1	[0.078.1]	I
Benzo(b)fluoranthene		0.224	0.079 J	0.05 J	l	ŀ	0.047 J	0.11.5	
Benzo(ghi)perylene			1	1	1	1	ı	0.039.1	-
Benzo(k)fluoranthene		0.224	1	1	1	1	****	0.039 J	
Butyl benzyl phthalate		50	1	1	1	0.048 J	1	1	1
Carbazole		NC	ŀ	1	ı	1	1	ì	1
Chrysene		0.4	0.057.1	0.046 J	1	1	0.048 J	0.1.3	1
Di-n-butyl phthalate		8.1	ŀ	1	l	ł	0.082 J	0.23 J	0.047 J
Di-n-octyl phthalate		50	1	1	1	1	1	1	1
Dibenzo(a,h)anthracene		0.014	1	ŀ	1	1	!	i	i
Dibenzofuran		6.2	l	1	I	1	1	1	1
Dimethyl phthalate		2	ŀ	1	i	ŀ	i	ŀ	ı
O Fluoranthene		50	0.082.1	0.0561	1	1	0.093 J	0.19.3	0.038.1
Fluorene		50		***	-				
NOTES: J - estimated v	value, N - tentativ	ely identified, n	ot detected/analyzed,	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background.	site background.				
	AGM Recommer	[] - Exceeds TAGM Recommended Soil Cleanup criteria	riteria.						

File Number: 3247,21535

1 of 16

Page

Date Printed: 03/20/2000 15:06:59 DBF File: N/W24721535/SRNTABLEPRS.FXP FXP File: N/W24721535/SRNTABLEPRS.FXP

Soil Date Su

ete	نة	\sim	Soli Data Summary	Petected Method 8270 Semivolatile Organic Compound Data
-----	----	--------	-------------------	---

			Detected Men	07/0 O	iou 64/0 Scillivolatile Ofganic Compound Data	Julboana war				[
	Sample ID Area Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-15 Bldg, Sump #2 07/16/1999 7 - 9 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 4 - 6 ft. mg/Kg	OBG-TB-14 Bldg. Sump #3 07/16/1999 6 - 8 ft. mg/Kg	OBG-TB-19 Bldg. Sump #7 07/20/1999 1 - 3 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 1 - 3 ft. mg/Kg	OBG-TB-01 Bldg. Sump #8 07/06/1999 3 - 5 ft. mg/Kg	OBG-TB-01 Bidg, Sump #8 07/06/1999 5 - 7 ft. mg/Kg	
Compound	ï									
Hexachlorobenzene	zene	0.41	1	*		1	I	1	1	202
Indeno(1,2,3-cd)pyrene	1)pyrene	3.2	1	1	I.	1	1	1	1	
Naphthalene		13	ŀ	I	i	l	1	ŀ	ł	
Phenanthrene		50	0,037 J	0.059.1	1	1	0.068 J	0.16 J	i	
Phenol		0.03	1	1	i	ł	ı	ı	1	
Pyrene		50	0.079 J	0.12.1	£790.0	1	0.088.1	0.25.1	0.04.1	
Bis(2-ethylhexy	Bis(2-ethylhexyl)phthalate (BEHP)	50	1		1	!	i	I	1	
8										
										38.76
										3-62 3 26.28
RACER										75500 757559 757
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed,	rely identified, n	not detected/analyzed,	NC - no criteria, SB - site background.	site background.					
	- Exceeds TAGM Recommended Soil Cleanup criteria.	inded Soil Cleanup c		•	ı					

File Number: 3247.21535

CONTINUED

1 of 16

Page

Date Printed: 03/20/2000 15:06:59
DBF File: N:0247/21535/SRNTEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

Former IFG Facility Table 3-9

Syracuse, NY

Soil Data Summary

Sample ID Area Area Sample Date Sample Depth Units Compound	TAGM					100000	00000	76 40 00	
Compound 1,2-Dichlorobenzene		OBG-TB-01 Bldg. Sump #8 07/06/1999 7 - 9 ft. mg/Kg	HA-12 IWT Area 08/11/1995 10:0 - 10:5 ft. mg/Kg	SS-99-22 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-23 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-24 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-25 IWT Atea 10/27/1999 0 - 1 ft. mg/Kg	SS-99-26 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	
I,2-Dichlorobenzene									
	7.9	i	1	ŀ	**	-	-	1	2000000 20
2,4-Dimethylphenol	NC	1	I	I	1	1	1	1	
2-Methylnaphthalene	36.4	1	ŀ	0.21 J	ŀ	0.067 J	0.076 J	2.8 J	4
2-Methylphenol	0.1	1	1	ī	I	ı	1	1	
4-Bromophenyl phenyl ether	NC .		0.49 J	ı	i	ŀ	1	1	
4-Chloro-3-methylphenol	0.24	ļ	l	l	l	I	1	1	
4-Methylphenol	6.0	-	1	ı	[I	I	1	2
Acenaphthene		1	1	0.33.1	I	0.57	1	3.8.1	
Acenaphthylene	41	1	l	i	ł	I	-	1	of the second
Anthracene	50	ı	1	0.44	0,088.1	2.2	I	2.4.1	
Benzo(a)anthracene	0.224	1	1	[0.91]	[0.33 J]	[4.7 J]	1	[12 J]	0.000000
Benzo[a]pyrene	0.061	1	1	[1.1]	[0.35.1]	[3.3.1]	1	1	
Benzo(b)fluoranthene	0.224	ŀ	i	[1.5]	[0.45 J]	[4.8 J]	1	1	000000000
Benzo(ghi)perylene	50	1	ı	0.33 J	0.18 J	0.81.1	I	1	
Benzo(k)fluoranthene	0.224	1	1	[0.47 J]	0.15 J	[1.8 J]	1	l	000000000000000000000000000000000000000
Butyl benzyl phthalate	50	I	l	1	1	1	1	1	
Carbazole	NC	1	ı	0,21 J	l	0.64	-	3.6 J	2020-0000
Chrysene	0.4	T	I	[1.1]	[0417]	[53]	1	[181]	
Di-n-butyl phthalate	8.1	1	0.59	I	1	1	l	-	X0000000
Di-n-octyl phthalate	50	l	ı	I	1	1	1	1	
Dibenzo(a,h)anthracene	0.014	1	i	[0.14 J]	l	[0.36 J]	1	[3.9.1]	6 Constant
Dibenzofuran	6.2	1	l	0.11.5	1	0.34 J	1	2.5.1	
又 Dimethyl phthalate	2 .	ì	I	0.086 J	I	1		1	
Fluoranthene	50	i	ı	1.6.1	0.28.1	4.4	1	21 J	
Huorene	\$0	1	l	0.18 J	-	6.0	1	3.1 J	

File Number: 3247.21535

2 of 16

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59
DBF File: REWERTENESSISSENTEMPDATA.DBF
FXP File: N:V247/21535/SRNTABLEPRS.FXP

Soil Data Summary

-23
₹
~
-
_
_
=
=
=
≍
=
⊭
=
ب
Ü
ပ
-=
트
4
ы
-
•
es.
Ĭ
- 22
Ξ
- 03
_
~
ے.
=
=
ته
σō
•
_
N
òò
7
న
~
7
7.
_=
_
<u> </u>
~
ົວ
ũ
ج
دو
\circ

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-01 Bldg, Sump #8 07/06/1999 7 - 9 ft. mg/Kg	HA-12 IWT Area 08/11/1995 10.0 - 10.5 ft. mg/Kg	SS-99-22 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-23 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-24 IWT Atea 10/27/1999 0 - 1 ft. mg/Kg	SS-99-25 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-26 IWT Area 10/27/1999 0 - 1 ft. mg/Kg
Сотроила									
Hexachlorobenzene		0.41		***	1	1	l	i	I
Indeno(1,2,3-cd)pyrene		3.2	-	1	0.32.1	0.17.3	160	1	[12.1]
Naphthalene			ŀ	1	U.24 J		1	1	0.8 <i>2</i> J
Phenanthrene			1	:	1.6	0.27.1	7.3	1	24
Phenol			[0.048 J]	ŀ	1	i	ı	***	[0.85 J]
Pyrene		50	ï	-	3.1.1	0.78 J	9.7	1	29.1
Bis(2-ethylhexyl)phthalate (BEHP)	; ; ; ; ; ;		-		. 0.077 J	0.062 J	0.057 J	0.42 J	2.8 J

900

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background.

CONTINUED 16 ō N Page File Number: 3247.21535

Date Printed: 03/20/2000 15:06:59 DBF File: N/024721535/SRNTEMPDATA.DBF FXP File: N/024721535/SRNTABLEPRS.FXP

RACER0060639

NOTES:

() Table 3-9

Former IFG Facility	Syracuse, NY	Soil Data Summary
F		Ĭ.

			Detected Met	thod 8270 Semiv	hod 8270 Semivolatile Organic Compound Data	Compound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-27 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-28 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-29 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-30 IWT Area 1027/1999 0 - 1 ft. mg/Kg	SS-99-31 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9	1	1				1	
2,4-Dimethylphenol		NC	1	1	1	1	1	1	J
2-Methylnaphithalene		36.4	1	0.059 J	1	1	-		-
2-Methylphenol		0,1	1	1	-	1	-	1	i
4-Bromophenyl phenyl ether		NC	1	1	1	1		1	-
4-Chloro-3-methyiphenol		0.24	1	1	1	ı	l	1	I
4-Methylphenol		6.0	I	1	1		7.00	ı	-
Acenaphthene		50	1	0.046 J	-	11	i	ł	1
Acenaphthylene		41	1	1	I	1	-	-	-
Anthracene		50	1	0.052.1	1	2.5 J	1		1
Benzo(a)anthracene		0.224	0.089 J	0.17 J	0.092 J	[7.6]	[0.81 J]		1
Benzo[a]pyrene		0.061	[0.077 J]	[0.19 J]	ŀ	[8.4]	I	1	-
Benzo(b)fluoranthene		0.224	0.15 J	[0.31 J]	1	[12.1]	-	1	1
Benzo(ghi)perylene		50	1	0.11.5	1	321	1	1	
Benzo(k)fluoranthene		0.224	0.042 J·	0.091 J		[3.8 J]	1	1	1
Butyl benzyl phthalate		50	1	1	0.54J	36	22.1	1	-
Carbazole		NC	-	1	1	1.3 J	1		1
Chrysene		0,4	0.13.5	0.26.J	0.15.J	[8.5]	[r60]	1	1
Di-n-butyl phthalate		8.1		-	1	-	1	0.14 J	1
Di-n-octyl phthalate		50	1	1	ı	1	1	1	1
Dibenzo(a,h)anthracene		0.014	-	1		1		-	-
Dibenzofuran		6.2	1	0.039 J	ı	I	ı	1	1
Dimethyl phthalate		2	4-4	-	I	-	}	-	1
A Fluoranthene		50	0.1.1	0.21.1	0.092.J	13.3	1.13]	1
HInorene		20	1	I	-	.1.	-	1	
OG NOTES:		0.7			-				

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

File Number: 3247.21535

3 of 16

Page

() Table 3-9 Former IFG Facility Syracuse, NY

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-27 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-28 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-29 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-30 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	SS-99-31 IWT Area 10/27/1999 0 - 1 ft. mg/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. ing/Kg	OBG-TB-31 IWT Fuel Tank Area 10/19/1999 4 - 6 fl. mg/Kg
Compound			ı						
Hexachlorobenzene		0.41	-						1
Indeno(1,2,3-cd)pyrene Naphthalene		32 13]	177	1 1	[3.5.1]		ı	1
Phenanthrene		50	0.075.1	033	0.084 J	6		1	
Phenol		0.03	1	1	[0.041 J]		-	I	I
Pyrene Bis(2-ethylhexyl)phthalate (BEHP)	P)	50 50	. 0.068 J	0.46 J 0.35 J	0.23.5	77	2.2.1	1110	0.046.1
							r cano	611.0	0.045)
RÁCER (

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds TAGM Recommended Soil Cleanup criteria. SELON NOTES:

CONTINUED 3 of 16 Page

(Table 3-9 Former IFG Facility

Syracuse, NY	Soil Data Summary	Detected Method 8270 Semivolatile Organic Compound Data
--------------	-------------------	---

					- B	and amad was			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	OBG-TB-43 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-d3 IWT Fuel Tank Area 10/25/1999 4 - 6 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 6 - 8 R. mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 4 - 6 ft. mg/Kg
Сотроинд									•
1,2-Dichlorobenzene		7.9				-			
2,4-Dimethylphenol		NC	I	ı	1	1	1	 	I
2-Methylnaphthalene		36.4	-	1	1	-			
2-Methylphenol		0.1		1	I	1	1	I I	I
4-Bromophenyl phenyl ether		NC	-	1	I	-	1		
4-Chloro-3-methylphenol		0.24	1		-			l	
4-Methylphenol		6.0	I	1	1	I	-		1
Acenaphthene		.50	1	1		I			
Acenaphthylene		41		I	1	-	1		
Anthracene			1	1	J		l	l	I
Benzo(a)anthracene		0.224	-	-	I			1	1
Benzofalbyrene		0.061				I	ı	1	1
Benzo(h)flioranthene		7.2.0			1	ı	1	1	ı
		0.224	1	-	-	1	ı	!	1
Benzo(ghi)perylene		50	1	1	ı	1	ļ		1
Benzo(k)fluoranthene		0.224	I	1	1	-	-		-
Butyl benzył phthalate		50	1	ŀ	1	-		1	-
Carbazole		NC	1	1	1	-		١	ı
Chrysene		0,4	1	1	ļ	1	1		-
Di-n-butyl phthalate		8.1	-			1	1		-
Di-n-octyl phthalate		50	-	1		1		-	****
Dibenzo(a,h)anthracene		0.014				1	١		
Dibenzofuran		6.2	1	1		1	1	-	
Dimethyl phthalate		2			-	1	-	-	
A Incranthene		20					000000000000000000000000000000000000000		
Fluorene		20	1	I	-	1		1	1
airaioni R		00	1	1			1	1	-
ONOTES: J - estimated va	alue, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed,		NC - no criteria, SB - site background	background.				
	AGM Recommen	 Lxceeds TAGM Recommended Soil Cleanup criteria. 	eria.						

Date Printed: 03/20/2000 15:06:59
DBF File: BUGZETESESSURNTEMPDATA.DBF
FXP File: N/3247/21535/SRNTABLEPRS.FXP

File Number; 3247.21535

4 of 16

() Table 3-9 Former IFG Facility

Syracuse, NY Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

			1	- 1					•
`	Sample ID Area Sample Date Sample Depth Units	TAGM . Recommended Soil Cleanup mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-32 IWT Fuel Tank Area 10/19/1999 4 - 6 ft. mg/Kg	ОВG-ТВ-43 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-ТВ-43 IWT Fuel Tank Area 10/25/1999 4 - 6 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 2 - 4 ft. mg/Kg	OBG-TB-44 IWT Fuel Tank Area 10/25/1999 6 - 8 ft. mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 4 - 6 ft.
Сотроин									
Hexachlorobenzene		0.41							
Indeno(12,3-cd)pyrene		3.2	I	1	1	1		l l	l
Naphthalene		13			1	1	1	ı	
Phenanthrene			1	1 1	1	1			l l
Phenol		0.03	1	1	1	ı	ı	I	1
Pyrene		20	1	1	1	1	1	1	
Bis(2-ethylhexyl)phthalate (BEHP)	GHP)	50	0.49	0.077 J	4.8	0.084 J	0.34 J	0.13 J	0.18 J
						-			
_R A CER(•		
	lue, N - tentative. GM Recommenc	J - estimated value, N - tentatively identified, not dete - Exceeds TAGM Recommended Soil Cleanup criteria.	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. - Exceeds TAGM Recommended Soil Cleanup criteria.	no criteria, SB - site t	background.				

Date Printed: 03/20/2000 15:06:59
DBF File: N:V247/2153/SRIVITEMPDATA DBF
FXP File: N:Y247/2153/SRIVITABLEPRS.FXP

CONTINUED
File Number: 3247.21535

4 of 16

Table 3-9
Former IFG Facility
Syracuse, NY
Soil Data Summary

			Detected Meth	thod 8270 Semivolatile Organic Compound Data	utile Organic Co	empound Data			
	Sample ID Area Sample Date Sample Dete Sunple Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-30 IWT TCE Storage An 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-38 Area IWT TCE Storage Area 1 10/21/1999 12 - 14 ft. mg/Kg	OBG-TB-38 10/21/1999 4 - 6 ft.	BH-3 BH-3 08/11/1995 14.0 - 15.5 ft.	OBG-TB-29 N. Property Area 10/19/1999 2 - 4 ft. mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	SS-99-06 N. Property Area 10.726/1999 0 - 1 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9	1	1		1		1	0.059 J
2,4-Dimethy lphenol		NC	ı	ï	1	ı	1	1	-
2-Methylnaphthalene		36.4	-	-	1	1	-	-	0.09 J
2-Methylphenol		0.1	1	1	1				ı
4-Bromophenyl phenyl ether		NC	-		I	1	ı	ı	-
4-Chloro-3-methylphenol		0.24	1	1	1	1	1	1	-
4-Methylphenol		6.0			i	-	1	ı	1
Acenaphthene		50	;		1	ì	l	1	1
Acenaphthylene		41	ŀ	ļ	***		1	e e e e e e e e e e e e e e e e e e e	ı
Anthracene			1	1	1	1	1	1	1
Benzo(a)anthracene		0.224			1	l	I	1	ı
Benzo[a]pyrene		0.061	1	1	1	1	1	-	-
Benzo(b)fluoranthene		0.224	ı	1	ŀ	1	-	-	1
Benzo(ghi)perylene		50	1	-	1		ı	1	1
Benzo(k)fluoranthene		0.224			-	-	1	1	1
Butyl benzyl phthalate		50	l	1	1	1	1	-	1
Carbazole		NC	-		I	1	1	-	-
Chrysene		0.4	ı	1	-	I		-	1
Di-n-butyl phthalate		8.1		-		-	1	1	-
Di-n-octyl phthalate		50	1	1	1	ı	1	1	1
Dibenzo(a,h)anthracene		0.014	1	-	-		-	1	1
Dibenzofuran		6.2	1	J	ı	ı	1	1	•
Dimethyl phthalate		2	1	1	1	1	1	-	-
AFluoranthene		50	1	1	1	1	1	-	1
UF luorene		50	-	***		1	1	ı	1
NOTES: J - estimated val	lue, N - tentative. GM Recomment	 J - estimated value, N - tentatively identified, not detected/analyzed, Exceeds TAGM Recommended Soil Cleanup criteria. 		NC - no criteria, SB - site background	e background.				

5 of 16

Date Printed: 03/20/2000 15:06:59
DBF File: BUWZZTEZESSUSRITTEMPDATA. DBF
FXP File: N:0247/21535/SRITABLEPRS.FXP

Table 3-9
Former IFG Facility

Syracuse, NY Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

				Section of the composition of th	ic Organic Com	Pouria Data			
Сотроитд	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-30 IWT TCE Storage Area 10/19/1999 6 - 8 ft. mg/Kg	OBG-TB-38 OBG-TB-38 BH-3 14 TCE Storage Area IWT TCE Storage Area IW Property Area 10/21/1999 08/11/1995 12 - 14 ft. 4 - 6 ft. 14.0 - 15.5 ft. mg/Kg mg/Kg	OBG-TB-38 IWT TCE Storage Area 10/21/1999 4 - 6 ft. mg/Kg		OBG-TB-29 N. Property Area 10/19/1999 2 - 4 R. mg/Kg	OBG-TB-29 N. Property Area 10/19/1999 6 - 8 ft. mg/Kg	SS-99-06 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg
Hexachlorobenzene		0.41						-	
Indeno(1,2,3-cd)pyrene Naphthalene		3.Z 13	1 1	1 1	1 1	l	1 1	1 1 1	1 700
Phenanthrene Phenol		50 0.03	1 1	1 1	1 1	1 -	1 1	1	
Pyrene Bis(2-ethylhexyl)phthalate (BEHP)		50	 0.077 J	0.48	 0.26 J	0.48	- 10		
						}		***	60770
		•							

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Page 5 of 16 CONTINUED

Former IFG Facility	Syracuse, NY	Soil Data Summary

			Detected Met	Detected Method 8270 Semivolatile Organic Compound Data	latile Organic Co	ompound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-07 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-08 N. Property Area 10/26/1999 0 - 1 R. mg/Kg	SS-99-09 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-10 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-11 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-12 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-13 N. Property Area 1026/1999 0 - 1 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		6.7							
2,4-Dimethylphenol		NC	ı	1	1	I	-	-	I
2-Methylnaphthalene		36.4	1	-	1	0.23 J	0.21 J	I	1
2-Methylphenol		0.1	I	1		-	1	1	-
4-Bromophenyl phenyl ether		NC		1	-	1	I	!	-
4-Chloro-3-methylphenol		0.24	1	1	-		ı	,	
4-Methylphenol		6.0	1	1	I	1	1	1	1
Acenaphthene		50	1	-	ı	•	1	-	,
Acenaphthylene		41		I	1		-	1	
Anthracene			1	1	1	1	}]	
Benzo(a)anthracene		0.224		1	I	0.15 J	0.18 J	0.12.1	FO 27 TI
Benzo[a]pyrene		0.061	T	1	I	[0.17.J]	10.17.11	1910	D 37 II
Benzo(b)fluoranthene		0.224	0.043 J	0.067 J		[0.27 J]	[0.26 J]	[0.25 J]	[0.63.1]
Benzo(ghi)perylene		. 20	1		1	, , ,		0.05 J	0.13.1
Benzo(k)fluoranthene		0.224		1	1	0.076 J	0.082 J	0.061 J	0.2.1
Butyl benzyl phthalate		50	-	I	-	ı		-	
Carbazole		SC		1	-	I	1	I	-
Chrysene		0.4	0.042.5	0.058 J	-	0.21.1	0.21.J	0,163	[0.43.3]
Di-n-butyl phthalate		8.1	1	-	1	-]	1	· 1
Di-n-octyl phthalate		50	i	1	[56]	1	-	1	1
Dibenzo(a,h)anthracene		0.014	-		1	1	-	ı	1
Dibenzofuran		6.2	1	1		0.055J	0.048 J	1	
Dimethyl phthalate		2			1		-	1	1
Fluoranthene		50	0.048 J	0.056.1	1	0.2.1	1610	0.113	0.46
Fluorene		50		-	1	1	-	1	
NOTES: J - estimated va	alue, N - tentative	ly identified, no	cted/analyzed,	NC - no criteria, SB - site background	ite background.				
- Exceeds T	AGM Recommen	[] - Exceeds TAGM Recommended Soil Cleanup criteria.							

Date Printed: 03/20/2000 15:06:59
DBF File: BUWZATESESS/SRUTEMPDATA.DBF
FXP File: N:024721535/SRUTABLEPRS.FXP

File Number: 3247,21535

6 of 16

() Table 3-9 Former IFG Facility

Syracuse, NY

Soil Data Summary
Detected Method 8270 Semivolatile Organic Compound Data

					D				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-07 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-08 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-09 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-10 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-11 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-12 N. Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-13 N. Property Area 10/26/1999 0 - 1 ft.
Compound	ı		,					p	g S
Hexachlorobenzene		0.41							
Indeno(12,3-cd)pyrene		3.2	I	-	ı	-		1 6900	
Naphthalene		13		-	1	0.16.1	0.15.1	7,000	
Phenanthrene						101.0	60.0	.	-
Phenol		0.03		1		F 670	0.17	0.085 J	0.27 J
Pyrene		50	0.068 J	0.11.1				! :	-
Bis(2-ethylhexyl)phthalate (BEHP)	(i	50	0.067 J	0.071 J		0.09 1	0.4 J	0.3.1	0.93 J
							6 6000	6.670.0	0.042.J
RAC ER									
NOTES: J - estimated value Second	ie, N - tentativel	J - estimated value, N - tentatively identified, not detected/analyzed, N	letected/analyzed, NC ia.	IC - no criteria, SB - site background	background.				

Date Printed: 03/20/2000 15:06:59
DBF File: N/0247/2153/SRNTAB/LEPRS.FXP
FXP File: N/0247/2153/SRNTAB/LEPRS.FXP

File Number: 3247.21535

CONTINUED

91 Jo 9

Table 3-9
Former IFG Facility

Syracuse, NY

Soil Data Summary
Detected Method 8270 Semivolatile Organic Compound Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T01-1 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-2 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-3 N. Property Trench 11/02/1999 8.5 ft. mg/Kg	T01-4 N. Property Trench 11/02/1999 9 ft. mg/Kg	T02-1 N. Property Trench 11/03/1999 8 ft. mg/Kg	T02-2 N. Property Trench 11/03/1999 5.5 ft. mg/Kg	T02-3 N. Property Trench 11/03/1999 9 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9	t	4			-		
2,4-Dimethylphenol		NC	3.2	7	_		0.24.J	0.22.1	1
2-Methylnaphthalene		36.4	0.11 J	0.34 J	0.079 J	-	1.9	1.6	6.1 J
2-Methylphenol		0.1	1	[0,44.1]	-	-	0.15.1]	(0.14.)	•
4-Bromophenyl phenyl ether		NC	1		1		. 1		3.1.5
4-Chloro-3-methylphenol		0.24	1	[0.28.J]	1	1	1	1	1
4-Methylphenol		6.0	0.54	-	0.043 J	1	0.18 J	0.22 J	1
Acenaphthene		. 20		1	0.086 J	1	0.058.1	0.086.1	-
Acenaphthylene		41	1	-	1	-		1	ı
Anthracene			1	-	1	1	-	0.092 J	1
Benzo(a)anthracene		0.224		1	I	-	****	0.1 J	I
Benzo[a]pyrene		0.061	1		1	-		1	-
Benzo(b)fluoranthene		0.224		1	1	1	-	0.089 J	1
Benzo(ghi)perylene		50	1	1	1	1			1
Benzo(k)fluoranthene		0.224		1	1	1	-		-
Butyl benzyl phthalate		50	1	1	1	1		1	-
Carbazole		NC	-	l	1	1	1	0.1 J	1
Chrysene		0.4	-		1	1	-	0,12,3	ı
Di-n-butyl phthalate		8.1				1	1	1	-
Di-n-octyl phthalate		50		1	1	1	1	1	1
Dibenzo(a,h)anthracene		0.014	-	-	-		1	-	-
Dibenzofuran		6.2		-	1	1	0.28 J	0.36.1	
Dimethyl phthalate		2	1	1				-	1
Fluoranthene		50	1	1	-	1	1	0.14.3	1
Thorene		50	1	1	0.081 J	1	Bar i		-
99 NOTES: J - estimated valu ⇔	ue, N - tentativel 3M Recommenc	 J - estimated value, N - tentatively identified, not dete I] - Exceeds TAGM Recommended Soil Cleanup criteria. 	cted/analyzed, N	C - no criteria, SB - site background	background.				

Page 7 of 16

() Table 3-9

Former IFG Facility	Syracuse, NY	Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T01-1 N. Property Trench 11/01/1999 8 ft. mg/Kg	T01-2 N. Property Trench 11/01/1999 8 N. mg/Kg	T01-3 N. Property Trench 11/02/1999 8.5 ft. mg/Kg	T01-4 N. Property Trench 11/02/1999 9 ft. mg/Kg	T02-1 N. Property Trench 11/03/1999 8 ft. mg/Kg	T02-2 N. Property Trench 11/03/1999 5.5 ft. mg/Kg	T02-3 N. Property Trench 11/03/1999 9 n. mg/Kg
Compound			-						١
Hexachlorobenzene		0.41							
Indeno(1,2,3-cd)pyrene		3.2		I	1	1	ı		-
Naphthalene		13	0.1 J	2.3 J	0.052 NJ	1	1.6	1.4	.2.1 J
Phenanthrene		50	ı	0.34.J	1	1	0.34.J	0.68	-
Phenol		0.03	1		1	1	[0.072 J]	[r 660.0]	-
Pyrene			0.22.J	1	0.15.1	0,048 J	0.14.1	0.45.1	
Bis(2-ethylhexyl)phthalate (BEHP)	HP)	50		8.8 J	0.93 J	0.35 J	0.058 J	1.6 J	0.46 J
			^						

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. :S NOTES: 160649

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

CONTINUED 16 Jo Z Page File Number; 3247.21535

Former IFG Facility () Table 3-9

Soil Data Summary Syracuse, NY

			Detected Metho	d 8270 Semivola	Detected Method 8270 Semivolatile Organic Compound Data	npound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T02-4 N. Property Trench 11/04/1999 5 ft. mg/Kg	T03-1 N. Property Trench 11/03/1999 6 ft. mg/Kg	T03-2 N. Property Trench 11/03/1999 7 ft. mg/Kg	T03-3 N. Property Trench 11/05/1999 5.5 ft. mg/Kg	T03-4 N. Property Trench 11/05/1999 6 ft. mg/Kg	T03-5 N. Property Trench 11/05/1999 4 ft. mg/Kg	T03-6 N. Property Trench 11/09/1999 4 R. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9	ł	1	}			0.81 J	
2,4-Dimethy lphenol		NC	1	0.25 NJ	0.078.1	0.27.3	1	15	1
2-Methylnaphthalene		36.4	1	1.7	0.082 J	0.17 J	0.18.1	=	i
2-Methylphenol		0.1	1	[0.11.0]	-	L 1.0			-
4-Bromophenyl phenyl ether	Stadional cost accompanies	NC	1	1	-	1	ļ	1	1
4-Chloro-3-methylphenol		0.24	ļ	-	-	1	ı	-	
4-Methylphenol	*A M000000000000000000000000000000000000	0.9	1	0.38 J	0.54 J	[3.9]	[2.1]	[3.4 J]	-
Acenaphthene		50	l	1	I		, ,	· -	I
Acenaphthylene		41	1	1	-	-	1	1	-
Anthracene		. 50	1	i	1	I	1	-	
Benzo(a)anthracene		0.224		0.13 J	1	1	1	ı	1
Benzo[a]pyrene		0.061	I	1	1	-	-	ı	,
Benzo(b)fluoranthene		0.224	0.041 J	0.12 J	1	-		1	1
Benzo(ghi)perylene			ı	i	1	1	ı	1	I
Benzo(k)fluoranthene		0.224			I	1	1	ı	1
Butyl benzyl phthalate		50	0.14.3	1		1	1	1	1
Carbazole		NC	-	-	I	1	-	1	1
Chrysene		0.4	ı	0.25 J	1	I	1	-	1
Di-n-butyl phthalate		8.1	-	-	1	1	1	-	-
Di-n-octyl phthalate		50	1	1	1	1	-	-	1
Dibenzo(a,h)anthracene		0.014			1	-	-	-	1
Dibenzofuran		6.2	1	0.34.1	ı	1	1	1	-
Dimethyl phthalate		2	1	1	-	-	1	-	1
AFluoranthene		50	0.042.1	0.14.5	1	ļ	l	1	0.043 J
DFluorene Q		50	1	1		-	1	-	-
O NOTES: 1 - actimated val	Lastimate in animate National interestinate I	<u>'</u>	214 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00					

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59
DBF File: B24624 T8265 3/SRRITEMPDATA.DBF
FXP File: N:0247/21535/SRRITABLEPRS.FXP

8 of 16

() Table 3-9

Former IFG Facility Syracuse, NY

Detected Method 8270 Semivolatile Organic Compound Data Soil Data Summary

	f .		1						
	Sample ID Area Sample Date Sample Depth Units	I A CM Recommended Soil Cleanup mg/Kg	T02-4 N. Property Trench 11/04/1999 5 ft. mg/Kg	T03-1 N. Property Trench 11/03/1999 6 ft. mg/Kg	T03-2 N. Property Trench 11/03/1999 7 n. mg/Kg	T03-3 N. Property Trench 11/05/1999 5.5 ft. mg/Kg	T03-4 N. Property Trench 11/05/1999 6 ft. mg/Kg	T03-5 N. Property Trench 11/05/1999 4 ft. mg/Kg	T03-6 N. Property Trench 11/09/1999 4 ft. mg/Kg
Compound									
Hexachlorobenzene		0.41	1		*				
Indeno(1,2,3-cd)pyrene		3.2	1	-	1	1	 	i	-
Naphthalene	Katananan di katanan da katanan d	13	-	1.4	1 6/0/0	0.2 I	0.10.1	0	l
Phenanthrene		50	1	11	0.111	1150	0.123	0	1
Phenol		0.03	1	II 067 II	IO OKR II	[0.32 II	500	I	ı
Pyrene		20	0.072.1	1.00.0	[r noard]	[r C7:A]	[ccrn]	-	-
Di-() -4) }	1	.6160	ı		i	1	ı
bis(z-emyinexyi)pnmalate (BEHP)	HF)	20	1	0.34 J	į	0.58 J	0.53 J	10	0.07 J

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background.

B. Exceeds TAGM Recommended Soil Cleanup criteria.

NOTES:

CONTINUED 16 s of Page

File Number: 3247.21535

Date Printed: 03/20/2000 15:06:59
DBF File: N/0247/21535/SRIVTEMPDATA, DBF
FXP File: N/0247/21535/SRIVTABLEPRS.FXP

Table 3-9 Former IFG Facility

Syracuse, NY Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

						combound with			
•	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	T04-1 N. Property Trench 11/04/1999 2.5 ft. mg/Kg	T04-2 N. Property Trench 11/04/1999 6 ft. mg/Kg	T04-3 N. Property Trench 11/05/1999 3 ft. mg/Kg	T09-1 N. Property Trench 11/09/1999 10 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-24 NE Property Area 10/18/1999 6 - 8 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 0 - 1 ft. mg/Kg
Сотроила									
1,2-Dichlorobenzene		7.9					-	1	
2,4-Dimethylphenol		NC		0.56.1	0.18.1	1	-	1	1
2-Methylnaphthalene		36.4	7.3	0.88 J	0.51	-	-	0.14 J	0.061 J
2-Methylphenol		0.1	1	I	1	_	_	1	
4-Bromophenyl phenyl ether		NC	**************************************	1	Ì	1	1	1	1
4-Chloro-3-methylphenol		0.24	1	ı	1	1	1	1	1
4-Methylphenol		0.0	**************************************	[1.6.J]	0.25 J	I	l	1	1
Acenaphthene			1	-	1	1	1	1	1
Acenaphthylene		41	1		1		I	0.052 J	1
Anthracene		. 20	1	-		1	1	0.062 J	i
Benzo(a)anthracene		0.224			0.045 J	0.1 J	0.057 J	1	0.10.1
Benzo[a]pyrene		0.061	1			1	0.059 J	[0.64.7]	10.22.11
Benzo(b)fluoranthene		0.224	1		-	-	0.098 J		[0.34 J]
Benzo(ghi)perylene		50	1		1	1	1	0.27.1	0.113
Benzo(k)fluoranthene		0.224		1	-		1	[0.37.1]	0.13.1
Butyl benzyl phthalate		50	ı	1	1		I	,	0.046.3
Carbazole		NC	******* 		1	-	-		1
Chrysene		0,4	-	1	0.072.1	0.15.3	0.071.1	[0,74.1]	0.27.j
Di-n-butyl phthalate		8.1		1	-	1	1	-	ı
Di-n-octyl phthalate		50	1	Ţ	1	1	1		1
Dibenzo(a,h)anthracene		0.014	1	-	-			1	-
Dibenzofuran		6.2	1	1	0.12.1	-	ı	1	
Dimethyl phthalate		2	1	l	ŀ	1		P P T	1
Fluoranthene		50	1	1	1	0.097.3	0:09 J	0.64	0.35 J
M-Inorene		50	1	-			•	0.052 J	
DONOTES: J - estimated val	lue, N - tentative GM Recommen	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.		NC - no criteria, SB - site background.	background.				
									_

Page 9 of 16

Detected Method 8270 Semivolatile Organic Compound Data Soil Data Summary

	36 rty Area 19		8.5 4.1 1.2 1.2
	OBG-TB-36 NE Property Area 10/20/1999 0 - 1 ft. mg/Kg	,	0.098 J 0.044 J 0.23 — — — — — — — — — — — — — — — — — — —
	OBG-TB-24 NE Property Area 10/18/1999 6 - 8 ft. mg/Kg	,	0.28.3 0.092.3 0.54 1.8.1 0.27.3
	OBG-TB-24 NE Property Area 10/18/1999 2 - 4 ft. mg/Kg		
	T09-1 N. Property Trench 11/09/1999 10 ft. mg/Kg		 0.12.5 0.51.1 1.8 J
	T04-3 N. Property Trench 11/05/1999 3 ft. mg/Kg		0.39 J 0.28 J
	104-2 N. Property Trench 11/04/1999 6 ft. mg/Kg		22J 08J — — 21
. 704	104-1 N. Property Trench 11/04/1999 2.5 ft. mg/Kg		
TAGM			3.2 13 50 50 50
Sample ID	Area Sample Date Sample Depth Units		HP)
			zene Jpyrene 'Jphthalate (BE
		Сотроинд	Hexachlorobenzene Indeno(1,2,3-cd)pyrene Naphthalene Phenantirene Phenol Pyrene Bis(2-cthylhexyl)phthalate (BEHP)

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

I - Exceeds TAGM Recommended Soil Cleanup criteria.

20000653

CONTINUED 16 ō 0 Page

Table 3-9 Former IFG Facility

Syracuse, NY Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

					9				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	SS-99-14 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9			1				
2,4-Dimethylphenol		NC	1	-	-	I	1	-	
2-Methylnaphthalene		36.4	::::::::::::::::::::::::::::::::::::::		-	ı	ı	J	0.051.1
2-Methylphenol		0.1	ì	1	-	1	1	-	
4-Bromophenyl phenyl ether		NC		1	-	1	1	I	I
4-Chloro-3-methylphenol		0.24	1	1	1	-	ı	1	
4-Methylphenol		6.0	1	1	1	1	1	1	1
Acenaphthene		. 20	1	1	1	1	1	1	1
Acenaphthylene		41	1		-	-	-		1
Anthracene		50	1	ı	1	1	1	1.	1
Benzo(a)anthracene		0.224		1		1	-	1	[0.28.1]
Benzo[a]pyrene		0.061	1	1	1	1	1	I	[6.39 J]
Benzo(b)fluoranthene		0.224	1	1	-				[0.56.J]
Benzo(ghi)perylene		50	1	1	1	1	ſ	ı	0.37.3
Benzo(k)fluoranthene		0.224		· ·		-	-	-	0.16 J
Butyl benzyl phthalate			ı		1	1	1		
Carbazole		NC NC	!			l	-	-	ı
Chrysene		0,4	1	1	ı	1	1	-	[0.47.1]
Di-n-butyl phthalate		8.1	1		•••	-	**************************************	-	-
Di-n-octyl phthalate		50	1	1	1	1	1		
Dibenzo(a,h)anthracene		0.014	1	ı	ł	-	***	1	
Dibenzofuran		6.2	1	ı	1	1	1	1	
Dimethyl phthalate		2	1	I	1	-		1	1
Fluoranthene		50	1	1	1	l	•	-	034.1
DFluorene		50		1	1	1	-		1
90 NOTES: J - estimated va F [] - Exceeds TA	alue, N - tentative AGM Recommen	 J - estimated value, N - tentatively identified, not detell I] - Exceeds TAGM Recommended Soil Cleanup criteria. 	scted/analyzed,	NC - no criteria, SB - site background	e background.				
3		i							

Date Printed: 03/20/2000 15:06:59
DBF File: DOWZATZEG5/SRIVTEMPDATA DBF
FXP File: N:\024721535\SRIVTABLEPRS.FXP

File Number: 3247.21

10 of 16

Table 3-9

Former IFG Facility Syracuse, NY

	•
	•
Soil Data Summary	Cotton Marth of Company Committee Co
	•

			Detected Mellic	RIOAIIIIAC O / 70 DA	Detected Method of / U Semilyolatile Organic Compound Data	npound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-36 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 12 - 14 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 22 - 24 ft. mg/Kg	OBG-TB-37 NE Property Area 10/20/1999 6 - 8 ft. mg/Kg	SS-99-14 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg
Сотроипа									
Hexachlorobenzene		0.41	1				***		
Indeno(1,2,3-cd)pyrene Naphthalene		3.2 13	1 1	1 1	1 1	1 1		1 1	0.29.1
Phenanthrene Phenol		.50 0.03	1 1	1 1	1 1	1 1	1 1	1 1	0.33 J
Pyrene Bis(2-ethylhexyl)phthalate (BEHP)			 0.13 J	 02J	0.33 J	0.43 J	0.072 J		1.1
	000000000000000000000000000000000000000								

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds TAGM Recommended Soil Cleanup criteria.

CONTINUED 9 Jo 2 Page

The 3-9 Former IFG Facility

Syracuse, NY

Soil Data Summary

			Detected Meth	od 8270 Seminal	Saint mear y				
	Source D.	1	Incircing Melli	IOAI IIIAC A/70 DOI	mod 62/0 Semiyolatile Organic Compound Data	npound Data			
	Sample ID Area Sample Date Sample Depth Units	I AGM Recommended Soil Cleanup mg/Kg	SS-99-15 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-16 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-17 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	HA-7 SE Property Area 08/10/1995 7.0 - 8.0 ft. mg/Kg	OBG-TB-22 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-22 SE Property Area 10/18/1999 6 - 8 ft. mg/Ke	OBG-TB-23 SE Property Area 10/18/1999 2 - 4 ft.
Сотроинд									0
1,2-Dichlorobenzene		7.9							
2,4-Dimethylphenol		NC		1	-	=	l	I	ı
2-Methylnaphthalene	5 - March No. 2 - Language A.	36.4	0.047 J	1	1	-	l	l	1
2-Methylphenol		0.1		-		l	ı	ı	1
4-Bromophenyl phenyl ether		NC	1	1	ı		I	1	-
4-Chloro-3-methylphenol		0.24	1			i 1	-	1	1
4-Methylphenol		0.0	-	1	ı	1	-	1	1
Acenaphthene		50		1	0.94.1	l]		1	-
Acenaphthylene		41		0.073 I			l		1
Anthracene				0.093 J	3.21			1	
Benzo(a)anthracene		0.224	[0.3 J]	IO 68 11	[7.7]		0.14	1	1
Benzo[a]pyrene		0.061	. 10.42 п	[68:0]	[,-,]	1	0.14 J	1	1
Benzo(b)fluoranthene		0.224		11.2 E	[524] [10 II	I	[0.13.1]	1-1	1
Benzo(ghi)perylene		50	0,413	0.761	[cor]	I	[0.26.J]		ı
Benzo(k)fluoranthene		0.224	0.2 J	10 41 TI	13.7.11	l		1	i
Butyl benzyl phthalate		50	1	[a visa]	[e /:c]	l	0.056 J	ı	-
Carbazole		NC		0.068 J	251				1
Chrysene		0,4	[0.47.1]	[1, 66, 0]			- 1000	1	1
Di-n-butyl phthalate		8.1		-	-	70 U			-
Di-n-octyl phthalate		50	1	ı			1	1	1
Dibenzo(a,h)anthracene		0.014		[0.17.J]	-				1
Dibenzofuran		6.2	1	, , [0,49.1	! !			-
Dimethyl phthalate		2				١			
A luoranthene		50	035.1	111				I	
Aluorene		50		0.051 J	1.3	1		1	
ONOTES: J - estimated value	ie, N - tentativel	J - estimated value, N - tentatively identified, not deta	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	7 - no criteria, SB - site	background.				

Date Printed: 03/20/2000 15:06:59
DBF File: BURZATESESS/SRIVTEMPDATA.DBF
FXP File: N/0247/21535/SRIVTABLEPRS.FXP

Page 11 of 16

Former IFG Facility Syracuse, NY

Soil Data Summary 8270 Semigrolotile O.

			Detected Metho	d Method 82/0 Semivolatile Organic Compound Data	tile Organic Con	npound Data			
Сотроинд	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	SS-99-15 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99.16 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-17 NE Property Area 10/26/1999 0 - 1 ft. mg/Kg	HA-7 SE Property Area 08/10/1995 7.0 - 8.0 ft. mg/Kg	OBG-TB-22 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-22 SE Property Area 10/18/1999 6 - 8 ft. mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 2 - 4 ft. mg/Kg
Hexachlorobenzene		0.41							
Indeno(1,2,3-cd)pyrene Naphthalene		32	0.31.1	0.65	217	1 1	1 1	1 1	1 1
Phenanthrene Phenol		50	029.1	0.79	1.51	1 1	 0.37.1	1 1	1 1
Pyrence Pyrence RistO_erthvlhevvslhahttalate (DEUD)	(H)	50	121	261	21	1 1	0.71.3	1 1	1 1
)	OC.	0.33 J	0.18 J	0.47 J	1	13.1	0.5	0.62 J
					Piliteria de la companya del companya de la companya del companya de la companya				

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59 DBF File: N/0247/2153/SRNTEMPDATA.DBF EXP File: N/0247/2153/SRNTABLEPRS.FXP

File Number: 3247.21535 CONTINUED 16 oţ 1 Page

Soil Data Summary

			Detected Methy	Detected Method 8270 Semivolatile Organic Compound Data	atile Organic Co.	mpound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 6 - 8 ft. mg/Kg	SS-99-18 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-19 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-20 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-21 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 mg/Kg
Compound))	3
1,2-Dichlorobenzene		7.9	,		-		1		
2,4-Dimethylphenol		NC	1	I	1	I	1	I	
2-Methylnaphthalene		36.4	ı	0.12 J	1	0.12 J	0.057 J	1	. 1
2-Methylphenol		0.1	1	1	ı	1		-	
4-Bromophenyl phenyl ether		NC	-	1	ı	1	I	I	
4-Chloro-3-methylphenol		0.24	ľ		1	1	Ī		
4-Methylphenol		0.9	1	ı	-	ı	1	-	i
Acetaphthene			I	1		-	1	-	
Acenaphthylene		41		-	I	I	-	١	
Anthracene **		50	T	0.064.J	1	1	1		· ·
Benzo(a)anthracene		0.224	1	[0.27 J]	1	0.15.J	0.1 J	1	
Benzo[a]pyrene		0.061	I	[0.37.1]	1	[0.2.3]	1011.11		
Benzo(b)fluoranthene		0.224	I	[0.72.1]	0.043 J	[0.32 J]	. f 61.0	I	1
Benzo(ghi)perylene		. 50	1	0.45.3	1		I	1	-
Benzo(k)fluoranthene		0.224		[0.23 J]	-	0.12 J	0.057 J	1	1
Butyl benzyl phthalate		50	I	0.22.1		i		1	
Carbazole		NC	1	,	-	1	1	1	-
Chrysene		0,4	1	[0.52.4]	1	0.25.J	0.16.1	1	•
Di-n-butyl phthalate		8.1	l	0.089 J		-	1		-
Di-n-octyl phthalate		50	1]	1	1	-	1	ı
Dibenzo(a,h)anthracene		0.014	-	-	1	1		-	1
Dibenzofuran		6.2	1	1	1	1	1		1
Dimethyl phthalate		2	1	-		1		**************************************	-
Fluoranthene		50	ì	0.33.1	0.046.1	0.3.1	0.17.1	1	
in Inorene		50	1			1			-
NOTES: J - estimated valued to be seed to be	ue, N - tentativel	J - estimated value, N - tentatively identified, not dete	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds TAGM Recommended Soil Cleanup criteria.	C - no criteria, SB - sit	e background.				
3		•							

Date Printed: 03/20/2000 15:06:59
DBF File: REWZATWESSSSRIVTEMPDATA DBF
FXP File: N:024721535SRNTABLEPRS.FXP

File Number: 3247.21535

12 of 16

Table 3-9

Former IFG Facility Soil Data Summary Syracuse, NY

	İ		Detected Metho	Detected Method 8270 Semivolatile Organic Compound Data	itile Organic Cor	npound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-23 SE Property Area 10/18/1999 6-8 ft. mg/Kg	SS-99-18 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-19 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-20 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-21 SE Property Area 10/26/1999 0 - 1 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-20 SW Property Area 10/18/1999 4 - 6 ft. mg/Kg
Compound						,			
Hexachlorobenzene		0.41							
Indeno(1,2,3-cd)pyrene		3.2	1	0351	1	-		 	I
Naphthalene		13	1	0.09 J	ļ	0.078.1	I	-	
Phenanthrene		50		0.28.5	1	0.21 J	1810		I .
Phenol		0.03			I	I	1		
Pyrene		.50		0.87.5	0.041.3	0.4.5	 0.32 J		1 1
Bis(2-ethylhexyl)phthalate (BEHP)	H)	50	0.38 J	1.5	0.072 J	0.31.1	03.1	0.24.1	1 76 0
							<u>.</u>	\$ t=0	V.40.5

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. 300 NOTES:

Exceeds TAGM Recommended Soil Cleanup criteria.

CONTINUED 16 φ 12 Page

() Tavie 3-9 Former IFG Facility Syracuse, NY

Soil Data Summary

			Detected Metho	od 8270 Semivol	Detected Method 8270 Semivolatile Organic Compound Data	mpound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 0 - 1 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 5 - 6 ft. mg/Kg	OBG-TB-33 SW Property Area 10/20/1999 5 - 6 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 10 - 12 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg
Compound									
1,2-Dichlorobenzene	:	7.9	1	1					
2,4-Dimethylphenol		NC		1	-	1	-	J	.
2-Methylnaphthalene		36.4	0.095 J	I	I	ı	1	1	
2-Methylphenol		10	1	1		-	1		l
4-Bromophenyi phenyi ether		NC	-	1	1				
4-Chloro-3-methylphenol		0.24	T	1	1	1	 		
4-Methylphenol		6.0	-	i	ı	1	1		1
Acenaphthene		50	0.11.1	1	-	1		 	l
Acenaphthylene		41			ı	1	-	١	
Anthracene		50	0.11.0		ı	1	1		l
Benzo(a)anthracene		0.224	[0.32 J]	ı	ł	ı	1		
Benzo[a]pyrene		0.061	[037.1]	1	1	1	l I	1	
Benzo(b)fluoranthene		0.224	[0.64 J]	1	-	ı	0.039 J		1
Benzo(ghi)perytene		50	0.27.3	1	1	1		1	1
Benzo(k)fluoranthene		0.224	0.22 J	ı	1	1	1	1	1
Butyl benzyl phthalate		50	1	1	1	1	1	-	· •
Carbazole		NC	0.05 J	-	1	1	-	ı	
Chrysene		0.4	[0,41.3]	1	-	1	1	1	
Di-n-butyl phthalate		8.1	-				1	1	1
Di-n-octyl phthalate		50	1	j	1	1	*	1	1
Dibenzo(a,h)anthracene		0.014	ł	I	1	1	-	-	1
Dibenzofuran		6.2	0.059 J	ı	1	1	1	-	1
Dimethyl phthalate		2	***			-	-	-	1
Valuoranthene		50	0.37.1	ŀ	1	1	0,047.3	7	
TFluorene	,	50	0.081 J					1	-
DONES: J - estimated val	lue, N - tentative GM Recommend	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ected/analyzed,	NC - no criteria, SB - site background	e background.				
)									

File Number: 3247.21535

Page 13 of 16

Date Printed: 03/20/2000 15:06:59
DBF File: DEWEATEMESSASRIVITEMPDATA.DBF
FXP File: N:0247/21535/SRIVIABLEPRS.FXP

Former IFG Facility Syracuse, NY Table 3-9

Soil Data Summary

			Detected Method	d 8270 Semivola	lethod 8270 Semivolatile Organic Compound Data	npound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 0 - 1 n. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 2 - 4 ft. mg/Kg	OBG-TB-21 SW Property Area 10/18/1999 5 - 6 ft. mg/Kg	OBG-TB-33 SW Property Area 10/20/1999 5 - 6 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-39 SW Property Area 10/21/1999 10 - 12 n. mg/Kg	OBG-TB-39 10/21/1999 4 - 6 R.
Compound									1
Hexachlorobenzene		0.41	1						
Indeno(1,2,3-cd)pyrene Naphthalene		3.2 13	0.18.1	1 1	1	1	1		
Phenanthrene Phenol		50	0.54	1	1	1 1	1	4	- 1
Pyrene Bis(2-ethylhexyl)phithalate (BEHP)		50	12J 023 J	 02J	 0.28 J		 0.044 J 0.67		1 1 2
							i no	C 0 1' 0	V.41

\$488 8

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. R0060661

- Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59
DBF File: N/3247/21535/SRIVTEM/DATA.DBF
FXP File: N/3247/21535/SRIVTABLEPRS.FXP

CONTINUED

16 Jo 13

Page

Former IFG Facility () **Table 3-9**

Soil Data Summary Syracuse, NY

			Detected Meth	Detected Method 8270 Semivolatile Organic Compound Data	tile Organic Co	mpound Data			
	Sampie ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 8 - 10 ft. mg/Kg	SS-99-01 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-02 SW Property Area 10/26/1999 0 - 1 ft.	SS-99-03 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-04 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									
1,2-Dichlorobenzene		7.9				1		1	
2,4-Dimethylphenol		NC	1	1		-	_	-	1
2-Methylnaphthalene		36.4		1	1	0.21 J	i	1	0.1.1
2-Methylphenol		0,1	1	1	1	1	-	1	1
4-Bromophenyl phenyl ether		NC ·	-	-	1	l	1	-	1
4-Chlora-3-methylphenol		0.24	1	1		ı	1	1	1
4-Methylphenol	LADY SUCCESSION CONTRACTOR	0.0		-	ı	I	-	1	ı
Acenaphthene		- 20	1	1	1	0.065.1	-		1
Acenaphthylene		41		1	1	1	-	1	1
Anthracene		50	1	1	1	0.099 J	1	1	0.18 J
Benzo(a)anthracene		0.224		-	1	[0.59 J]	0.078 J	1	[0.66.7]
Benzo[a]pyrene		0,061	1	-	1	[1:69:0]	-		[0.61.3]
Benzo(b)fluoranthene		0.224	1	-	1	[1.4 J]	0.16 J		[0.99 J]
Benzo(ghi)perylene		50	i	1		-	-	-	0.42.1
Benzo(k)fluoranthene	es es assertantes establicados	0.224		1	-	-	0.041 J	1	[0.31.1]
Butyl benzyl phthalate		50	ı		1	20.1	0.054.3	0.13.3	0.2.1
Carbazoie		NC		-	-	0.065 J	1	-	0.1 J
Chrysene		0,4	-	-		[0.88.1]	0.13.1	0,062.1	[0.83.1]
Di-n-butyl phthalate		8.1		-	-	0.055 J	-	0.35 J	0.21 J
Di-n-octyl phthalate		50		1		-		ı	-
Dibenzo(a,h)anthracene	With the property of the	0.014		1	-	-		***	-
Dibenzofuran		6.2	1	1		0.057.3		1	0.044 J
Dimethyl phthalate		2				0.051 J	0.19.1	1	0.84
Huoranthene		50	1	1	1	0.643	0.11.7	0.04.3	0.88
Fluorene		50	1	1	1	0.055 J		-	0.071 J
ONOTES: J - estimated val	ue, N - tentative	J - estimated value, N - tentatively identified, not detected/analyzed,	t detected/analyzed, No	NC - no criteria, SB - site background	e background.				

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59
DBF File: REWZATEMESSINGENTEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

File Number: 3247,21535

16

14 of

Former IFG Facility	Syracuse, NY	Soil Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

)				
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 0 - 1 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 4 - 6 ft. mg/Kg	OBG-TB-40 SW Property Area 10/21/1999 8 - 10 ft. mg/Kg	SS-99-01 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-02 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg	SS-99-03 SW Property Area 10/26/1999. 0 - 1 ft. mg/Kg	SS-99-04 SW Property Area 10/26/1999 0 - 1 ft. mg/Kg
Compound									1
Hexachlorobenzene		0.41			-	0.1 J	and the second		777
Indeno(1,2,3-cd)pyrene Naphthalene		3.2 13	1 1		1 1	0.61.1	1 1	1	0.38.1
Phenanthrene		50	1	1		0,63.5	0.13	0.04.1	
Phenol		0.03		1	-	[0.065 J]	1	1	
Pyrene		50	1	1		181	0.32.J	0.14.3	251
Bis(2-ethylhexyl)phthalate (BEHP)	п)	50	6.1	1	0.73	1.6 J	0.2.J	0.36 [141

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. XO 1ES NO 1ES R0000693

II - Exceeds TAGM Recommended Soil Cleanup criteria.

Page

File Number: 3247.21535 CONTINUED

91 ot 14

Date Printed: 03/20/2000 15:06:59 DBF File: N:0247/21535/SRITEMPDATA.DBF FXP File: N:0247/21535/SRITABLEPRS.FXP

Former IFG Facility	Syracuse, NY	Soil Data Summary

٠			Detected Meth	od 8270 Semivol	Detected Method 8270 Semivolatile Organic Compound Data	mpound Data			
	Sample ID Area Sample Date Sample Depth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-45 Thimer Tank Area 11/11/1999 0 - 1 ft. mg/Kg	OBG-TB-45 Thinner Tank Area 11/11/1999 4 - 6 ft. mg/Kg	OBG-TB-45 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 4 - 6 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 6 - 8 ft.	OBG-TB-47 Thinner Tank Area TII/11/1999 0-1 ft. mg/Kg
Compound									,
1,2-Dichlorobenzene		7.9							****
2,4-Dimethylphenol		NC	-	ï	ī		and.	-	1
2-Methylnaphthalene		36.4				1	1	1	I
2-Methylphenol		0.1	1			ı	1	1	-
4-Bromophenyl phenyl ether		NC		-		1	1	I	-
4-Chloro-3-methylphenol		0.24	1	1	1	1	1	ı	
4-Methylphenol		6.0		1	1	-		ı	-
Acenaphthene			1	777	-	40	21	0.11.3	-
Acenaphthylene		41		-	1	1	l	ļ	1
Anthracene				1	1	[230]	П 0711	0.88	
Benzo(a)anthracenc		0.224		1	-	[350 J]	[150 J]	[0.77]	0.16.1
Benzolalpyrene		0.061	1	1		. [300 J]	f 0111	[0.63]	10.18.11
Benzo(b)fluoranthene		0.224	0.051 J			[360 J]	[140 J]	10.86	10 24 11
Benzo(ghi)perylene			1	1	1	[F018]	[130.1]	0.41	0.24.1
Benzo(k)fluoranthene		0.224			1	[120 J]	[59 J]	[0.34.]]	0.11.1
Butyl benzyl phthalate			1	1	1	, ,		F 1	
Carbazole		NC				120	71	0.44	1
Chrysene		0.4	0.043.J	1	1	[380]	[170.1]	[0.82]	0.21.5
Di-n-butyl phthalate		8.1	-	-	1				1
Di-n-octyl phthalate		50	1	1	1	1	ı	1	1
Dibenzo(a,h)anthracene		0.014	-		1	[39 J]	[r 59]	[0.18 J]	1
Dibenzofuran		6.2	1	ī	1	[21]	[12.1]	0.066 J	1
Dimethyl phthalate		2	-	-	1		-	1	1
Fluoranthene		50	0.06 J	1	1	[1200]	[560]	3	0.24.1
Huorene		50	1	1	-	[65]	37	0.21 J	
NOTES: J estimated va	alue, N - tentative AGM Recommen	 J - estimated value, N - tentatively identified, not dete I] - Exceeds TAGM Recommended Soil Cleanup criteria. 	ected/analyzed,	NC - no criteria, SB - site background	e background.				
1			i						

File Number: 3247.21535

15 of 16

Page

Date Printed; 03/20/2000 15:06:59

DBF File: RUGZATGSTSSKRITEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPRS.FXP

Table 3-9

Former IFG Facility	Syracuse, NY	Soil Data Summary
Ž		S

Detected Method 8270 Semivolatile Organic Compound Data

	Sampte ID Area Sample Date Sample Depth Units	IAGM Recommended e Soil Cleanup oth mg/Kg	OBG-TB-45 Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	OBG-TB-45 Thinner Tank Area 11/11/1999 4 - 6 ft. mg/Kg	OBG-TB-45 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 4 - 6 ft. mg/Kg	OBG-TB-46 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	OBG-TB-47 Thinner Tank Area 11/11/1999 0 - 1 ft. mg/Kg
Compound	i								,
Hexachlorobenzene	zene	0.41		1					
Indeno(1,2,3-cd)pyrene	d)ругепе	3.2		ı	1	[190.1]	[16]	0.29.3	0.12.5
Naphthalene		13	-		1	2.1 J	1	1	-
Phenanthrene		50	ı	1	1	[670]	[450]	3.1	0.11.5
Phenol		0.03	ı	1	-	-	I	1	-
Pyrene		50	0.052.1	1	1	[10001]	[480]	2.5	0.37
Bis(2-ethylhex)	bis(2-ethylhexyl)phthalate (BEHP)	50	4.5 J	0.2 J	0.077 J	1	1	0.26 J	0.35 J
-R AGER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, [] - Exceeds TAGM Recommended Soil Cleanup criteria.	ively identified, not o lended Soil Cleanup criter		NC - no criteria, SB - site background	background.				

Date Printed: 03/20/2000 15:06:59
DBF File: N/02472153S\SRNTEMPDATA.DBF
FXP File: N/02472153S\SRNTABLEPRS.FXP

File Number: 3247.21535 CONTINUED

Page 15 of 16

Table 3-9 Former IFG Facility

Syracuse, NY	Soil Data Summary

			Detected Meth	od 8270 Semivola	Detected Method 8270 Semivolatile Organic Compound Data
	Sample ID Area Sample Date Sample Detth Units	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-47 Thinner Tank Area 11/11/1999 2 - 4 ft. mg/Kg	OBG-TB-47 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	SS-99-05 Thinner Tank Area 10726/1999 0 - 1 ft. mg/Kg
Compound					
1,2-Dichlorobenzene		7.9	-		
2,4-Dimethylphenol		NC	ļ	1	
2-Methylnaphthalene		36.4	1	I	
2-Methyiphenol		0.1	1	1	:
4-Bromophenyl phenyl ether		NC	1	1	1
4-Chloro-3-methy/phenol		0.24	1	1	:
4-Methylphenol	A	6.0		1	1
Acenaphthene			1	1	1
Acenaphthylene		41	-		-
Anthracene		. 20	T.	1	
Benzo(a)anthracene		0.224		1	-
Benzo[a]pyrene		190:0	1	1	
Benzo(b)fluoranthene		0.224	l		0.06 J
Benzo(ghi)perylene		50	1	1	+
Benzo(k)fluoranthene		0.224	1	1	
Butyl benzyl phthalate			I		7
Carbazole		NC		-	-
Chrysene		0.4	-	1	0.051.7
Di-n-butyl phthalate		8.1			
Di-n-octyl phthalate		50	1.	ı	-
Dibenzo(a,h)anthracene		0.014		-	
Dibenzofuran		6.2	-	1	1
Dimethyl phthalate		2	!	Walter of the control	
A luoranthene		50	0.058.1	1	0.064.1
Truorene		50	1	-	
ONOTES: J - estimated val	lue, N - tentativel GM Recommenc	J - estimated value, N - tentatively identified, not dete	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background [] - Exceeds TAGM Recommended Soil Cleanup criteria.	C - no criteria, SB - siu	background.

Page

16 Jo 91

File Number: 3247.21535

Date Printed: 03/20/2000 15:06:59
DBF File: DOMER TREUS SYSKIVTEMPDATA, DBF
FXP File: N/0247/2153/SRNTABLEPRS.FXP

Ta...¢3-9 Former IFG Facility

Syracuse, NY Soil Data Summary

			j	Detected Method	d 8270 Semivola	thod 8270 Semivolatile Organic Compound Data
	Sample Area Sample Sample Sample	Sample ID T. Area R. Sample Date S. Sample Depth Units m	TAGM Recommended Soil Cleanup mg/Kg	OBG-TB-47 Thinner Tank Area 11/11/1999 2 - 4 ft. mg/Kg	OBG-TB-47 Thinner Tank Area 11/11/1999 6 - 8 ft. mg/Kg	SS-99-05 Thinner Tank Area 10.26/1999 0 - 1 R. mg/Kg
Compound						
Hexachlorobenzene	nzene		0.41	1	1	
Indeno(1,2,3-cd)pyrene	cd)pyrene		3.2	1	-	1
Naphthalene			13	1	l	
Phenanthrene			50	0.057.1	ı	1
Phenol		_	0.03	-	1	1
Pyrene			50	0.045.J	1	0.087.1
Bis(2-ethylhex	Bis(2-ethylhexyl)phthalate (BEHP)		50	0.14 J	0.13 J	1
AT AND POST OF THE		80 00000000000000000000000000000000000				
100000000000000000000000000000000000000			•			
RACE						
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, N - Except TACN 1	entatively i	identified, not de	stected/analyzed, NC -	NC - no criteria, SB - site background.	background.

RACER0060667

[] - Exceeds TAGM Recommended Soil Cleanup criteria.

Date Printed: 03/20/2000 15:06:59
DBF File: N:0247/21535/SRUTEMPDATA.DBF
EXP File: N:0247/21535/SRUTABLEPRS.FXP

File Number: 3247,21535

CONTINUED

16 of 16

Former IFG Facility Syracuse, NY

Soil Data Summary

Detected 8290 Dioxin and Furan Data

as.	Sample ID	TAGM	KC-00-24	36 00 33	20 00 33	20 00 00	
₹	Area	Recommended		67-11-00	07-44-00	17-66-00	10-22-00
Ж. Ж. Д.	Sample Date Sample Depth Units	Soil Cleanup ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 fl. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg
Compound							
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	o-dioxin	NC	6.45	14.4	571	21.2 J	32.9
1,2,3,4,6,7,8-Heptachlorodibenzofuran	uran	NC	-	8.17	663	7.21.1	17.9
1,2,3,4,7,8,9-Heptachlorodibenzofuran	ùran	NC		1	150	-	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxi	dioxín	NC			4.98		-
1,2,3,4,7,8-Hexachlorodibenzofuran	an and	NC		6.14	700		10.2
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxir	dioxin	NC]	1	102	-	707
1,2,3,6,7,8-Hexachlorodibenzofuran		NG		1	221	1	-
1,2,3,7,8,9-Hexachlorodibenzo-p-diox	lioxin	NC	J	1	38.0	_	I
1,2,3,7,8,9-Hexachlorodibenzofuran		Š		1	16.4	I	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	OXin	NC		777	7.44		
1.2.3.7.8-Pentachlorodibenzofuran		NC NC		·	325		30 3
2.3.4.6.7.8-Hexachlorodibenzofuran). SN			23.5	1	6,03
2.3.4.7.8-Pentachlorodibenzofiran		, N		14.0	1200		
The state of the s		200		0.4.1	1360	ı	4.0.7
2,3,7,8+1 etrachiorodibenzo-p-dioxii		0001	ţ	ı	2.49	I	
2,3,7,8-Tetrachlorodibenzofuran		NC	4.89	8.38	029	8.66 J	43.5
Octachlorodibenzo-p-dioxin		NC.	50.4	120	1880	185.1	238
Octachlorodibenzofuran		NC NC		20.0	1190	16.9 J	2838
Heptachlorodibenzo-p-dioxins		NC	12.6	28.3	1060	37.8.3	-
Heptachlorodibenzofurans		NC	1	16.7	1670	15.2 J	34.3
Hexachlorodibenzo-p-dioxins		NC	-	1	<u>13</u>	1	2.60
Hexachlorodibenzofurans		NC		12.0	2640		24.7
Pentachlorodibenzo-p-dioxins		NG	1	1	38.3	-	
Pentachlorodibenzofurans		NC		63.0	5300	9.10 J	131
Tetrachlorodibenzo-p-dioxins		NO	1	I	63.6	1	2.60
Tetrachlorodibenzofurans		NC	52.0	200	19800	103 J	436
NOTES: U - not detected, J - estimated, not detected	estimated,	U - not detected, J - estimated, not detected Il - Indicates that the compound exceeds the TAGM Recommended Soil		Cleanup criteria.			

Date Printed: 03/20/2000 15:07:09
DBF File: N2@Z21X3E35/SRRUDIOXIN99.DBF
FXP File: N:0247/21535/SRRUDIOXSHT.FXP

1 of 1

Former IFG Facility Syracuse, NY (Table 3-11

8290 Dioxins and Furans Toxicity Equivalent Quotient (TEQ) Data Soil Data Summary

						,	
	Sample ID Area	Toxicity Equivalent	SS-99-24	SS-99-25	SS-99-26	SS-99-27	SS-99-31
	Sample Date Sample Depth Units		0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ng/Kg	0.0 - 0.5 ft. 10/27/1999 ne/Kg	0.0 - 0.5 ft. 10/27/1999 ne/Ke
Compound						D D	9.4.6.
2,3,7,8-Tetrachlorodibenzo-p-dioxin	dioxin	-	1.00	0.83	2 40	1 00	001
2,3,7,8-Tetrachlorodibenzofuran	an	0.1	0.49	0.84	67.00	1.00	0011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,2,3,7,8-Pentachlorodibenzofuran	ùran	0.05	0.25	0.21	16.75	700	1433
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	p-dioxin	0.5	2.50	2.10	3.72	7.50	0.30
2,3,4,7,8-Pentachlorodibenzofuran	ùran	0.5	2.50	7.40	90,00	7.50 7.50	VCZ.
1,2,3,4,7,8-Hexachlorodibenzofuran	vfuran	0.1	0.50	0.61	20.02	0.50	10.20
1,2,3,6,7,8-Hexachlorodibenzofuran	vfuran	0.1	0.50	0.42	22.10	. 050	1.02
1.2,3,4,7,8-Hexachlorodibenzo-p-dioxin	-p-dioxin	0.1	0.50	0.42	0.50	0.30	0.50
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	-p-dioxin	0.1	0.50		0.00	900	030
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin			0.50	25.0	10.20	0.50	0.50
234678-Hexachlorodihenzofinan	firen	, , , , , , , , , , , , , , , , , , ,		0.42	7.80	0.50	0.50
20100000000000000000000000000000000000	And duty	0.1 	0 	0.42	11.30	0:20	0.50
1,2,3,7,8,9-Hexachlorodibenzoturan	ıturan	0.1	0.50	0.42	1.64	0.50	0.50
1,2,3,4,6,7,8-Heptachlorodibenzofuran	zofuran	0.01	0.05	80.0	6.63	0.07	0.18
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	zop-dioxin	0.01	0.06	0.14	5.71	0.21	0.33
1,2,3,4,7,8,9-Heptachlorodibenzofuran	zofuran	0.01	0.05	0.04	1.50	0.05	200
Octachlorodibenzo-p-dioxin		0.001	0.05	0,12	1.88	61:0	0.05
Octachlorodibenzofuran		0.001	0.01	0.02	1.19	0.03	104
Total TEQ			10.46	14.92	91641	11.15	2601

NOTES:

Date Printed: 03/20/2000 15:07:12 DBF File: N/024721535/SRINTEMP.DBF FXP File: N/024721535/SRINDIOSOTEQ.FXP

File Number: 3247.21535

1 of 1

() Tauss 3-12A Former IFG Facility

Syracuse, NY Ground Water Data Summary

Detected Method 8021 Volatile Organic Compound Data

			הבובבובת וגזו	Ctil04 6021 1018	cuiod ouzi voiatile Organic Compound Data	ilbouing Data				
	Sample ID Area Sample Date Sample Date	NYS Class GA Standards (3/98)	MWI-1 Bldg. 08/18/1999	MWI-2 Bldg. 08/18/1999	MWI-3 Bldg. 08/18/1999	WT-3R Bldg. 08/18/1999	OBG-13 IWT Area 11/04/1999	OBG-5 Ley Creek 11/10/1999	MW-2D N. Property Area 11/08/1999	
	Units	T/an	ug/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	
Compound										
Chloroform		7	-				4 NJ			
Methylene chloride	thloride	5	1	1	1	I	1	I8N3I	-	
Ethylbenzene)¢	5		1	-	-	1	. 1	1	
Toluene		5	1	ì	1	-		2 NJ		
Trichloroethene	iene	5	3	[13]	[25000]	[20]	-	1	-	
Vinyl chloride	ep.	2	[9]				1	1	[45]	
Xylene (total)	all the principle accompanies of the principle and the principle a	5		**************************************	!	1	-	I		
cis-1,2-Dichloroethene	loroethene	2	2	[47]	[4700]	2	1	1	-	
trans-1,2-Die	trans-1,2-Dichloroethene	5			1	1	+	1	-	
									ļ	
RACERO										
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds NYS Class GA Standard.	vely identified, not tandard.	t detected/analyzed, N	VC - no criteria, SB - s	site background.					

Date Printed: 03/20/2000 15:07:38 DBF File: NY24721535\SRIYTEMPDATA.DBF FXP File: NY24721535\SRIYTABLEPR.FXP

File Number: 3247,21535

9 1 of

Ground Water Data Summary Detected Method 8021 Volatile Organic Compound Data

				MINIOR OUT A DIRECTOR COMPANIE COMPANIE DRIE	c Organic Comp	Journ Data			
	Sample ID Area Sample Date	NYS Class GA Standards (3/98)	MW-2S N. Property Area 11/08/1999	MW-3D N. Property Area 11/05/1999	MW-4D N. Property Area 11/03/1999	MW-5D N. Property Area 11/05/1999	OBG-6D N. Property Area 11/03/1999	OBG-7D N. Property Area 11/04/1999	OBG-8D N. Property Area 11/02/1999
	Units	ug/L	ug/L	ng/L	ng/L	ug/L	ug/L	ug/L	J/Sn
Сотроил									
Chloroform		7				1		2 NI	
Methylene chloride		5	1	1	-	-	ŀ	912 	
Ethylbenzene		S	1		-	****	1	1	-
Toluene		5	1		1	-	-	ı	
Trichloroethene		5	2	[37000]	[27000 J]	[17000]	[65000]	1	[2800]
Vinyl chloride		2	1	1	1	i	· · ·	112.1	, ,
Xylene (total)		S			-	-	1	-	i
cis-1,2-Dichloroethene		\$	1	1	[1500]	ı	[3400]		[450]
trans-1,2-Dichloroethene	1	S	ŀ	1	-	-		1	-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 15:07:38 DBF File: N:\024721535\SR\\\TABF FXP File: N:\024721535\SR\\\TABLEPR.FXP

File Number: 3247.21535

2 of 6

Page

RACER0060671

Ground Water Data Summary

Detected Method 8021 Volatile Organic Compound Data

		-	הבוברות זעוכוו	IIO OUT TOO DOIL	ctilou ouzi volatile Ofganic Compound Data	RIRG DUNG			
	Sample ID Area Sample Date Sample Depth Units	NYS Class GA Standards (3/98) ug/L	OBG-9D N. Property Area 11/02/1999	W-6D N. Property Area 11/04/1999	OBG-10D NE Property Area 11/08/1999	OBG-10S NE Property Area 11/08/1999	W-11S NE Property Area 11/08/1999	operty Area //1999	OBG-15 SW Property Area 11/11/1999
Сощроипа			l Þ	l b	i b	i D	a An	7/8n	7/Bn
Chloroform		7				-			
Methylene chloride Ethylbenzene		5	1 1	1 1	1 1	1 1	1 1		[N ⊟
Toluene Trichloroethene		5 5	1 1	1 1	[170000]	1 1	1 1	1 :	
Vinyl chloride Xylene (total)		2 5	[23]	1 1	. 1 1	1 1]		[acr]
cis-1,2-Dichtoroethene trans-1,2-Dichloroethene		5	[230]	[20]	[11000]	[15]	[380]	for a	[36]
						l	[76]	I	-

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

I - Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 15:07:38
DBF File: N:\0347\21533\SR\\TEMPDATA.DBF
FXP File: N:\0347\21533\SR\\\TABLEPR.FXP

File Number: 3247,21535

3 of 6

Syracuse, NY Ground Water Data Summary

Ground Water Data Summary
Detected Method 8021 Volatile Organic Compound Data

			Delected Men	non sour voiatil	culou out I volatile Organic Compound Data	ouna wasa			
	Sample ID Area Sample Date Sample Depth Units	NYS Class GA Standards (3/98)	OBG-PZ-1 Thinner Tank Area 07/08/1999 ug/L	OBG-PZ-2 Thinner Tank Area 07/08/1999 ue/L	OBG-PZ-3 Thinner Tank Area 07/08/1999 ue/L	T-1 Thinner Tank Area 11/12/1999 ue/L	T-10 Thinner Tank Area 07/29/1999	T-13 Thinner Tank Area 07/29/1999	T-13 Thinner Tank Area 11/11/1999
Сотроия			,	ı))		i h	, ,
Chloroform		7	1	the state of the s		***		A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Methylene chloride		5	1	l	1			l	
Ethylbenzene		5		[3500]		1	[46]	i	
Toluene		2	1		I	•		-	1
Trichloroethene		5			Ţ	***	-	1	ı
Vinyl chloride		2	J	1	l	1	1	-	1
Xylene (total)		5	[1500]	[22000]	1	[6]	[290]	[410]	[230]
cis-1,2-Dichloroethene		5		1	[16]			[]	[27]
trans-1,2-Dichloroethene	•					1	-		
									ı
RACE									

Date Printed: 03/20/2000 15:07:38
DBF File: N/U247\text{X153\text{SYSRINTEMPDATA.DBF}
FXP File: N/U247\text{X153\text{SYSRINTEMPDATA.DBF}

4 of 6

Page

RACER0060673

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background.

□ - Exceeds NYS Class GA Standard.

Former IFG Facility Table 3-12A Syracuse, NY

Ground Water Data Summary

Detected Method 8021 Volatile Organic Compound Data

	Sample ID Area Sample Date	NYS Class GA Standards (3/98)	T-15 Thinner Tank Area 07/29/1999	T-15 Thinner Tank Area 11/11/1999	T-2 Thinner Tank Area 07/29/1999	T-2 Thinn er Tank A rea 11/11/1999	T-21 Thinner Tank Area 07/29/1999	T-21 Thinner Tank Area 11/11/1999	T-24 Thinner Tank Area 11/11/1999
	Units	ug/L	ug/L	ng/L	ug/L	ug/L	ug/L	ng/L	ug/L
Compound									
Chloroform		7	144				1		
Methylene chloride		5	1	1	1	1	1		
Ethylbenzene		5	[6300]	1	[3000]	[26000]	[39000]	[30000]	-
Toluene		5	-	1	1	[1800]		[2400.]	-
Trichloroethene		2	ł	-	***	1			
Vinyl chloride		2		1	1	1	1	1	_
Xylene (total)			[29000]	[9400]	[29000]	[150000]	[200000]	[160000]	Э
cis-1,2-Dichloroethene		5	l	1	ı	ı	ı	1	-
trans-1,2-Dichloroethene		5	1	1		- 1	1	1	-
•									
								£	

□ - Exceeds NYS Class GA Standard.

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

Date Printed: 03/20/2000 15:07:38

DBF File: N:0247/21535\SRNTEMPDATA DBF

FXP File: N:0247/21535\SRNTABLEPR.FXP

File Number: 3247.21535

9 5 of

Page

NOTES: RACER0060674

Former IFG Facility (_____) Table 3-12A Syracuse, NY

Ground Water Data Summary

Detected Method 8021 Volatile Organic Commonnel Data

			:	Detected Met	nod ovzi volatili	Method 6041 Volatile Organic Compound Data	ound Data			
	Samp Area Samp Samp	Sample ID Area Sample Date Sample Denth	NYS Class GA Standards (3/98)	T-26 Thinner Tank Are a 07/29/1999	T-26 Thinner Tank Area 11/12/1999	T-3 Thinner Tank Area 07/29/1999	T-3 Thinner Tank Area 11/11/1999	T-4 Thinner Tank Area 07/29/1999	T-4 Thinner Tank Area 11/12/1999	T-5 Thinner Tank Area 11/11/1999
	Units		ug/L	ng/L	ng/L	J/dn	ng/L	ug/L	ng/L	ug/L
Compound										
Chloroform			7		1		****			
Methylene chi	chloride		5	1	-		-	-	1	1
Ethylbenzene	Je	A CONTRACTOR OF THE	5		1	[9100]	[5100]	[12000]	[7800]	
Toluene			5		-	· .	[[
Trichloroethene	lene		5		-	1	1	1	-	
Vinyf chloride	de		2			1	1	1		
Xylene (total)	d)		5	[21]	[10]	[44000]	[25000]	[48000]	[54000]	[420]
cis-1,2-Didh	cis-1.2-Dichloroethene		· 2			. 1		[[aaa.]	[041]
1.d-2,1-2.lb.u	ichnolocutene		c	1	ı	ı	I	1	1	1
RACERO										
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds NYS Class GA Standard.	tentatively s GA Stand	/ identified, not d lard.	detected/analyzed, NC	- по criteria, SB - site	background.				

go 9 Page

9

File Number: 3247.21535

Date Printed: 03/20/2000 15:07:38
DBF File: N:0247/21535/SRNTEMPDATA.DBF
FXP File: N:0247/21535/SRNTABLEPR.FXP

Former IFG Facility Tabas 3-12B

Ground Water Data Summary

Detected Method 8260 Volatile Organic Data Syracuse, NY

	Sample ID Area Sample Date	NYS Class GA Standards (3/98)	MWI-3 Bldg. 08/18/1999	OBG-PZ-1 Thinner Tank Area 07/08/1999	OBG-PZ-2 Thinner Tank Area 07/08/1999	OBG-PZ-3 Thinner Tank Area 07/08/1999
	Units	ug/L	ug/L	ng/L	ug/L	Т/Яп
Compound						
Benzene, 1,2,4-trimethyl		5		2	1251	
Benzene, 1,3,5-trimethyl.		5	1	1	[5] [6]	1
Benzene		1	***	0.5	[5]]	
Chlorobenzene		5	1		[63]	
Ethylbenzene		5		[37]	[4200]	
Isopropylbenzene		5	1	[12]	[007]	
Naphthalene		10	1	1.71 1.01	[20]	
Toluene			**************************************		[70]	
Trichloroethene		5	[21000 7]		[nc]	
Vinyl chloride		2	[140,1]			1.1
Xylene (total)		5		[010]	ניסססכן	
cis-1,2-Dichloroethene		\$	T3800 H	[A.7]	[20000]	******
n-Propylbenzene		· · · · · · · · · · · · · · · · · · ·			[44]	
		,		7	[8.1]	, ————————————————————————————————————
		2000-000 (2000-000 No. 2000-000)	100 000 000 000 000 000 000 000 000 000			

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES

- Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 15:08:04
DBF File: N/3247/21535/SRIVTEMPDATA.DBF
FXP File: N/3247/21535/SRIVTABLEPR.FXP

File Number: 3247.21535

l of

Ground Water Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

	Sample ID Area Sample Date	NYS Class GA Standards (3/98)	OBG-13 IWT Area 11/04/1999	MW-3S N. Property Area 11/05/1999	OBG-9D N. Property Area 11/02/1999	OBG-9S N. Property Area 11/02/1999	U-ID SE Property Area 11/02/1999
	Units	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L
Compound							
2,4-Dimethylphenol		50		1		4 J	
Diethyl phthalate		. 05	i	-	20		1
Bis(2-ethylhexyl)phthalate (BEHP)	90000000000000000000000000000000000000	5	4 J	[20]	-	1	[230]

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 15:08:31 DBF File: N/U247/21535/SRIXTEMPDATA.DBF FXP File: N/U247/21535/SRIXTABLEPR.FXP

File Number: 3247.21535

l of

Table 3-14
Former IFG Facility
Syracuse, NY
Ground Water Data Summary

ound Water Data Summary Detected PCB Data

				Tricing I					
	Sample ID Area Sample Date Sample Depth		MWI-1 Bidg. 08/18/1999	MWT-2 Bldg. 08/18/1999	MWI-3 Bidg. 08/18/1999	WT-3R Bidg. 08/18/1999	OBG-13 IWT Area 11/04/1999	OBG-3 Ley Greek 11/10/1999	OBG-7A Ley Creek 11/09/1999
	Units	ng/L	ug/L	ng/L	ug/L	ng∕L	ng/L	1/gn	ng/L
Compound									
Aroclor 1242		0.09		1			[0.2.1]		ED S MIT
Aroclor 1248		0.09	80'0	[51]	[023]	60'0	·	0.07 NJ	[a) Cal
									•

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 15:09:00 DBF File: N:\324721535\SR\TEMPDATA.DBF FXP File: N:\324721535\SR\TABLEPR.FXP

File Number: 3247.21535

1 of 3

Table 3-14
Former IFG Facility
Syracuse, NY
Ground Water Data Summary

								
	OBG-9D N. Property Area 11/02/1999	ug/L	[2.1]					
	OBG-6S N. Property Area 11/03/1999	ng/L	[2.1]					
	OBG-6D N. Property Area 11/03/1999	ug/L	[0.2.1]					
	MW-5S N. Property Area 11/05/1999	ug/L	[9]					
Detected PCB Data	MW-4S N. Property Area 11/03/1999	ug/L	[16.9]					
Detected]	MW-3S N. Property Area 11/05/1999	ug/L						
	MW-2S N. Property Area 11/08/1999	ng/L	1 81					
		ug/L	0.09					
	Sample ID Area Sample Date Sample Depth	Units						
		Compound	Aroclor 1242 Aroclor 1248					

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

] - Exceeds NYS Class GA Standard.

Date Pinited: 03/20/2000 15:09:00 DBF File: N/324721535/SRIVTEMPDATA.DBF FXF File: N/324721535/SRIVTABLEPR.FXP

File Number: 3247,21535

2 of

Former IFG Facility Table 3-14 Syracuse, NY

Ground Water Data Summary Detected PCB Data

	Sample ID Area Sample Date Sample Deth	NYS Class GA Standards (3/98)	OBG-9S N. Property Area 11/02/1999	W-1S N. Property Area 11/10/1999	W-6D N. Property Area 11/04/1999	W-6S N. Property Area 11/04/1999	OBG-15 SW Property Area 11/11/1999
	Units	ug/L	ng/L	J/8n	ug/L	ug/L	ng/L
Compound							
Aroclor 1242 Aroclor 1248		60:0	[3.J] —	[0.8 NJ]	[g]	[4]	[0] [NJ]
					-		

□ - Exceeds NYS Class GA Standard.

NOTES:

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background.

Date Printed: 03/20/2000 15:09:00
DBF File: N-0247/21535/SRI/TEMPDATA.DBF
FXP File: N-0247/21535/SRI/TABLEPR.FXP

File Number, 3247,21535

m 3 of

Syracuse, NY
Ground Water Data Summary
Detected Metals Data

						j			
	Sample ID Area Sample Date Sample Depth Units	NYS Class GA Standards (3/98) mg/L	MWI-1 Bidg. 08/18/1999 mg/L	MWI-2 Bidg. 08/18/1999 mg/L	MW1-3 Bldg. 08/18/1999 mg/L	WT-3R Bldg. 08/18/1999 mg/L	OBG-12 IWT Area 11/03/1999 mg/L	OBG-13 IWT Area 11/04/1999 mg/L	OBG-13 (FF) IWT Area 11/04/1999 mg/L
Compound									
Arsenic		0.025			-	1	0.0058	0.0027 J	***
Copper		0.2	£#00.0	45UD	0.0074 J	0.0034 1	1 1	0.0125	0.00451
Lead Nickel		0.025	0.0665	0.009	0.005.1		0,000,4.1		
Zinc		2.0				7.0100.0	0.0055 J	0.00/4 J	0.0047 J
			200000000000000000000000000000000000000	Accompany of the property of t		and the second of the second o			

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

I - Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 16:15:40
DBF File: N/3/24/21535/SRI/TEMPDATA.DBF
FXP File: N/3/24/21535/SRINTABLEPR.FXP

File Number: 3247,21535

9

10 I

Ground Water Data Summary Detected Metals Data

	Sample ID Area Sample Date	NYS Class GA Standards (3/98)	OBG-2 Ley Creek 11/10/1999	OBG-3 Ley Creek 11/10/1999	OBG-3D Ley Creek 11/09/1999	OBG-5 Ley Creek 11/10/1999	OBG-7A Ley Creek 11/09/1999	MW-3S N. Property Area 11/05/1999	MW-4D N. Property Area
	Sample Depti. Units	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound									ı
Arsenic		0.025			0.0054	0.0035 J		1	0.0082
Chromium		0.05	0.0095.1	0.0088.1	-		0.0072 J	0.0045 J	
Copper		0.2	0.0098 J	0.0031 J	1	0.0015 J	0.0017 J	0.0011 J	1
Lead		0.025	1	ı	ı		0.0198	1	ı
Nickel		0.1	0.0298 J	0.0117 J	0.0012 J	0.0162 J	0.0478 J	0.0044 J	0.0032 J
Zinc		2.0	0.129	0.461	0.0201	0.532	[2.28]	0.0089.1	0.0028 J
					-				
RACER									
NOTES:	J - estimated value, N - tentatively identified, not detected/analyzed, I i - Exceeds NYS Class GA Standard.	ely identified, not andard.	detected/analyzed, N	NC - no criteria, SB - site background.	te background.				

Date Printed: 03/20/2000 16:15:40
DBF File: N/324721535\SRIVITEMPDATA.DBF
FXP File: N/324721535\SRIVITABLEPR.FXP

File Number: 3247.21535

9 2 of

Page

Ground Water Data Summary Detected Metals Data

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background.

[] - Exceeds NYS Class GA Standard.

Page 3 of

9

File Number: 3247.21535

NOTES:

Ground Water Data Summary

Detected Metals Data

	Sample ID Area Sample Date Sample Dete	NYS Class GA Slandards (3/98)	OBG-9D N. Property Area 11/02/1999	OBG-9S N. Property Area 11/02/1999	W-1D N. Property Area 11/09/1999	W-1S N. Property Area 11/10/1999	W-6D N. Property Area 11/04/1999	W-6S N. Property Area 11/04/1999	OBG-10D NE Property Area 11/08/1999
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound									
Arsenic	·	0.025	0.0092	[0.0277]		0.0028 J		0.0065	a : +
Chromium		0.05	0,005J	0.0057.3		-	0,0068 J	0.007 J	-
Copper		0.025	1		0.0017 J	- 1	0.00056 J		-
Nickel		0.1	0.0042 J	0.013 J	0.0331 J	0.0146 J	0.0031 J	0.0032 J	0.0124 J
Zinc		2.0	1	1	0,0865	0.0032.1	1	ı	0.0044.1
₹7	STATE CONTRACTOR AND ADDRESS OF THE PARTY OF		CONTRACTOR OF CONTRACTOR OF STREET OF STREET						

Exceeds NYS Class GA Standa

Date Printed: 03/20/2000 16:15:40
DBF File: N/0247/21535/SRIATEMPDATA.DBF
FXP File: N/0247/21535/SRIATABLEPR.FXP

File Number; 3247.21535

4 of 6

Page

ACER006068

Ground Water Data Summary **Detected Metals Data**

				Detected Metals Data	ctais Data				
	Sample ID Area Sample Date Sample Deuth	NYS Class GA Standards (3/98)	OBG-10S NE Property Area 11/08/1999	W-11D NE Property Area 11/08/1999	W-11S NE Property Area 11/08/1999	P-2 SE Property Area 11/08/1999	U-1D SE Property Area 11/02/1999	U-1S SE Property Area 11/03/1999	OBG-11 SW Property Area 11/08/1999
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Сотроипа					٠				
Arsenic		0.025	1	9900'0					
Chromium		0.05	1	1	1		0.0043.1	0.004.3	-
Copper		0.2	0.0015 J	ł		0.0008 J	-	1	0.0026 J
Lead		0.025	1	0.0075	1	ı	-	ŀ	1
Nickel		0.1	0.0022 J	0.0014 J	0.0011 J	0.001 J	0.0043 J	0.0094 J	0.0028 J
Zinc		2.0	0.005 J	0.981	0.0204	0.0065 J	1		0.0041.1
									•
		50.000							

J - estimated value, N - tentatively identified, --- not detected/analyzed, NC - no criteria, SB - site background. [] - Exceeds NYS Class GA Standard.

Date Printed: 03/20/2000 16:15:40
DBF File: N:024721535/SRIVTEMPDATA.DBF
FXP File: N:024721535/SRIVTABLEPR.FXP

File Number; 3247.21535

9 5 of

Page

NOTES:

Ground Water Data Summary Former IFG Facility Table 3-15 Syracuse, NY

Detected Metals Data

	Comple ID	20 00 00			
	Sample ID Area Sample Date Sample Denth	N Y S Class GA Standards (3/98)	OBG-15 SW Property Area 11/11/1999	OBG-15 (FF) SW Property Area 11/11/1999	P.9 Thinner Tank Area 11/11/1999
	Units	mg/L	mg/L	mg/L	Lygim
Compound					
Arsenic		0.025			
Chromium		0.05	-	ŧ	- 1
Copper		0.2		-	0.0017.1
Lead		0.025		ł	
Nickel		0.1	0.0028 J	0.0017 J	0.0024 J
Zinc		2.0	0.0097 J	0.0051 J	0.0076.1
	Action of the Control				

J - estimated value, N - tentatively identified, --- - not detected/analyzed, NC - no criteria, SB - site background. NOTES:

- Exceeds NYS Class GA Standard.

Jo 9 Page

9

File Number, 3247,21535

Date Printed: 03/20/2000 16:15:40
DBF File: N-024721535SRNTEMPDATA DBF
FXP File: N-024721535SRNTABLEPR FXP

_			_				_	_		_		_		_	_		_																									
	Ŧ	(S.U.)		五	(S.U.)	,	•	,		•	•		•	•			•	•		. :	7.78	7.58	9.55	7.87	7.72	7 92	7.84	77.7					_	•		•	•	_	T			
	TSS	(mg/l)		TSS	(mg/l)	-	,	,			•	•					1 1		-		n 1	008,	=	9	7	35 C	6	o,						•			•	•		. ,	•	
Free	Cyanide	(mg/l)	Free	Cyanide	(mg/l)		•	•	. 000	57.0	800	8 6	50.05	0.05	20.05	\$0.02 \$0.05	50.05 50.05	30.00	2000	200		,	'				•	,				<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	40.05 50.05	<0.05	<0.05
Total	Cyanide	(mg/J)	Total	Cyanide	(mg/l)	<0.05	<0.05	<0.05	•			, ,	,		,	•	,				•	•	•	,			•	,	, 6	0.05	<0.05	,	-	,		-		•		•	•	,
	Zinc	(I/Bm)	-	Zjuc	(mg/l)	0.33	0.26	0.23	0.59	0.24	0.62	0.21	91.0	0.26	0.26	0.17	0.12	0.11	0.14	,		, ,		,		•		. 5		20.0	0.02	0.07	<0.01	C 0.01	<0.01	•	0.05	10.0	<0.01	0.01	0.01	0.01
	Copper	(mg/l)		Copper	(mg/l)	90.0	0.04	0.04	0.03	0.03	80.0	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.04		•				,	,	1	. 6	0.07	5 6	<0.01	0.02	<0.01	<0.01	¢0.01	,	0.01	< 0.01	<0.01	€0.01	<0.01	<0.01
	Lead	(mg/J)		Fead	(mgm)	<0.05	<0.05	<0.05	0.73	0.09	0.14	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0,05		•	_				,		, ;	20.05	<0.05 <0.05	<0.05	90.0	60.0	90.0	<0.05		<0.05	0.07	0.05	0.07	<0.05	<0.05
	Antimony	(mg/J)		Antimony	(Man)	•		•		-			•	,				•	,		•							. 5	·			,	1	-	,	•	•	•	,	•	1	_
	Selenium	(mg/l)	-	elenium (made)	(military)	,			•	,			•	-	,					•		_			,			- 0000	,					•			,	•	-			_ -
	Arsenic	(l/gm)	-	CHOCK CHOCK	(11811)				•		,		,	•	•	,	•	,							. ,			<0.002	'	•	,	i	•	•		•	•		,			_
	Chromium	(mg/l)	-		(1,8)	,		•			,			•		•					,		,			,		20.0	•	-		•		-	,			•		•	•	
	-	Cate		Date	5.22-87- 0 hr	E 22 02 02 0 E P	3-22-67; U.S III	5-22-87; 1 hr	5-28-87; 0 hr	5-28-87; 0.5 hr	5-28-87; 1 hr	5-28-87; 2 hr	5-28-87; 3 hr	6-3-87; 0 hr	6-3-87; 0.5 hr	6-3-87; 1 hr	6-8-87; 0 hr	6-8-87; 0.5 hr	6-8-87; 1 hr	6.9-89	6-9-89	6-6-9	6-6-9	6-8-89	68-89	6-6-9	6-6-9	6-7-85	5-22-87; 0 hr	5-22-87; 0.5 hr	5-22-67; 1 hr	5-28-87; 0 hr	5-28-87; 0.5 hr	5-28-87; 1 hr	5-28-87; 2 hr	5-28-87; 3 hr	6-3-87; 0 hr	6-3-87; 0.5 hr	6-3-87; 1 hr	6-8-87; 0 hr	6-8-87; 0.5 hr	6-8-87; 1 hr
olome	Sample	Location	Samula	Location	A1															A4	A4 plugged line	A4 catch basin	A4 collection sump	A5	A7	A8	A8A	A8B			•				-	_	•			•		
	Investigation	Illacaligation		Investigation	OBGSOA87			-										į		OBGSSSS89	OBGSSSS89	OBGSSSSBB	OBGSSSS89	OBGSSSS89	OBGSSSS89	OBGSSSS89	086888889	EDIHI85	OBGSOA87			-					_				_	

Storm Sewer Data Slummary.

Table 3-16.

Page 1 of 6

of 6
N
Page

Table 3-16.	Storm Sewer Data Slummary.	Slummary.											
	•									Total	Free		
1	Sample .		Chromium	Arsenic	Selenium	Antimony	Lead	Copper	Zinc	Cyanide	Cvanide	555	Ę
IIIVesugation	Location	Date	(l/gm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(l/6m)	(J/6m)	(mo/l)	()	1
		6-6-89		-	,							,	/2/
OBGSSSS88	A9	6.9-89	•		_				,	•		4	7.76
EDIHI85	BM4	8-7-85	\$0.00 \$0.00	0.00%	0 0008	,	, 6	. 6		•		-	7.48
EDIHI85	BM2	6-7-85	0.05	<0.002	50.003	9 6	70.07	0.0	40.02 40.03	•			
OBGSOA87	δ	5-22-87: 0 hr	'		***************************************	ż	20.02	10.0	70'0-		•	•	-
	;	1000000	1				0.37	0.2	0.43	<0.05	,		
		3-44-67; U.5 III		,	•		0.25	0.18	0.31	<0.05	•	•	,
		5-22-87; 1 hr	,		•	•	0.25	0.17	0.29	0,36	,	,	_
		5-28-87; 0 hr		•			0.1	0.02	0.04		<0.05	•	, ,
•		5-28-87; 0.5 hr		,	,		0.12	0.01	0.08	,	<0.05		
		5-28-87; 1 hr	,				0.45	0.2	6.0	,	\$0.05		
		5-28-87; 2 hr	,	,			0.18	0.18	0.19	•	50.05		•
		5-28-87; 3 hr	-			,	0.15	0.16	0.14		50.05		
		6-3-87; 0 hr					0.05	0.03	0.09	,	300	'	
		6-3-87; 0.5 hr	,	•	•	-	0.31	0 19	0.59	. ,	000	•	
		8-3-87; 1 hr			ı	•	0.2	1,0	72.0		0.00		,
		6-8-87; 0 hr	•		•	•	0.1	0.03	0.12		20.03		
		6-8-87; 0.5 hr		,			0.08	0.02	0.05		\$0.05 \$0.05	† '	,
		6-8-87; 1 hr	•	,	•	,	0.07	0.03	0.06		50.05	,	
EDIHI85	C10	6-7-85	0.02	<0.002	<0.002	0.16	0.04	0.04	0.12	,	3		
OBGSOA87		5-22-87; 0 hr	-	'	1	,	0.22	0.13	0.21	<0.05			• (
		5-22-87; 0.5 hr		,		•	0.13	0.1	0.15	<0.05			
		5-22-87; 1 hr	•		•		0.1	0.07	0.11	<0,05	,		•
		5-28-87; 0 hr	•	•	,	,	0.33	0.23	0.31		40.05	,	
		5-28-87; 0.5 hr	-	-	-	-	0.19	0.25	0.2	,	<0.05		
		5-28-87; 1 hr		•			0.07	0.29	0.09		<0.05		
		5-28-87; 2 hr	•	•	-		0.08	0.05	20:0	,	20.05	. ,	•
		5-28-67; 3 hr					•	•			}		,
				-		_				,			
						-				_	_	_	_

出 う い野ien & Gere Engineers, Inc い例/1/IPROJECTS\4966\21535\5_RPTS\SR!_RPTS\TAB3-16.WB2 88

Page 3 of 6

Table 3-16.	Storm Sewer Data Slummary.	Slummary.											
	•		ļ							Total	Free		
	Sample		Chromium	Arsenic	Selenium	Antimony	Lead	Copper	Zinc	Cyanide	Cyanide	TSS	 금
Hivesugation	Location	Date	(mg/l)	(mg/l)	(mg/J)	(Mg/l)	(l/gm)	(mg/l)	(Mg/l)	(ma/l)	(ma/l)	(//0//)	(118)
		6-3-87; 0 hr			•	,	0.27	0.27	0.72		\$0.05		T
		6-3-87; 0.5 hr	,	,	,		0.17	0.16	0.28		3 6		
		6-3-87: 4 hr							,,	'	3	•	
			•		•		0.1	0.13	0.13	•	<0.05		
		6-8-87; 0 hr				•	1.0	90'0	0.12		<0 OS	,	
		6-8-87; 0.5 hr	,	,	,		0.1	0.04	0.05		20.05		,
		6-8-87; 1 hr	•		,	•	2,0	000	900		2 6	,	•

												ĺ	
	Samole		į					,		Total	Free		
nvestination	Continu	-	Enimotics .	Arsenic	Selenium	Antimony	Lead	Copper	Zinc	Cyanide	Cyanide	TSS	품
0		Care	(mgw)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/J)	(mg/l)	(mg/l)	(mg/l)	(l/6m)	(S.U.)
	Samole		, Promiting	According	- 1					Total	Free		
Investigation	Location	Date	(mam)	(mag)	(mod)	Andmony (man)	Cead	Copper	Ziuc	Cyanide	Cyanide	TSS	五
OBGSOA87	A1	5-22-87: 0 hr		6600	(uRIII)	(MgM)	(mgm)	(mg/l)	(l/gm)	(mg/f)	(mg/l)	(mg/l)	(S.U.)
		5.22.87. 0 E br	,	•	1		<0.05	90.0	0.33	<0.05	•		,
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,			<0.05	0.04	0.28	<0.05		,	
		JUL 1/9-77-6	1	•			<0.05	0.04	0.23	<0.05		,	,
		JU 0 1/8-97-C		ı	•		0.73	0.03	0.59		0.29		,
		5-28-87; 0.5 hr			-	•	0.09	0.03	0.24	,	\$0.05		
		5-28-87; 1 hr	•				0.14	90.0	0.62		\$0.05		
		5-28-87: 2 hr	,		•	,	0.05	0.03	0.21		20.00	,	
		5-28-87; 3 hr	•	,			0.05	0.03	0.16	•	300		
		6-3-87; 0 hr	•	,			0.05	900	0.26		300	•	
		6-3-87; 0.5 hr		,			900	200	0.26		00:00		,
	•	6-3-87; 1 hr	•	,			20.0	5 6	47		<0.05		,
		6-8-87: 0 hr	•			,	50.0	0.03	·	•	40.05	,	
		6-8-87: 0.5 hr		_		1	0 0	50.0	21.0		<0.05		
		6-8-87: 1 hr					0.02	0.03		'	<0.05		
OBGSSSS89	Α4	A.9.Ro		,	,		- G	0.04	4	•	<0.05		
OBGSSSS89	A4 plinged line	6-9-80		,	ļ		•	,	,			0	7.78
OBGSSSS89	A4 catch basin	6-6-8			,	•		•	,	•	ı	7900	7.58
OBGSSSS89	A4 collection sumn	6-9-80		-	<u> </u>	-			·	•		=	9.55
OBGSSSSBB	AS	6-8-89		•	•			•				10	78.7
OBGSSSS89.	. A	6-6-9		•	ı		,		,	•	,	7	7.72
OBGSSSS89	A8	68-6-9			1 1	1			•	,		150	7.92
OBGSSSS89	ABA	6-9-89					-			-	-	6	7.84
ED1H185	A8B	6-7-85	0.04	<0.002	. 000	. 5	. 00	. 6	. 2	•	•	6	7.77
OBGSOA87		5-22-87; 0 hr			,		<0.05	0.00	200	, v			
		5-22-87; 0.5 hr	•	-	1		<0.05	0.0>	0.01	\$0.05 \$0.05	. ,	•	
		5-22-87; 1 hr	•				<0.05	<0.01	0.02	<0.05	-		
		5-28-87; 0 hr	•		•	1	90.0	0.02	20.0		<0.05		. ,
		5-28-87; 0.5 hr	•	,			60'0	<0.01	<0.01	•	<0.05		
		5-28-87; 1 hr	-	•	-		90.0	<0.01	<0.01	•	<0.05	•	
	_	5-28-87; 2 hr	•		,	<u>.</u>	<0.05	<0.01	+0.01	-	<0.05	-	Ţ.
		5-28-87; 3 hr	•	,	•					_		_	
_		6-3-87; 0 hr		•	•	,	<0.05	0.01	0.05	,	<0.05	· ·	
		6-3-87; 0.5 hr	•	•			0.07	<0.01	0.01		<0.05	•	
_		6-3-87; 1 hr		•	-		0.05	<0.01	<0.01	-	<0.05		
_		6-8-87; 0 hr		1			0.07	<0.01	0.01		<0.05		
		0-0-07; U.S.III		,		1	<0.05	<0.01	0.01	•	<0.0>	•	
		0-0-0	-	-		-	<0.05	<0.01	0.01	_	<0.05		

Page 1 of 6

w
75
_
N
Ð
Ō
ā
D.

Table 3-16.	Storm Sewer Data Stummary.	Slummary.	-										
,	4									Total	Free		
- checiteria	adulec	ı	Chromium	Arsenic	Selenium	Antimony	Lead	Copper	Zinc	Cyanide	Cyanide	155	H
Historyalium	Location	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(Mg/l)	(3.0.)
0800000000	5	69-6-Q	1		•							4	7.78
60000000	2	69-6-0								•		4	7.48
EDIHIBS	BM1	6-7-85	<0.02	0.0036	0.0096	÷0.1	<0.02	<0.01	<0.02	•		:	?
EDIHI85	BM2	6-7-85	0.05	<0.002	<0.002	¢0.	<0.02	<0.01	<0.02				
OBGSOA87	5	5-22-87; 0 hr					0.37	0.0	0.43	20.07	-		
		5-22-87; 0.5 hr	·		,		0.25	0.18	0.31	50.05	,		
		5-22-87; 1 hr			•	•	0.25	0.17	0.29	92.0	, ,		
		5-28-87; 0 hr		,			0.1	0.02	0.0	} .	0.05		•
		5-28-87; 0.5 hr		,		•	0.12	0.01	90.0		<0.05		·
	-	5-28-67; 1 hr	•	,	•	,	0.45	0.2	6.0	,	<0.05		
		5-28-87; 2 hr	•	•	,		0.18	0.18	0.19	•	<0.05		
		5-28-87, 3 hr	-		1	-	0.15	0.16	0.14		<0.05		,
		6-3-87; 0 hr	,	,		-	0.05	0.03	60.0		<0.05		
		8-3-87; 0.5 hr	,	,	•	•	0.31	0.19	0.59	,	<0.05		
		6-3-87; 1 hr	•	•		,	0.2	0.15	0.24	•	<0.05	,	_
		6-8-87; 0 hr	1		,	-	0.1	0.03	0.12	,	<0.05		_
		6-8-87; 0.5 hr		•	•		90.0	0.02	0.05		<0.05	,	
		6-8-87; 1 hr	•	•			0.07	0.03	90.0		<0.05		
EDITION OF	25	6-7-85	0.02	<0.002	<0.002	0.16	4 0.0	0.04	0.12	,			
COCCOCAC		5-22-87; 0 hr	-		-	-	0.22	0.13	0.21	<0.05			•
		5-22-87; 0.5 hr	•	•		•	0.13	0.1	0.15	<0.05			Ţ.
		5-22-87; 1 hr	•		•	•	0	0.07	0.11	<0.05	,	,	•
	_	5-28-87; 0 hr		•			0.33	0.23	0.31	,	\$0 0\$	_	
		5-28-87; 0.5 hr		,	-	•	0.19	0.25	0.2	,	<0.05		•
		5-28-87; 1 hr	•	•			0.07	0.29	0.09		\$0.05		
		5-28-87; 2 hr	,	•	1		0.08	0.05	0.07		50.05		
		5-28-87; 3 hr		•			,		,			•	
					-		_						ı

Page 3 of 6

Table 3-16.	Storm Sewer Data Sturnmary.	Slummary.		i									
	-									Total	Free		
	Sample		Chromium	Arsenic	Selenium	Antimony	Lead	Copper	Zinc	Cvanide	Cyanide	202	7
Investigation	Location	Date	(mg/l)	(mg/l)	(Mg/l)	(mg/l)	(ma/l)	(/um)	(may)	(more)	(mod)	. () ()	<u> </u>
		6-3-87: 0 hr						,	(B)	(1.R)	(111911)	(MBIII)	(3.0.)
	_			•			77.0	0.27	0.72		\$0.05 50.05		
		6-3-87; 0.5 hr				•	0.17	0.16	0.28	•	50.05		
	_	6-3-87- 1 hr							,,,		20.0		
)	•	•		5	0.13	2 5		~0.0 5	•	
		6-8-87; 0 hr	•				-0.	90.0	0.12		50.05	,	
		6-8-87; 0.5 hr	٠	,			6.0	90.0	0.08		80.0		'
_		G 0 07: 1 hr								٠	3		

Table 3-17. Outfall 003 Water and Sediment Data - 1992 RI.

		Specific				ပိ	Concentration (ug/l)	(l/Bn		77/20
Sample	ЬН	Conductance (µmhos)	Temperature (°F)	Aroclor- 1016	Aroclor- 1221	Aroclor- 1232	Aroclor- 1242	Aroclor- 1248	Aroclor- 1254	Aroclor- 1260
Outfall Water 8/13/92 14:30				0.5 U	1.0 U	0.5 U	0.5 U	1.2.JN	0.5 U	0.5 U
Oufall Water 8/13/92 14:30 Blind Duplicate	6.93	1,168	64	0.5 U	1.0 U	0.5 U	0.5 U	1.8 J	0.5 U	0.5 U
Outfall Water 8/13/92 15:00	6.98	1,106	62.5	0.5 U	1.0 U	0.5 U	0.5 U	8.	0.5 U	0.5 U
Outfall Water 8/13/92 15:30	7.47	477	62.4	0.5 U	1.0 U	0.5 U	0.5 U	0.5.0	0.5 U	0.5 U
Outfall Water 8/13/92 16:30	7.22	345	61.3	0.5 U	1.0 U	U 5.0	U 5.0	0.5 U	0.5 U	0.5 U
Outfall Sediment				0.043 mg/kg U	0.086 mg/kg U	0.043 mg/kg U	0.043 mg/kg U	0.18 mg/kg	0.043 mg/kg U	0.043 ma/kg U
Equipment Blank	7.11	23	65.5	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

ᄀᄀ롱

Not detected at the indicated quantitation limit.
Detected results are estimated.
Detected results are presumptively present at an approximated quantity.

Table 3-18. 1996 NYSDEC Sampling VOC Surface Water Data (detected constituents).

Constituent	NYSDEC AWQS Class C	L21	L23
1,2-Dichloroethene (total)	_	1 J	2 J
Notes: Concentrations in ug/l. AWQS Ambient water quality standard.			

Table 3-19. 1996 NYSDEC Sampling SVOC Surface Water Data (detected constituents)

<u></u>	NYSDEC		
	AWQS		
Constituent	Class C	L21	L23
bis(2-Ethylhexyl)phthalate	0.6	10 U	1 J
TICs			,
unknown		-	2 J
Notes:		·	
Concentrations in ug/l.			
AWQS Ambient water quality standard.			

Table 3-20. 1996 NYSDEC Sampling - Inorganic Surface Water Data (detected constituents)

	NYSDEC		.=	***	
	AWQS				
Sonstituent	Class C	L21		L23	
Aluminum	100	264	*	166	В
Antimony	-	0.7	Ų	2.7	U
Arsenic	190	1.5	U	1.5	U
Barium	-	81.9	• В	88.7	В
Beryllium	*	0.2	U	0.2	Ū
Cadmium	**	0.2	U	0.2	В
Calcium	-	166000		196000	_
Chromium	**	1.6	В	2.8	В
Cobalt	5	1.4	U	1.4	Ū
Copper	**	9.8	В	6.7	В
Iron	300	582		595	
Lead	**	3.6		2.7	В
Magnesium	-	25700		29200	_
Manganese	-	129		139	
Mercury	0.2***	0.1	U	0.1	L
Nickel	**	5.6	В	7.2	В
Potassium	-	9380	E	9760	E
Selenium	1	1.4	Ū	1.4	ū
Silver	0.1	0.4	Ū	1.2	В
Sodium	-	263000		271000	В
Thallium	8	2.5	В	1.9	Ū
Vanadium	14	1.6	Ū	1.6	Ŭ
Zinc	30	41.2	-	37.9	Ū
Cyanide	5.2	10	U	10	U

Notes:

Concentrations in ug/l.

WQS Ambient water quality standard.

¹¹ ug/L when hardness is less than or equal to 75ppm; 1,100 ug/L when hardness is greater than 75 ppm.

^{**} Hardness dependent.

^{***} Guidance value.

Page 1 of 2

Table 3-21. 1996 NYSDEC sampling - PCB s	1, 1996	NYSL	ZEC (samp	- Buil	PCB :	sedim	ent d	ata (de	tected a	constitue	ents).														
	[1		2		[2]		4		L5		-19		-17		8		L9 A		L10B	Γ	1118	\lceil	L12C		L-13	
Aroclor 1016	90	×	26	5	84	×	46	×	73	×	64	×	5	×	21	×	20	×	46	×	41	×	38	×	42	þ
Aroclor 1242	260		26	⊃	38	ဌ	32	7	4100	Ω	6300	۵	25000	Ω	6	7	630		720		21	7	520		42	⊃
Aroclor 1254	360 JP	맠	26 U		84	⊃	84	7	1800	P	2100	DPJ.	2000	믁	19	7	470	7	260	7	4	>	590	<u>ط</u>	20	7
Aroclor 1260	9/	₫	26	26 U	84	>	စ္က	7	580		640		780	무	35	7	130		280		4	>	95		19	_
Sum of detected Aroclors	756				122		192		6553		9104		27820		124		1280		1606		62		1243		39	

Concentrations in ug/kg.
NYSDEC sediment criteria for PCBs

(based on average TOC concentration): 0.0321 for human health bioaccumulation

773.45 for benthic aquatic life chronic toxicity 110,639 for benthic aquatic life acute toxicity

56.11 for wildlife bioaccumulation D - Analyzed at a secondary dilution factor. J - Estimated value.

P - > 25% difference between both GC columns.

U - Compound analyzed but not detected. X - AR1016 potentially present, in AR1242 result.

2
-
0
2
Φ
0
æ
Φ

Tabl	Table 3-21. 1996 NYSDEC sampling - PCB sediment	96 NY	SDEC	3 sam	pling	- PCB	sedim	_0	tata (de	tected	ed constitu	ents).													
Constituent	1	14	L15	2	L16		L17		L18		L19		22	 -	L22	L24		125		L26		127	Γ	128	1
Aroclor 1016	4	4	J 4C	0	40	h	43	þ	40	þ	45	š	44	UX 5	× 9	49	×	61	×	52	×	50		50	!
Aroclor 1242	4	4	ر 4	<u>ر</u>	4	⊃	43	⊃	40	⊃	72	Δ.	71	19	1900 D	97		98		99		20	. –	200	. –
Aroclor 1254	4	4	74	⊃	6	⊃	43	⊃	40)	230		220	20	2000 D		_	180		96		. 6	_	13	Δ.
Aroclor 1260	4	4 1	ے 4	⊃	6)	43	⊃	16	_	9		120	ã	50 J	37	_	83		4	_	88	_	. 5	
Sum of detected Aroclors	4.5								. 91		402		411	48	4816	36	~	422		255		138		23	

(C)
a)

Concentrations in ug/kg.

NYSDEC sediment criteria for PCBs
(based on average TOC concentration):
0.0321 for human health bioaccumulation

110,639 for benthic aquatic life acute toxicity

773.45 for benthic aquatic life chronic toxicity

56.11 for wildlife bioaccumulation D - Analyzed at a secondary dilution factor.

J - Estimated value.

P - > 25% difference between both GC columns.

U - Compound analyzed but not detected.

X - AR1016 potentially present, in AR1242 result.

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\T3-18-25.WB2

	ıχΝ	NYSDEC Sediment Criteria	nent Crite	<u>.</u>																	
Constituent	(1)	(2)	(3)	€	ב		L2RE		ច		4	_	L5	97		L7RE	ш	8		L9A	_
I,2-Dichloroethene (total)			١.		20	b	13	∍	25		4		2 0	17		12	ľ	16	P	15	Γ
2-Butanone			,		8	⊃	19	_	25	· _	4	∞ ⊃	2	65		7	7	16	⊃	15	_
Acetone		•		ı	37		19	_	25	-	4	ĕ	2	190	0	44		16	⊃	0	
Carbon Disulfide	•	1		•	5	_	19	-	25		4	_	0	5	_	12		O	-		•
Chlorobenzene		1386.60	140.26	•	20	⊃	6	_	22	· _	4	7	2	1		•		16		. 12	_
Ethylbenzene	•	•	,	•	20	_	19	_					2 U	17		12		16) =	, () =
Methylene Chforide			1		4	图	4	7		粤	ო		9 :				7	. 2	9	4	•
Fetrachloroethene	32.06				20	-	6	⊃	25		4		22 U	17	⊃	Ì	⊃	16		. 15	
Toluene	•		•		20	⊃	19	_			4		2 . U	17			\supset	16	\supset	5	
Frichloroethene	80.15		•		20	⊃	19	-			4	0	2 U	17			\supset	16			
Vinyl Chloride	2.81	1	•		20	_	19	_									\supset	16		(5	<i>-</i>
Xylene (total)	,			,	20	⊃	19	⊃	42		9	7.	2 U	17		12	\supset	16	⊐	5	· _
Fotal Detected VOCs					51		4		80	٠,	20	4	90	27.	۲,	57		14		30	1
IIOs																				•	
Acenapthene (carryover)	,			ı			ı			٠.,		' N	_	•		1		,		•	
Benzo[b]thiophene	•	r	•	•			,				ω,	, R	_			•		•		•	
Cyclotetrasiloxane, octamethyl-				,			,					7	Z Z	1 48	ş	7	S	١		σ	Z
Methyl-benzothiophene			,	,	,		,				00	_	_	•		•		,		•	i
Methyl-napthalene isomer (carryover)			,				,			4	490	7	40 J	1		1		10	Z,	٠	
tetramethyl-cyclohexane isomer(s)			,		•							٠		•		1		· •	;	•	
unknown alkane(s)	1	•	•	,			,					m	39	99	7	17	7	٠		•	
unknown cyclic	,	•	•	,								•		1		•		•		•	
unknown hydrocarbon		1	•		,		,					•		•		ı		'		•	
unknown(s)		ı			91	_	,			-		•		1		ı		12	7	10	7
Tetrahydro-naphthalene isomer				,	28	_	1		,			,		١		•		'		¦ :	ı

NYSDEC sediment criterion calculated based on average TOC concentration.

Human health bioaccumulation criterion
 Benthic aquatic life acute toxicity criterion
 Benthic aquatic life chronic toxicity criterion
 Wildlife bioaccumulation criterion
 Concentrations in ug/kg.

B - Also identified in associated blank.

J - Estimated value.

JN - Presumptive present at an approximate quantity.

U - Compound analyzed but not detected.

Table 3-22. 1996 NYSDEC Sampling - VOC Sediment Data (detected constituents)	1996 N	'SDEC Sar	npling - V	SC Se	dimen	t Data	(detec	sted oc	nstituer	ıts).		:									
	NYS	NYSDEC Sediment Criteria	ent Criter	<u>.e</u>																	İ
Constituent	(1)	(2)	(9)	<u>4</u>	L10B	_	L11B	ì	-12CRE	L13C	ပ	L14		L15		L16		L17		L 18	
1,2-Dichloroethene (total)		,		١.	14		13		12 U	5	P	13	þ	12	þ	12	þ	5		3	=
2-Butanone	,				4	⊐	5	_	12 N	5	_	13	⊃	7	9	ω	9	5	⊃	12) <u> </u>
Acetone		•		•	7		13	· _	12 N	5	_	5	岛	4	粤	63	Ω	്ന	8	. 7	<u> </u>
Carbon Disulfide					4	⊃	ന	_	12 O	۵	7	13	>	က	7	ო	7	5	_	~	¦ ¬
Chlorobenzene		1386.60	140.26	1	4	_	13	` _	12 O	13		13		12)	12	_	2	-	. 2	. =
Ethylbenzene		,		,	4	_	13	· _	12 U	13	_	13	⊃	12	-	15	· –	5	· _	1 2	· =
Methylene Chloride	,		t	,	ന	4	4	粤	2 J	ന	9	7	띡	7	띡	7	9	7	<u> </u>	٦.	<u>"</u>
Tetrachloroethene	32.06	,		ı	4	_	5	_	12 O	5	_	3	_	12	⊃	12	\supset	13	_	7	! ⊐
Toluene	,	•			4	_	5	_	12 O	5	_	5)	12	⊃	12	\supset	7	_	12	· ⊃
Trichloroethene	80.15			t	4	_	13	` _	12 U	5	_	13)	12)	12	\supset	-	7	12	
Vinyl Chloride	2.81	•	,		4	_	5	_	12 U	13	\supset	5	⊃	12	_	12	\supset	5	· –	12	· =
Xylene (total)		,		1	4	_	4	`	12 U	13	\supset	<u>.</u>	\neg	12	¬	12	\supset	6	=	5	=
Total Detected VOCs					24		=		2	Ξ		7		7		92		33)	ص !)
TICs																		3		•	
Acenapthene (carryover)	•		ı		,					•		٠		,				•			
Benzo[b]thiophene	ı		ı	,			ı			•		٠		,				•			
Cyclotetrasiloxane, octamethyl-	,									•		•		,		,				1	
Methyl-benzothiophene		•			,					•		•		•		,		,		,	
Methyl-napthalene isomer (carryover)	•		•		48	_	9	_		1		ı		•				,		,	
tetramethyl-cyclohexane isomer(s)	•	•	,				,			٠		1		,		,		•		•	
unknown alkane(s)	1			ı			1			ı		•		•		,				•	
unknown cyclic	ı		,				,			•		•		•		•		-1			
unknown hydrocarbon							,			•		•		7	_	,1		t		t	
unknown(s)	•	,					1			•		•		•				·		1	
Tetrahydro-naphthalene isomer			1	,			1			1		ı				•				1	

NYSDEC sediment criterion calculated based on average TOC concentration.

(1) Human health bioaccumulation criterion

(2) Benthic aquatic life acute toxicity criterion (3) Benthic aquatic life chronic toxicity criterion (4) Wildlife bioaccumulation criterion Concentrations in ug/kg.

B - Also identified in associated blank.

J - Estimated value.

	S Z Z	YSDEC Sediment Criteria	nent Criter	<u>.</u>																
Constituent	(1)	(2)	(3)	_ €	L19		L20		L22		L24		L25	_	L26	_	L27RE		128	
1,2-Dichloroethene (total)		-		,	4	-	2	-	17	Þ	15	þ	18	Ļ	4		15	þ	15	þ
2-Butanone	ı		,	•	7	⊃	13	⊃	17	⊃	5	⊃	18	⊃	4	_	12	_	7	8
Acetone	•		•	1	2	막	7	É	33		5	⊃	37		4	_	37		1	8
Carbon Disulfide	•	1	•	,	4	⊃	13	⊃	6	_	5	\supset	48	_	2	_	-	-	<u>ر</u>	=
Chlorobenzene	1	1386.60	140.26	•	4	⊃	13	⊃	17	_	5	_	18	_	14		. 10	· =	? m	, –
Ethylbenzene	•			•	4	⊃	13	⊃	17	⊃	5	_	18	_	4	_	12	_	5	-
Methylene Chloride	ı		1	•	9	땀	ო	9	က		S	98	က	巴	4	<u> </u>	5) _	. 4	9
Tetrachloroethene	32.06	ı	•	r	7	_	13	⊃	17	⊃	ო	_	9	_	4	⊃	15	-	5	_
Toluene	ı	,	,	•	4	⊃	27		17	⊃	5	_	18	_	4	_	5	_	15	_
Trichloroethene	80.15	•			7	_	7	7	17	⊃	5	_	18	_	4	_	15	_	5	_
Vinyl Chloride	2.81		•		7	_	13	⊃	17)	5	_	18	_	4	_	15)	15	\supset
Xylene (total)		ı	•	t	4	⊃	13	⊃	17	⊃	15	_	18	_	4	_	15	⊃	5	_
Total Detected VOCs					8		36		45		œ		4		9		9		۶.)
TICs																	;		}	
Acenapthene (carryover)	ı	•	1	,															,	
Benzo[b]thiophene				,	ı		1				,		ı		,				,	
Cyclotetrasiloxane, octamethyl-				1	,		,		22	ş			9	3	58	z	,		,	
Methyl-benzothiophene	1	,							1		,						1			
Methyl-napthalene isomer (carryover)	į	٠.	1	,					1				,				1			
tetramethyl-cyclohexane isomer(s)	ı	•			•				99	_							99	_		
unknown alkane(s)	ı	,		•	1				280	_			=	_	,		98	_	t	
unknown cyclic	•	1	•	ı			ı		4	_	1						25	7		
unknown hydrocarbon			•		,		,		•		,						,			
unknown(s)		1	•	,	,				21	7	1		19	_	,		101	_		
Tetrahydro-nanhthalene isomer																				

NYSDEC sediment criterion calculated based on average TOC concentration.

Human health bioaccumulation criterion
 Benthic aquatic life acute toxicity criterion
 Benthic aquatic life chronic toxicity criterion
 Wildlife bioaccumulation criterion
 Concentrations in ug/kg.
 Also identified in associated blank.
 Estimated value.

JN - Presumptive present at an approximate quantity.

AU - Compound analyzed but not detected.

Solution of the control of the

_:
d constituents
(detecte
SVOC sediment data
1996 NYSDEC sampling - S
Table 3-23.

	2	VADEC 6	NYSOEC Sediment Crists	200	dimens have	1207	20000	The same									-								1
Constituent	Έ	9	(3)	€	7		7		23		4	-	10	<u>c</u>		1.7		α.	_	100	-	-	-	(
12-Dichlorobenzene	,	4809	480.90		3100	=	560	-	940	Ė	1	17.6	- -	2300	ŀ	1	ŀ	3		901-3]	2	<u> </u>	Ţ	l
1.4-Dichlorobenzene	,	4809	480.90	,	300	=	3,0	> =	840	· - =	2.5	2 2	3 5	3300	-	∯ 4	-	5 4	> :	9 4 60	• •	420	5		5 :
2.4 Dimethylohenol	,		•		3100	- =	560	=	840	· =	47.0	5 6	3 5	3300	> =	Ş	· :	2 4	> =	500	• ·	025	5.		5 :
2-Methylnanthalana		٠	,	•	330	- =	8	-	2 0	· -	2 5	; i	3	2000	> :	3	, -	2 5	:	2 5	· ·	074	2 :	_	.
4-Methylohenol	,	,	•	•	3 5	=	9	> =	240	· `	2 5	22.	3 5	3200	-	3 6	- ·	200	> :	g	· ·	620	5		-
Acenapthene	,		5610.50	•	3100	=	290	> =	840	=	170	37.5	_	40.4	9 ⊆	? ?	, -	2 6	-	9 5	` ` - c	22	2 4		.
Acenapthylene		,			250	- ≘	290	-	840	· =	170	1 45		2 5	9 =	3 5	, -	2 4	, -	9 5			2 4		.
Anthracene	•	,	•		1100	9	260		840) =	7 6	-		1400	3 =	410	,	3 5		3 5	, .		<u> </u>	_	. .
Benzo[a]anthracene	52.10	,	•		3700	۵	560	· >	92	· ¬	250	380	_	4100	} =	1300		10	•	32	,	202			ے د
Benzo[a]pyrene	52.10	,	•		3600	۵	560	5	840		250	390	_	3900	· C	1300		909		1100		, u	, .		۵ د
Benzo[b]fluoranthene	52.10	,		•	3200	٥	260	כ	840	· `	280	J 4700	000	4200	Ω	1600		520		1200	•	52	2400		ء د
Benzolg,h,ilperylene	•	,	,		2400	9	260	5	840	` ב	160	J 260		2300	9	900		420	-	200	4	22	18	_	٠ -
Benzo[k]fluoranthene	52.10		,	•	2500	号	260	>	840	 ⊃	240	J 350		3600	٥	1300		620	ı	850		55	J 26		۰ د
bis(2-Ethylhexyl)phthalate	•		7994.96	•	200	음	260	>	840	 _	100	J 27C	_	2700	9	570		510	Þ	370	_	45	1 6		
Butylbenzylphthafate			•		3100	>	560	⊃	840	` >	170	J76 U		3200	_	400	כ	510	>	460	. >	170	19		. –
Carbazole			•		3100	∍	280	5	840	` =	170	U 49		510	9	180	٦,	28	-	250	. 4	120			
Chrysene	52.10	,	•		3200	٥	260	כ	840	.,	330	J 530		2000	۵	1700		640		1400	,	2	: E		ے د
Di-n-octylphthalate	1	1	٠	٠	3100	>	260	5	840	7	170	J76 U		3200	5	400	_	510	_	460		120			\ -
Dibenzofuran	1		i		3100	>	260	>	840	٠ ت	170	U 370		3200	>	74	7	510	· >	8	. 4	120	. 6		
Dibenz[a,h]anthracene	•	,	•		3100	_	260	>	840	٠ ت	170	U 370		3200	⊃	400	_	83	, –	460	. 4	120	. 6		. –
Fluoranthene		٠	40876.50	•	7200	۵	260	>	110	7	570	840		8200	٥	2200		890	•••	2000	, –	6	67		
Fluorene	•	,		•	440	9	260	>	840	· _	63	₹ ₹		760	9	210	7	67	٠,	240	4	120	- 5		
Indeno[1,2,3-cd]pyrene	52.10	1	1		2400	9	260	<u> </u>	840	ر ت	2	J 270	•	2400	9	920		400	_	750	4	120	19		
Napthatene				,	320	号	260	>	840	<u> </u>	53	J 370		3200	⊃	91	_	510	_	100	4	20	19		١
Phenanthrene			4809.00		3900	۵	260	>	840	 _	06	J 420		5500	۵	1200		380	-	1600	-	30	9		. ^
Pyrene					6900	۵	280	-	94	٦ *	8	820		8300	٥	2700		1300	••	2300	-	30	28		_
Total Detected SVOCs					41910				599	က်	375	524	õ	54110		17131		6868	-	5016	9	99	348	_	
TICs																									1
Z,/-Octanedione												•											,		-
2-Pentanone, 4-hydroxy-4-methyl	•		1		34000 JND	NDAB	-14000	۲ ج	-	z		4100	DO JNDAB		JNDAB						4	4000 JN	JNAB 180	00 JNDAB	ΑB
3-Penten-2-one, 4-methyl			•		•		•		,			•		•							ဖ	-			
9,10-Anthraceneidone		,										•		•											
Acetic acid, 1,1-dimethylethyl est.					,						,			•		•							•		
dichloro biphenyl isomer(s)			ı		,						1	•		•		790	~	1					•		
dimethyl phenanthrene Isomer	,											,								,		,	•		
Hexadecanoic acid			,						1			320	몽						,	,			•		
methyl anthracene isomer					,				,		1	,							•	410	_		•		
trichloro biphenyl isomer(s)																730							'		
unknown alkane(s)		,	ı	,	3000	90	3190	_	9200	e e	3300	JB 4700	0 JDB	1100	9	1620	巴	1800	ᄪ	1188	JB 25	2500 JB			
unknown alkene(s)	1	1	•				980	_				•										,	•		
unknown ketone(s)							1890	_		•	90	•				•							•		
unknown phenotic		•			•				8	-		•		1		•						,	•		
unknown PNA			;		3900	9					,	220	9	4900	9			1						5	_
unknown(s)									99	J 12	980	B 400		4 8	-	8900	8	0670	¥ ₽		14 14	막으			_
Vitamin E				ı								420	•	1									•		
Notes:																									l
NYSDEC sediment riterion calculated based	Post Po		iteritographical	in the state of																					

NYSDEC sediment criterion calculated based on average TOC concentration.

(1) Human health bioaccumulation criterion

(2) Benthic aquatic life acute toxicity criterion

(3) Benthic aquatic life chronic toxicity criterion

(4) Wildlife bioaccumulation criterion

(5) Benthic aquatic life chronic toxicity criterion

(6) Wildlife bioaccumulation criterion

(7) Cotal unchorinated phenois 20.04 ug/kg.

(8) Concentrations in ug/kg.

(9) - TIC is a suspected aldol-condensation product.

(1) - Estimated value.

(2) - Analyzed at a secondary dilution factor.

(3) - Estimated value.

(4) - Presumptive present at an approximate quantity.

(6) - Presumptive evidence of a compound.

O'Brien & Gere Engineers, Inc. INDIV71PROJECTSW96602153515_RPTS\SRI_RPTS\T3-18-25.WB2

Table 3-23, 1996 NYSDEC sampling - SVOC sediment data (detected constituents).

oz-c aine i	2000	Vener	NYSDEC Sampling - SYCC Segment data (de	VOL SEC	וווובנוו חמנם	(חבובר	ממ בתנופו	(neuro)																	
Constituent	ξ	ו פטבר פטבר	Segiment City	tena (4)	1.13		7		4	-	é	-						:							
1 2. Dichtorobonzono		1007	(2)			ŀ		ŀ	2	<u>ٔ</u>	٩	-		E I		-13		L-20		L-22	ĺ	L-24	_	-55	
1.4 Dichemberrane	•	4004	460.90	•	97	> :	14.)	9 9	⊃ : 4	۔ و	ا ا	> -	410	⊃	420	_	450	n	28	ſ	490	5	620	L
1,4-Uknigrobenzene		4609	480.90	•	430	>	5	>	40	⊃	٠ ر	U 430	>	410	_	450	>	450	>	220	_	490	_	950	=
Z,4-Dimethylphenol	•	•	•		430	>	\$	>	40	U 4	유	U 430	<u>۔</u>	410	>	450	-	48	-	220	=	400	. =	200	, =
2-Methytnapthalene	•	•	ı		430	>	440	⊃	400	□	10	U 430	ت	410	_	450	-	1200	,	940	-	£	, -	3 5	, -
4-Methylphenol			•		430	⊃	440	-	9	U 4	10	U 430	2	410	=	120	-	545	-	9	, -	3 5	> =	9 9	, -
Acenapthene			5810.50		09	7	40	⊃	90	14	10	U 430	=	410	=	1400	,	000	,	9 6	,	7 7	- -	2 2	, .
Acenapthylene	,		. 1		29	7	04	=	5	11		1.	· =		-	,	-	3 5		200		2 5		070	,
Anthracene	,				180	-	97) =	Ę	· ÷		7 5) = -	7	> =	2 6	כ	2 6	7	3		170	_	920	
Benzofalanthracene	52 10		1		270	,	1	> =	3 5	, -	2 9	3 6	o :	2 ;	> :	3		2000		1800		310	_	906	
Dente(a)amme	2 6	•			5 7		9	> :	2 :	4	ָ פַּ	254	-	410	>) 0099	۵	3300	۵	3800	۵	990	~	200	۵
	02.10				010		440	5	5	4	g g	430	5	410	>	3200		2800	۵	4000	۵	520	~	900	۵
Benzolojiluoranihene	52.10				Q	7	4	_	130	ر و	Ģ.	J 430	-	410	⊃	2300	۵	2500	۵	3600	۵	820		100	
Benzo[g,h,i]peryfene	,		•		300	7	1	>	110	5	9	. 430	>	410	_	2800		2800		1800		980	, ,	2 6	.
Benzo[k]Iluoranthene	52.10		•		510		5	>	130	5		1 430		410	=	450	=	450	=	200	_	2 6	4 1	3 6	
bis(2-Ethylhexyl)phthalate	•		7994.98		130	-	25	_	100	5		430		410	=	330	,	25	•	255)	5 4	• •	3 6	_
Butylbenzylphthalate			1	•	430	_	440	=	400	4	_	430	=	41.5) =	9	=	3 4	=	3	=	2 5	- `	3	
Carbazole			ı	•	82	-	440	· =	2	· -		3 -	> =	2 5	> =	2 5	5	2	5	0 10	5	ng :	<u> </u>	270	_
Chrysene	52.10		,		520	,	440) =	2 2	, 4) -	2 0	7 -	> =	2 ;	> :	2 5	(1200	3 ,	25		190	_	5	
Di-n-octylobthalate					22.7	=		> :	2 9	, .		3	5 :	5 :	> :	900	_	3700	_	4300	۵	1100	Ç,	무	_
Diboantima	•				054)	94)	3	4		430	>	410	>	55	>	450	>	270	· >	490	٠ -	20	_
Concentration					430	-	440	· •	6	→	2	430	>	410	>	1200		2500		830		78	7	10	_
Dibenz[a,h]anthracene			ı		430	⊃	440	· >	90	⊃	٥	7 430	>	410	⊃	450	_	450	_	570	_	490)]	120	=
Fluoranthene			40876.50		970		79	ت	370	ъ Г	9	1 430	>	4	7	15000	۵	7900	۵	8600	-	1900	. 7		, ,
Fluorene				•	8	_	440	· >	8	7.4	0	1 430	>	410	⊃	1500		2400	1	1100	1	5	_	3 5	נ
Indeno[1,2,3-cd]pyrene	52,10	•	•		320	7	440	_ _	8	4	6	430	⊃	410	=	3000		3200		480	_	0.78	,	2 6	-
Napthalene				,	430	⊃	440	· -	400	J 41	410 U	430	_	410	=	900		2100		282	,	3 4	-	000	
Phenanthrene		,	4809.00		200		1		20,	41	١٥ -	1 430	_	410	- =	1200		7800	_	200	5	5 6	,	8 5	
Pyrene	•				920		11	_	120	. e.		430	=	410	• =	1300	ء د	0000	ء د	200	3	200	Ò,	2 5	د د
Total Detected SVOCs					8385		213		96	. 6			•	- 4	•	0000	נ	0007	•	0400	י ; ב	2000	<u> </u>	9 5	ב
TICs										1				F		200		200	•	900		27/2	2	087	
2.7-Octanedione		,	,		490	2																			
2-Pentanone 4-hydroxy 4-methyl		1	,		2	,	000	,				•				. ;	;	. ;							
3. Penten-2-one A-methyl		ı	•							0F1 4N	NA DUUE!	_	NAB NAB		SNAB	910	≨	830	¥		۲ ۲	N 007	NAB 88	8300	JNAB
9 10. Authorepoidone			,				,			•		•								•					
Application of All All and the second			•	,		9				•						280	ξ	120	z						
Acete actu, I, I-diliteui yieut.					3				1	'		•													
diction diplicately isolitei(s)					,					•		•				,									
dimemyi phenanthrene isomer			ı							٠		•										,			
Hexadecanoic acid		•	i		,			-,	•	' 목		450	Z,												÷
methyl anthracene isomer	1		•							•		٠													
trichloro biphenyl isomer(s)		•	•	•	1				1	٠		•		•											
unknown afkane(s)			•		1600	粤	4300	日	_	JB 3140	£ 0\$	Ť	9	1760	4	•			ď		<u>a</u>	1410	<u>a</u>		_
unknown alkene(s)	•													•)	,			•					2	,
unknown ketone(s)										٠		•		•								-			
unknown phenolic					,				,	•		•								ĮI.					
unknown PNA										•		٠		•		1980	-	1080	-	026	_		č	. 00	
unknown(s)			,		220	7	2190	8 8	810 J	154	0,	1610	-	1480	<u>a</u>	3	,	3	•	2 6	, -		, 6	2 8	,
Vitamin E										•			•	2	3	ı			-	3	,		ō ;		: د
																							=	•	z

NYSDEC sediment criterion calculated based on average TOC concentration.

(1) Human health bloaccumulation criterion

(2) Benthic aqualic life acute toxicity criterion

(3) Benthic aqualic life chronic toxicity criterion

(4) Midlife bioaccumulation criterion

(5) Benthic aqualic life chronic toxicity criterion

(6) Benthic aqualic life chronic toxicity criterion

(7) Introducing the phenols 20.04 ug/kg.

(8) Concentrations in ug/kg.

(9) - TIC is a suspected aldol-condensation product.

(9) - Analyzed at a secondary dilution factor.

J - Estimated value.
JN - Presumptive present at an approximate quantity.
N - Presumptive evidence of a compound.

O'Brien & Gere Engineers, Inc. I:DIVT1PROJECTSW9660215355_RPTS\SRI_RPTS\T3-18-25.WB2

	2	SDEC	NYSDEC Sediment Criteria	teria						
Constituent	εl	(2)	(3)	4	L-26		L-27		L-28	
1,2-Dichforobenzene		4809	480.90		120	7	510	Þ	510	þ
f,4-Dichlorobenzene	,	4809	480.90		530	⊃	510	⊃	510	⊃
2,4-Dimethylphenal	•		•	·	530	>	510	⊃	510	⊃
2-Methylnapthalene		,	ı	•	270	~	440	7	510	\Box
4-Methylphenol			•	٠	71	7	130	, ,	510) ⊃
Аселарthепе		,	5610.50	,	1000		2200		510	⊃
Acenapthylene		•	•	•	740		1500		510	· >
Anthracene		1		,	2800		7600	9	510)
3enzo[a]anthracene	52.10	1	1		12000	Δ	22000		6	' -
3enzo[a]pyrene	52.10		ı		12000		20000		7	-
3enzo[b]fluoranthene	52.10	•		•	11000		17000		110	, –
Зелzo[g,h,i]perylene		,	•	•	2300		200		į	• =
3enzofk/fluoranthene	52.10	,	•		9	c	5	=	} a	- כ
bis(2-Ethylhexyl)ohthalate			7994 96		1200		5 6)	3 6	, -
Butylbenzylohthalate	,		}		230		2400	•	5 4	· :
Carbazole		,	,		25	,	2400		2 6	:
Threene	52.40		ı	,	200	6	2 6		2 5	> -
in octdobiholoto	3		•		200	_	77000		ñ	7
Discognizione				•	250	5	510	>	110	¬ :
Shoreful an			1		₹,		1200		210	0
Abenz[B,n]anunacene		ı	•		230	-	210		210	>
Inoranmene		•	40876.50		23000	۵	45000	۵	190	7
Fluorene			1		1500		2700		510	>
ndeno[1,2,3-cd]pyrene	52.10		J	•	200	7	700		510	>
Napthalene					420	¬	220		510	⊃
Phenanthrene	•	1	4809,00	,	16000	۵	29000	۵	120	_
Pyrene					23000	۵	40000		150	7
Fotal Detected SVOCs					*****		25220		1332	
TICs										
2,7-Octanedione		,	•	,						
2-Pentanone, 4-hydroxy-4-methyl		,			7600	JNAB	1000	ž	15000	NAB
3-Penten-2-one, 4-methyl		,	1				,		920	¥8
9,10-Anthraceneidone			•						,	
Acetic acld, 1,1-dimethylethyl est.			•		•					
dichloro biphenyl isomer(s)			1		•		•			
dimethyl phenanthrene isomer			•		8	7			1	
Hexadecanoic acid									1	
methyl anthracene isomer	1									
inchloro biphenyl isomer(s)				1					•	
unknown alkane(s)					,		340	-	3090	粤
unknown alkene(s)				,					٠	
unknown ketone(s)			,							
unknown phenotic			•	1						
unknown PNA					3070	-	1580	_		
unknown(s)	,				1200	7	1100	_	1960	-
								,		:

Notes:

NYSDEC sediment criterion calculated based on average TOC concentration.

(1) Human health bioaccumulation criterion

(2) Benthic aquatic life acute toxicity criterion

(3) Benthic aquatic life acute toxicity criterion

(3) Benthic aquatic life chronic toxicity criterion

(4) Midlife bioaccumulation criterion

(4) Whillie bioaccumulation criterion

(4) Whillie bioaccumulation criterion

(5) Consentrations in ugfra.

(6) Concentrations in ugfra.

(7) Concentrations in ugfra.

(8) Concentrations in ugfra.

(9) Concentrations in associated blank.

(1) Concentrations in associated blank.

(1) Concentrations in associated blank.

(1) Concentrations in associated blank.

(1) Concentrations in associated blank.

(1) Concentrations in associated blank.

(2) Concentrations in ugfra.

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\#986\\\Z1535\SER\RPTS\\T3-18-25.\\\B2

O'Brien & Gere Engineers, Inc. INDIV71/PROJECTSW986\\2153515_RPTS\\SRI_RPTS\13-16-25.WB2

lad	16 5-24, 1990 N	TSUEL SE	Table 3-24, 1990 NTSDEC Sampling - morganic segiment data	earment a	313 (Ge	(derected constituents)	Stituents					.											
	Sedime	NYSUEC Sediment Criteria	Background NYS Soil Concs.																!				l
Constituent	(1)	(2)		11		L2		F3		L 4		53		ဖျ	_	۲.	2	_	5	⋖	L1	~	
Aluminum			1000 - 25000	2700	ŧ	2160		0400	2	590	*				ŀ	. 01.	915	, S	55	ļ			ı
Antimony	7	52		0.99	3	0.92	5		BN 0	_	z		Na		BN 1		BN 0.8			NO I		_	
Arsenic	ထ	33	3 - 12	1.7	ш	0.51		1.1	•	4.4				5.5	60	7	5,5						
Barium	1	•	15 - 600	90.4		85.3		137	2	5.8		10	g)	5.6	Š	7.6	47.				547	œ	
Beryllium	•		ND - 1.75	0.26	B	0.14		0.51	В		В		0		В.	26 E	9.0	8				α	
Cadmium	9.0	σ	0.21	5.7		90.0		0.1		5.4		2.3	•••	4	_	.7	0.3			1 B		<u> </u>	
Calcinm	•		130 - 35000	204000		231000		100	42		_			300	30	200	112			8	3510	0	
Chromium	26	110	1.5 - 40	51.6		3,3					w					13	16.	7		_	20.6		
Cobalt	•		2.5 - 60	2,3	Ф	4.																	
Copper	16	110	13	53,4	ż	3.1									, *N		N* 28.			ž		ž	
lron	20000	40000	17500 - 25000	8350	*	2860			٠		•		*								·		
Lead	31	110	17	44.3		0.94					,			22	86	6.	29.	_	29				
Magnesium	•	•	2500 - 6000	4580		5670					•		•	400	8	5	510	0	933		•		
Manganese	460	1100	20 - 5000	351		428								29	=	99	18(_	2	6			
Mercury	0.15	5.	0.042 - 0.066	0.17	z	0.07					BN 0			.2 N		12 N		1 BN					
Nickel	9	22	0.5 - 25	9.8	œ	3.8	`. m	17.4	9	13.2		41.7	2	54.1	ĕ	36.2	13.6		<u>6</u>	_	13.6		
Potassium	•		8500 - 43000	495	œ	675				1 85	8 2					35 E	204	0	133	9	707	60	
Selenium	•		<0.1 - 0.125	0.51	⊃	0.47				39	0									2 U	0.39	⊃	
Silver	-	2.2		1.4	8	0.14				1.7	m			.2 B						8	0.5	œ	
Sodium	•	•	9000 - 8000	4160		3770				43	6											œ	
Thallium	1	1	•	0.7	>	0.64					0											⊃	
Vanadium	•	•	11 - 119	۲-	œ	3.9				2.8	m											60	
Zinc	120	270	37 - 60	172	z	12.5				7.9	··				-	Z 23		Z		2		z	
Cyanide	•		•	0.92	⊃	0.85	¬			7.0	`			9	Ó							⊃	

(1) Lowest effect level(2) Severe effect level(3) From paper by E.Carol McGovern of FWS, NYSDEC.

Concentrations in mg/kg.

* - Duplicate analysis outside control limits.

E - Estimated value.

N - MS sample recov, outside control limits.

B - Value is less than CRDL but greater than IDL.

U - Analyzed but not detected.

MS: matrix spiked.

Page 2 of 3

- 0
7
0
~
بر
Q)
-
ပ
Q)
*=
Q)
~
~=
œ
*=
œ
~
_
•
•
កា
~
-
:=:
70
ō
×
S
*
.=
ē
=
œ
ä
70a
orga
orga
70a
orga
- inorga
- inorga
a - inoraa
- inorga
lina - inoraa
lina - inoraa
olina - inoraa
olina - inoraa
molina - inoraa
olina - inoraa
molina - inoraa
sampling - inorga
C sampling - inorga
C sampling - inorga
EC sampling - inorga
EC sampling - inorga
DEC sampling - inorga
EC sampling - inorga
DEC sampling - inorga
DEC sampling - inorga
DEC sampling - inorga
DEC sampling - inorga
DEC sampling - inorga
6 NYSDEC sampling - inorga
NYSDEC sampling - inorga
6 NYSDEC sampling - inorga
6 NYSDEC sampling - inorga

	IN T	NISDEC	æ																		
Constituent	Sedim (1)	sediment Criteria (1) (2)	Soll Concs.	1118		1120		13		14		1.		16		7		5		-	
Aluminum	,		1000 - 25000	10300	*	5770		2820		3340		3700		3070		13200		7130	l	10600	1
Antimony	8	52	•	0.68	3	0.62	<u>8</u>	0.69	S	0.72	<u>s</u>	0.65	S	0.77		0.7	S	0.66	Z	0.74	5
Arsenic	9	33	3 - 12	4.9		2.4		7	В	13.5	*	2.9	*	10.4		19.1	*	14.6	*	4	*
Barium	•		15 - 600	7.07		22		11.2	8	18.2	8	36.7	8	28.1		133		29.1	æ	109	
Beryllium	٠		ND - 1.75	0.53	œ	0.32	8	0.19	8	0.3	8	0.2	8	0.16	•	0.87	œ	0.44	ω	0.57	α
Cadmium	9.0	0	0.21	0.28	œ	0.25	8	0.27	8	0.26	8	0.24	ω	0.15		0.05	⊃	0.05)	0.47	0
Calcium	1		130 - 35000	57500		105000		26800		32900		50100		17500		90009		62600		160000	1
Chromium	26	110	1.5 - 40	16.5		10.9		9.9		6.7	ž	7.6	ž	6.5		21.7	ż	14.2	ž	23.5	ž
Cobalt	•	1	2.5 - 60	8.2	ш	4 .9	6	ო	ω	4.6	ф	4.2	8	4.7		14.3		12.5		7.8	8
Copper	16		13	22.8	ž	14.6	ž	9.5	ž	14.4		12.3	*	9.7		25.6	*	20.6	*	57.5	.*
lion	20000	40000	17500 - 25000	17200	*	11300	*	7920	*	16400		12800	*	11900		34600	*	15900	*	23600	*
read .	31	110	17	6.9		7		7.8		6.5	* N	27.7	М	6.8		15.8	N	5.2	¥ N	40,3	П
Magnesium	•		2500 - 6000	22300		23600		7320		12000	*	16900	*	4700		26500	*	22300	*	19100	
Manganese	460	1100	20 - 2000	404		296		151		187	ž	341	ž	121		414	ż	368	ž	474	ž
Mercury	0.15	<u>1</u> 3	0.042 - 0.066	0.05	3	0.05	S	90.0	S	0.07	<u>*</u>	90.0	≛	90.0		90.0	5	90.0	5	0.09	· å
Nickel	16	20	0.5 - 25	17.8		11.2		5.9	0	8.2	BEN*	6.8	BEN*	6.2	BEN	33.8	* N W	17.3	* N	22.6	Ž
Potassium	•		8500 - 43000	2810		1650		673	8	1070	BE	1130	BE	693		3900	ш	2670	ш	4270	Ш
Selenium	•	•	<0.1 - 0.125	0.35	⊃	0.32	⊃	0.36	⊃	0.37	⊃	0.34	>	0.34		0.36	_	0.34	⊃	0.38	>
Silver	-	2.2	•	0.1	⊃	0.09	>	0.1	⊋	0.31	8	0.25	8	0.19		0.38	8	0.21	•	0.55	•
Sodium	•	•	9000 - 8000	404	ω	381	8	152	83	187	BE	322	BE	128		549	BE	381	BE	539	BE
Thallium	•			0.48	>	0.44	⊃	0.49	_	0.57	Ф	0.46	⊃	0.47		0.88	8	0.47	-	0.52	⊃
Vanadium	1	ı	11 - 119	24.5		14.3		7.9	8	11.4	*a	თ	å	8.2		25.3	*	1	*	27.6	*
Zinc	120	270	37 - 60	47.2	z	40.2	z	38.6	z	40.9	ů	54.4	ш	48.3		77.4	ů	39.2	ťш	117	ш
Cyanide	•	1	•	0.63	>	0.58	⊃	0.64	⊃	99'0	⊃	0.61	>	0.61		0.65	_	0.61	=	88.0	=

Notes:
(1) Lowest effect level
(2) Severe effect level
(3) From paper by E. Carol McGovern of FWS, NYSDEC.
Concentrations in mg/kg.
* - Duplicate analysis outside control limits.
E - Estimated value.

N - MS sample recov. outside control limits.
B - Value is less than CRDL but greater than IDL.
U - Analyzed but not detected.
MS: matrix spiked.

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\\\\21535\subseteq \text{RPTS\\\\S\T3-18-25.WB2

Page 3 of 3

	-
	•
	7
	1
	•
	-
	4
	1
	ě
	C
	c
	c
	7
	- 2
	-2
	ē
	- 3
	2
	7
	_`
	٠,
	•
	ō
	÷
	ζ
	•
	č
	Q
	Š
	٠.
	÷
	3
	ğ
	ú
	S
	-
	6
	q
	È
	t
	-
	ç
	Ě
i	
1	
1	
	3-24 1006 AIVODEC compliant in
	3-24 1006 AIVODEC compliant in
	3-24 1006 AIVODEC compliant in
	his 3-24 1006 AIVONED compliant in
	3-24 1006 AIVODEC compliant in
	his 3-24 1006 AIVONED compliant in

) H	Rackorping NYO														
		1															
	Sediment	t Criteria	Soil Concs.														
Constituent		(2)	(3)	120		1.22		L 24		125		L26		127		128	
Aluminum		1	1000 - 25000	6920		13100	*	4470	*	6860	*	5270	*	3530	ŀ	25900	
Antimony		52		0.72	3	3.3	BN.	18.7	ž	-	Š	0.85	Š	0.82	Š	0.82	Z
Arsenic		33	3 - 12	4.6	*	10.3	*	6.8	*	9	*	3,8	*	3.6	*	4.9	*
Barium		1	15 - 600	76.5		127		5		81.8		316		196		197	
Beryllium			ND - 1,75	0.32	œ	0.65	60	0.27	8	0.38	œ	0.32	Œ	0 24	α	1.	α
Cadminm	9.0	a	0.21	0.62	8	6.0		0.89	Θ	2.1		1.2	- ш)	0.11	о сс
Calcium		1	130 - 35000	107000		72000		23000		85600		143000		193000		85400	1
Chromium		19	1.5 - 40	17.9	ž	42.2		13.1		41.6		27.2		20,5		38.9	ž
Cobalt			2.5 - 60	7.9	മ	7.2	В	7.3	ш	6.9	ш	6.1	60	3.8	Ф	15.8	
Copper		110	1 3	88.6	*	423	ž	118	ž	197	ž	42	ž	52.4	ž	28.8	*
Iron		40000	17500 - 25000	12000	*	16400	*	25800	*	15000	*	11300	*	10100	*	36100	*
Lead		110	17	42.2	ž Ш	429	*	1170	*	153	*	77.3	*	134	*	1.1	ž H
Magnesium			2500 - 6000	15300	*	11700		4160		14200		18600		18600		17300	*
Мапдалеѕе		1100	20 - 5000	413	ž	423	*	268	*	387	*	307	*	254	*	882	ž
Mercury		1.3	0.042 - 0.066	0.08	*	0.19		0.11	ω	0.19		0.12	8	0.1	80	0.08	å
Nickel		20	0.5 - 25	চ	ŧ N∃	38.6		19.9		37.3		18.2		14.8		35	¥ W
Potassium	•	•	8500 - 43000	1330	B E	1780		583	8	1060	ш	1470	8	1380	8	8430	ш
Selenium	•		<0.1 - 0.125	0.37	>	τ-	œ	2.2		0.52	>	9.0	æ	0.44	60	0.43	=
Silver	-	2.2	•	1.2	6	9.3		0.59	8	2.2	8	0.13	8	0.17	_	0.34	· co
Sodium	•		0008 - 0009	311	띪	356	8	233	80	206	6	409	8	495	6	1000	H
Thallium		•		0.51	>	0.65	>	0.58	>	0.71	⊃	9.0	>	0.58	⊃	0.73	8
Vanadium	1	r	11 - 119	12.6	å	26.5		18.2		22		28.2		9		50.3	
Zinc	120	270	37 - 60	151	ů	781	ů.	155	т.	383		811	ů	208	ťш	78.7	Ľц
Cyanide	•		1	0.67	>	0.86	>	0.74	>	0.93	=	0.79	=	0.76	=	0.78	=

(1) Lowest effect level
(2) Severe effect level
(3) From paper by E.Carol McGovern of FWS, NYSDEC.
Concentrations in mg/kg.
* - Duplicate analysis outside control limits.
E - Estimated value.

N - MS sample recov. outside control limits.
B - Value is less than CRDL but greater than IDL.
U - Analyzed but not detected.
MS: matrix spiked.

Table 3-25.	1996 NYSDEC Sampling - TOC Sediment Data
I UDIC U-LU.	- 1990 N 13DEC Sampling - 100 Segiment Dara

	Company 100 Counton Buta
Sample Location	TOC Value
2	84500
L-11B	32000
L-16	15100
L-22	28700

Notes:

Concentrations in mg/kg.

I avic 3-20A Former IFG Facility	Syracuse, NY	Surface Water Data Summary	Detected Method 8021 Volatile Organic Compound Data
-------------------------------------	--------------	----------------------------	---

	NYS Water Quality Std Class B (3/98) ug/L	GM99-SW6 10/15/99 ug/L
Compound		
Trichloroethene	40	5
cis-1,2-Dichloroethene	NC	4
RACE		

Date Printed: 04/14/00 09:49:26 DBF File: N:\024721535\TEMPDATA.DBF FXP File: N:\024721535\TABLEPR.FXP

NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.

--- - not detected, J - estimated, N - tentatively identified.

File Number: 3247,21535

1 of 1

Page

RACER0060710

NOTES:

Former IFG Facility Table 3-26B Syracuse, NY

Detected Method 8260 Volatile Organic Compound Data Surface Water Data Summary

	NYS Water Quality Std Class B (3/98) ug/L	GM98-SW1 11/16/98 ug/L	GM98-SW2 11/16/98 ug/L	GM98-SW3 11/16/98 ug/L	GM98-SW4 11/16/98 ug/L	GM98-SW6 11/17/98 ug/L	GM98-SW7 11/17/98 ug/L	GM99-SW1 10/14/99 ug/L
Compound								
Acetone	NC				1	2.5	3.1	
Methylene chloride	200	-		1	1	1	2.3	1
Trichloroethene	40	+	1.5	1.5	1.5	12		1.1
Viryl chloride	NC	ı						110
cis-1,2-Dichloroethene	NC	1.5	2.5	2.5	1,	5 J	4.3	160

NOTES: --- not detected, J - estimated, N - tentatively identified.

NOTES: --- not detected, J - estimated, N - tentatively identified.

NOTES: --- not detected, J - estimated, N - tentatively identified.

NC - no criteria, 🛘 - exceeds the NYS Water Quality Standard, * - hardness dependent.

Date Printed: 04/14/00 09:49:33
DBF File: N:424721535/TEMPDATA.DBF
FXP File: N:424721535/TABLEPR.FXP

File Number: 3247.21535

1 of 2

Former IFG Facility Tabre 3-26B Syracuse, NY

Detected Method 8260 Volatile Organic Compound Data Surface Water Data Summary

	NYS Water Quality Std Class B (3/98) ug/L	GM99-SW6 10/15/99 ug/L
Compound		
Acetone Methylene chloride Trichloroethene	NC 200 40	11 0.43 4.1
Vinyl chloride cis-1,2-Dichloroethene	NC NC	0.2.1 3.1

--- - not detected, J - estimated, N - tentatively identified.

NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.

File Number, 3247.21535

2 of 2

Page

Date Printed: 04/14/00 09:49:33
DBF File: N:024721535/TEMPDATA.DBF
FXP File: N:024721535/TABLEPR.FXP

RACER0060712

NOTES:

Surface Water Data Summary Former IFG Facility Syracuse, NY **Table 3-27**

Detected Method 8270 Semivolatile Organic Compound Data

		NYS Water Quality Std Class B (3/98) ug/L	GM98-SW1 11/16/98 ug/L	GM98-SW2 11/16/98 ug/L	GM98-SW3 11/16/98 ug/L	GM98-SW4 11/16/98 ug/L	GM98-SW5 11/16/98 ug/L	GM98-SW6 11/17/98	GM98-SW7 11/17/98
Compound					1	1	1) lo
Di-n-octy	Di-n-octyl phthalate	NC	101	10.1	10.1	101	10 J	10 J	10.1
				1					
RACE									
XOUES: R0060713	not detected, J - estimated, N - tentatively identified. NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.	N - tentatively identifi 3 NYS Water Quality S	ied. Standard, * - hardness	dependent.					

Date Printed: 04/14/00 09:49:41
DBF File: N:024701535/TEMPDATA.DBF
FXP File: N:024701535/TABLEPR.FXP

File Number: 3247.21535

1 of 1

Detected Method 8082 PCB Data Surface Water Data Summary Former IFG Facility Syracuse, NY Taule 3-28

	-	NYS Water Quality Std Class B (3/98) ug/L	GM99-SW1 10/14/99 ue/L
	Compound		
	Aroclor 1248	0.000001	0.04 NJ
s, per 1000			
2020000			
RACER			
0060714	NOTES: not detected, J - estimated, N - tentatively identified. NC - no criteria, [] - exceeds the NYS Water Quality Stan	i, N - tentatively identifie he NYS Water Quality St	not detected, J - estimated, N - tentatively identified. NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.

Date Printed: 04/14/00 09:49:48
DBF File: N:\0247\oldsymbol{2}1538\text{TEMPDATA_DBF}
FXP File: N:\0347\oldsymbol{2}1538\text{TABLEPR_FXP}

File Number: 3247.21535

1. of 1

() Table 3-29 emer IEC Facility

Former IFG Facility Syracuse, NY

Surface Water Data Summary
Detected Method 6010/7470/9010B Metals and Cyanide Data

,	NYS Water Oneline Std.	GM98-SW1	GM98-SW2	GM98-SW3	GM98-SW4	GM98-SW5	9М8-8МО	GM98-SW7
	Class B (3/98) mg/L	11/16/98 mg/L	11/16/98 mg/L	11/16/98 mg/L	11/16/98 mg/L	11/16/98 mg/L		11/17/98 mg/L
Compound								
Aluminum	0.1	[0.129]		-				-
Antimony	NC	ı	L 8100'0	0.0015.1	0,00173	0.0023 J	0.0024.1	0.0018 J
Barium	NC	0.0661 J	1	-			1	-
Beryllium	0.011/1.1*	0,00041.J		1	1	-	1	i
Calcium	NC	139	ı	1	1	-	1	1
Сьтотіцт	NC*	0.0065 J	0.0074.1	0.0068 J	0.0076 J			0:0080
Copper	NC*	0.0030 J	0.0033 J	0.0029 J	0.0055 J	0.0016 J	0.0038 J	0.0058.1
Iron	6.3	[0:430]	l	1	1			
Lead	NC*	0.0030 J	1	1	0.0027 J	-		0.0045.1
Magnesium	NC	24.9	-	1				
Manganese	NC	0.0711	I	-	-			1
Nicke]	NC*	0.0013.1	0.0011.1	0.0010 J	191000	f	8.1	0.0023 J
Potassium	NC	2.65 J	1	1				1
Sodium	NC	102	1	1		1	ł	1
Vanadium	0.014	1	1					1
Zinc	NG	0.0138	0.0127	0,0112	0.020.0	0,0154	0.0355	0,0421
Cyanide	0.0052	i	I	,	1			

--- not detected, J - estimated, N - tentatively identified.

NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.

Date Printed: 04/14/00 09-49:56
DBF File: N/024721535/TEMPDATA.DBF
FXP File: N/024721535/TABLEPR.FXP

File Number: 3247.21535

1 of 2

Page

RACER0060715

NOTES:

Table 3-29 Former IFG Facility Syracuse, NY

Surface Water Data Summary

Detected Method 6010/7470/9010B Metals and Cyanide Data

	NYS Water Ouality Std	GM99-SW1	GM99-SW2	GM99-SW3	GM99-SW4	GM99-SW5	9WS-66MD	GM99-SW7
	Class B (3/98) mg/L	10/14/99 mg/L	10/14/99 mg/L	10/14/99 mg/L	10/15/99 mg/L	10/15/99 mg/L	10/15/99 mg/L	10/15/99 mg/L
Compound								
Aluminum	0.1	[0.809]	1					
Antimony	NC	1	1	1	-	1	1	1
Barium	NC	0.0493 J	-	1	1	1		-
Beryllium	0.011/1.1*	1		1	•	1		
Calcium	NC	76.2	ı	1	-	1	ı]
Сһготіит	NC*	1	1	-	1	1	1	
Copper	»C	0.0086 J	0.0087 J	0.0078 J	0.0045 J	0.0024 J	0.0067 J	0.0048 J
Iron	0.3	[1.19]	1	-	-	1		
Lead	NC*	0.0032 J	0.004 J	0.0023 J	0.0014 J	I	ı	-
Magnesium	NC	11.7	1	***	1	1		
Manganese	NC	0.0516	-	1	1	1	-	
Nickel	NC*	0.0076.1	0.0107.j	0.0097.1	0.0056 J	0.0018 J		1 5 10 0
Potassium	NC	2.55 J	1	-	ı	1	ı	
Sodium	NC	58.9	1	11.	1	ı	1	
Vanadium	0.014	0.0024 J	-	-	-	I	ı	-
Zinc	NC	0.0334	0.0331	0.03	0.0219	0.0125	0.0339	0.0203
Cyanide	0.0052	1	-		ı	1	0.0113	ı
							Franci	
					-			
	ATT TO A TO COLORE TO ANALYZANDO TO A TO COLORE COL	The second control of the second control of						

NOTES: --- not detected, J - estimated, N - tentatively identified.

NC - no criteria, [] - exceeds the NYS Water Quality Standard, * - hardness dependent.

Page 2 of

7

File Number: 3247,21535

Date Printed: 04/14/00 09:49:56

DBF File: N:024721535/TEMPDATA.DBF

FXP File: N:024721535/TABLEPR.FXP

Former IFG Facility Table 3-30A Syracuse, NY

Sediment Data Summary

Detected Method 8021 Volatile Organic Compound Data

	Compound Benzene Chloroform Melhylene chloride Ethylbenzene Toluene Trichloroethene Xylene (total) cis-1,2-Dichloroethene
NYS Sediment Criteria - BAL Chronic (3/98) ug/Kg	N N N N N N N N N N N N N N N N N N N
GM98-SED09-G 0.0 - 0.5 ft 11/18/1998 ug/Kg	
GM98-SED20A-G 0.0 - 0.5 ft 11/20/1998 ug/Kg	
GM98-SED20B-G 0.5 - 1.0 ft 11/20/1998 ug/Kg	2.1
GM98-SED21A-G 0.0 - 0.5 ft 11/20/1998 ug/Kg	IN 9
GM98-SED23-G 0.0 - 0.5 ft 1120/1998 ug/Kg	
GM98-SED24-G 0.0 - 0.5 ft 11/20/1998 ug/Kg	
GM98-SED26-G 0.0 - 0.5 ft 11/20/1998 ug/Kg	 2 NJ 10 NJ

oţ _ Page

File Number: 3247.21535

Date Printed: 03/20/2000 15:27:08 DBF File: N:0247/21535/TEMPDATA.DBF FXP File: N:0247/21535/TABLEPRS.FXP NOTES:

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

--- not detected, J - estimated, N - tentatively identified.

Former IFG Facility Table 3-30B Syracuse, NY

Detected Method 8260 Volatile Organic Compound Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chrotic (3/98) ug/Kg	GM98-SED01-G 0.0 - 0.5 ft 11/17/1998 ug/Kg	GM98-SED01B-G 0.5-1.0 ft 11/7/1998 ug/Kg
Compound	,		
2-Butanone (MEK) Acetone	NC NC	5J 15J	6 <i>J</i> 21:3
ONOTES: not detected, I - estimated, N - tentatively identified.	N - tentatively identifi ib sample, NC - no crite	ted. sria, [] - Exceeds NYS	Sediment Criteria.

Date Printed: 03/20/2000 15:27:12
DBF File: N:024721535/TEMPDATA.DBF
FXP File: N:024721535/TABLEPRS.FXP

File Number: 3247.21535

1 of 1

Table 3-31 Former IFG Facility Syracuse, NY

Detected Method 8270 Semivolatile Organic Compound Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98)	GM98-SED01-C 0.0 - 0.5 ft 11/17/1998	GM98-SED01B-C 0.5 - 1.0 ft 11/7/1998	GM98-SED02-C 0.0 - 0.5 ft 11/17/1998	GM98-SED03-C 0.0 - 0.5 ft 11/17/1998	GM98-SED04-C 0.0 - 0.5 ft 11/17/1998	SED05-C 5 ft 1998	GM98-SED06-C 0.0 - 0.5 ft 11/18/1998
Compound		3448	30 V 80	8V/8n	gwgn	ug/Kg	ug/Kg	ug/Kg
2,4-Dimethylphenol	NC						-	
2-Methylnaphthalene	NC	61.1	83.1	1	380.1	3500.1	810	0001
2-Methylphenol	NC				ı		- 	200
4-Methylphenol	NC			1				
Acenaphthene	140000	150 J	100 J	81 J	099	0066	1500	3100
Acenaphthylene	NC	130.1	130.1		71.1		£091	160.1
Anthracene	NC	320 Л	260 J	190 J	790	12000	1900	3900 J
Benzo(a)anthracene	NG	F0061	1400 J	920 J	2900	30000	8000 J	12000 J
Benzo[a]pyrene	NC	2000 J	1600 J	1000 J	2600 J	27000 J	7400 J	11000 J
Benzo(b)fluoranthene	NO	2800.3	2000 J	1500 J	3900 J	27000	5800 J	14000 J
Benzo(ghi)perylene	NC	2000 J	1700 J	760 J	1400 J	20000	6400	9200 J
Benzo(k)fluoranthene	NC	910.1	780 J	550 J	1700 J		3500 J	5800 J
Butyi benzyl phthalate	NC	l	-	1	-		I	-
Carbazole	NC	i	170.1	120.1	880	10000	1700	3300.1
Chrysene	NC	2100 J	1700 J	1200 J	3100	29000	8300 J	12000 I
Di-n-butyl phthalate	NC			-		1		,
Dibenzo(a,h)anthracene	NC	420 J			510 J	5900		1
Dibenzofuran	NC	81.1	78.1	1	630	8800	1500	2100
Fluoranthene	1020000	3900	1900	1900	6400	57000	17000	22000
Fluorene	NC	200.1	130.1	116	550	9400	1600	2500
Indeno(1,2,3-cd)pyrene	NC	1700 J	1500 J	650 J	1400 J	17000	5600 J	8600 J
Naphthalene	NC	57.1	80.1	1	1200	9300	1200	2700
Phenanthrene Th	120000	2000 J	1400	1000	5900	00069		22000
Phenol O	- 20	1	1	1	1		1	[79.1]
Дужепе	NC	5400	4400	2200 J	7000	68000	22000	29000
B NOTES: not detected, J - estimated, N - tentatively identifiedC - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds	N - tentatively identifi b sample, NC - no crite	led. sria, [] - Exceeds NYS	NYS Sediment Criteria.					

File Number: 3247.21535

1 of 5

Date Printed: 03/20/2000 15:27:15
DBF File: N:0247/21535/TEMPDATA.DBF
FXP File: N:0247/21535/TABLEPRS.FXP

(Tabre 3-31 Former IFG Facility Syracuse, NY

Detected Method 8270 Semivolatile Organic Compound Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98) ug/Kg	GM98-SED07A-C 0.0 - 0.5 ft 11/18/1998 ug/Kg	GM98-SED07B-C 0.5 - 1.0 ft 11/18/1998 ug/Kg	GM98-SED08-C 0.0 - 0.5 ft 11/18/1998 ug/Kg	GM98-SED09-C 0.0-0.5 ft 11/18/1998 ug/Kg	GM98-SED10-C 0.0 - 0.5 ft 11/18/1998 ug/Kg	GM98-SED11A-C 0.0 - 0.5 ft 11/18/1998 ug/Kg	GM98-SED11B-C 0.5-1.0 ft 11/18/1998 ug/Kg
Compound								
2,4-Dimethylphenol	NC	170 J	1	****		76.5		
2-Methylnaphthalene	NC	1300	180.1	270.5	100J	1200	130.1	00.1
2-Methylphenol	NC	73 J	1	ı	1	-	·	
4-Methylphenol	NC	260 J	54.J	86.1	1	140.1		-
Acenaphthene	140000	3100	620	420 J	280 J	4000 J	420 I	240.1
Acenaphthylene	NC	140 J	140.1	250.1	£06	220.3	180 3	120 I
Anthracene	NC	4400 J	930 J	1100 J	760 J	4700 J	980 J	507.
Benzo(a)anthracene	NC	13000	3500J	4400.1	2600 J	15000 J	4100.1	5005
Benzo[a]pyrene	NC	11000 J	3500 J	4900	2500 J	13000	4600 J	2000 T
Benzo(b)fluoranthene	NC	14000	4500.1	9059	2900 J	17000	F0019	3800.1
Benzo(ghi)perylene	NC	8600 J	2900 J	4900 Ј	2100 J	13000	4600 J	10001
Benzo(k)fluoranthene	NO.	4500 J	1400.1	2200	11003	6400.1	20001	1300 T
Butyl benzyl phthalate	NC	1	1	-	ı	I		
Carbazole	NC	3200 J	640.1	650.1	370 J	4000 J	470.1	230.1
Chrysene	NC	12000	3800 J	4300 J	2600 J	16000 J	4900 T	3300 1
Di-n-butyl phthalate	NC	ł	1		-			6000
Dibenzo(a,h)anthracene	NC	2700 J	1	1500 J	760 J	4400	1	830 I
Dibenzofuran	NG	2400	3001	420.1	210.3	2900.1	250.1	130 T
Fluoranthene ·	1020000	23000	6700	4600 J	4200 J	30000	7800	4200 J
Fluorene	NC	2600	460.1	590 J	330.3	3400 J	490 J	310.1
Indeno(1,2,3-cd)pyrene	NC	8200 J	2850 J	4300	2000 J	12000	3900 J	2800 J
Naphthalene	NG	2300	280.1	430.7	200.1	2800	140.1	83.1
Phenanthrene	120000	26000	4900 Л	5700	3100 J	32000	4900 J	2900 J
Whenol O	50	[r66]	ì	1	1	[863]	1	
Tyrene	NC	32000	9400	13000	6100 J	36000 J	13000	6600 J
9NOTES: not detected, J - estimated, N - tentatively identified C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds	l, N - tentatively identif ab sample, NC - no crit	fied. eria, [] - Exceeds NYS	NYS Sediment Criteria.					
)								_

File Number: 3247.21535

2 of 5

() Tavie 3-31 Former IFG Facility Syracuse, NY

Detected Method 8270 Semivolatile Organic Compound Data Sediment Data Summary

)				
	NYS Sediment Criteria - BAL Chronic (3/98) ug/Kg	GM98-SED12-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED13-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED14-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED15-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED16-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED17-C 0.0 - 0.5 ft 11/19/1998	GM98-SED18A-C 0.0 - 0.5 ft 11/19/1998
Compound								9
2,4-Dimethylphenol	NC							
2-Methylnaphthalene	NC	130.1	1101	1001	. 000	1	1	-
2-Methylphenoi	SZ		,	F 071	f.071	180.1	170.1	1
4-Methylnbanol					-	-	ł	1
	ž	1	1	I	1	65.1	1	-
Acenaphthene	140000	460 J	270 J	260 J	420 J	610	630	-
Acenaphthylene	SC	1	1103	54.1	120.1	1061	130.1	l
Anthracene	NC	710	540	430 J	1100	1300 F	1300 I	
Benzo(a)anthracene	NC	3400J	2800 J	17001	49001	5005	1300.1	-
Benzo[a]pyrene	NC	3500 J	3000 J	1600 [5100 T	5,007,5	4700.1	1021
Benzo(b)fluoranthene	NC	5700 J	4500.1	2300.1	31003	3600 J	4/00 J	210 J
Benzo(ghi)perylene	Ç	3000 -	1 0000	50057	74003	\$0003	6600 J	290 J
Barrellyflinerathans		2000 j	7/00]	1600 J	4500 J	4200 J	4000 J	140 J
) L	F0061	1400 J	730 J	2700 J	3000.1	2400 J	99 J
Butyl benzyl phthalate	NC NC		1		610 J	350 J	1	
Carbazole	NC	400.1	360 J	300.1	560	790.1	860.1	
Chrysene	SC	3900 J	3200 J	1900 J	5700 J	6300 I	5200 I	7010
Di-n-butyl phthalate	NC	1	-	I				210.7
Dibenzo(a,h)anthracene	NC	850 J	750 J	450 I	1300 T	1300 I	100C1	
Dibenzofuran	NC	2001	150.1	1801	250.1	400.1	1200.)	-
Fluoranthene	1020000	5200	4100	2900	9400	7500	177	, , , ,
Fluorene	NG	410.1	270.1	270.1	2017	000	7200	1065
Indeno(1,2,3-cd)pyrene	NC	2500 J	2400 1	1300 T	4000 1	3000 F	2,00	
Naphthatene	NC	140.1		150.1	140.1		3600 J	130 J
Phenanthrene	120000	3700	2800	2500	2100	3300		1
Phenol	50		000	2007	0010	/300	7300	210 J
D.Pyrene	NC	11000 J	8300 J	 4900 J	 14000 J	18000 T		. 007
B NOTES: not detected, J - estimated, N - tentatively identified C - composite sample, -G - grab sample, NC - no criteria. II - Exceeds	, N - tentatively identif ab sample, NC - no crit	ied. eria. II - Exceeds NVS	NYS Sediment Criteria				:	6024
1_			comment criteria.					

Date Printed: 03/20/2000 15:27:15
DBF File: N/0247/21535/TEMPDATA_DBF
FXP File: N/0247/21535/TABLEPRS.FXP

File Number: 3247.21535

3 of 5

Former IFG Facility Syracuse, NY () Table 3-31

Sediment Data Summary

Detected Method 8270 Semivolatile Organic Compound Data

					_			
	NYS Sediment Criteria - BAL Chronic (3/98) ug/Kg	GM98-SED19-C 0.0 - 0.5 ft 11/19/1998 ug/Kg	GM98-SED20A-C 0.0 - 0.5 ft 11/20/1998 ug/Kg	GM98-SED20B-C 0.5 - 1.0 ft 11/20/1998 ug/Kg	GM98-SED21A-C 0.0 - 0.5 ft 11/20/1998 ug/Kg	GM98-SED21B-C 0.5 - 1.0 ft 11/20/1998 ug/Kg	GM98-SED22-C 0.0 - 0.5 ft 11/20/1998 ug/Kg	GM98-SED23-C 0.0 - 0.5 N 11/20/1998 ug/Kg
Compound			-		•			
2,4-Dimethylphenol	NC							
2-Methylnaphthalene	NC	59.1	5500	580	-		-	1 20
2-Methylphenol	NC			-	1	1	-	. 1
4-Methylphenol	NC	1	450.1	.48 J	ı		-	1 65
Acenaphthene	140000	170 J	21000	1900	55 J	61.1	1	3,50 I
Acenaphiliylene	NC	f86		130 J		· -	1	150.1
Anthracene	NC	660 J	25000	3700 J	110 J	89 J	1	930 J
Benzo(a)anthracene	NC	2700 J	f 00009	0096	570.1	340.J		3600 J
Benzo[a]pyrene	NC	2400 J	50000 J	7600 J	670 J	330 J	-	3500 J
Benzo(b)fluoranthene	.NC	3200 J	£ 00099	11000.1	11001	470.1	1	4800.1
Benzo(ghi)perylene	NC	2000 J	36000 J	5600 J	570 J	220 J		2200 1
Benzo(k)fluoranthene	. NC	1200.1	20000.1	3700.1	370 J	190.1	1	1500 T
Butyl benzyl phthalate	NC			****	I		-	
Carbazole	NC	1061	200003	3800 J	93.1	1	-	340.1
Chrysene	NC (2700 J	59000 J	10000	800 J	380 J	1	4100 J
Di-n-butyl phthalate	NC				. 1	1	45.3	
Dibenzo(a,h)anthracene	NC	570 J	11000 J	1900 J	160 J	1		760 J
Dibenzofuran	NC	120.1	14000	1900	-	-	-	200 J
Fluoranthene	1020000	4300	130000	26000	1200	810		7200
Fluorene	NO.	330 J	18000	2300	70 J	513	1	490
Indeno(1,2,3-cd)pyrene	NC	1700 J	34000 J	5500 J	510	300 J		2100 J
Naphthalene	NC	68.7	10000	1100	1	-		98.1
Phenanthrene	120000	3500	[130000]	27000	760	490	-	4400
Phenol	50	1		1	1		1	
DP yrene	NC	7100 J	130000 J	23000	1600 J	1100 J	-	8400 J
NOTES: not detected, J - estimated, N - tentatively identified.	I. N - tentatively identi	fied.						
	ab sample, NC - no cri	iteria, [] - Exceeds NYS	S Sediment Criteria.					

Date Printed: 03/20/2000 15:27:15
DBF File: N:02472.153 SYTEMPDATA. DBF
FXP File: N:02472.153 SYTABLEPRS. FXP

File Number: 3247.21535

4 of 5

Former IFG Facility Syracuse, NY Sediment Data Summary Detected Method 8270 Semivolatile Organic Commonnd Data
--

-	NYS Sediment Criteria - BAI	GM98-SED24-C	GM98-SED25-C	GM98-SED26-C
	Chronic (3/98)	0.0 - 0.5 ft 11/20/1998 ug/Kg	0.0 - 0.5 ft 11/20/1998 ug/Kg	0.0 - 0.5 ft 11/20/1998 ug/Kg
Сотроила				
2,4-Dimethylphenol	NC			
2-Methylnaphthatene	NC	150.3	63.1	410.1
2-Methylphenol	NC	-	-	-
4-Methylphenol	NC	1503		1
Acenaphthene	140000	500	310 J	1900
Acenaphthylene	NG	230.1	1	68.3
Anthracene	NC	1100 J	520	2700
Benzo(a)authracene	NC	5500 J	1600.1	7500.1
Benzo[a]pyrene	NC	5600 J	1400 J	6800 J
Benzo(b)fluoranthene		£ 006£	2100 J	9100.3
Benzo(ghi)perylene	NC	4900 J	1100 J	4800 J
Benzo(k)fluoranthene	NG S	2700.1	660 J	3100.7
Butyl benzyl phthalate	NC	ı	220 J	
Carbazole	NG	710.1	400 J	2300.3
Chrysene	NC	6300 J	1700 J	8100 J
Di-n-butyl phthalate	NC	1	1	
Dibenzo(a,h)anthracene	NC	1300 J	160 J	1400 J
Dibenzofuran	NC	320 J	190.1	1300
Fluoranthene	1020000	11000	2900	15000
Fluorene	NC	009	260 J	1800
Indeno(1,2,3-cd)pyrene	NC	4300 J	74 J	4500 J
Naphthalene	NC	190.1	1001	930
Phenanthrene	120000	6800	2800	17000
Phenol	50	[71.1]	1	-
mPyrene prese	NC	15000 J	4500 J	20000
NOTES: not detected, J - estimated, N - tentatively identifiedC - composite sample, -G - grab sample, NC - no criteria, - Exceeds NYS Sediment Criteria.	N - tentatively identifut b sample, NC - no crite	ed. ria, [] - Exceeds NYS	Sediment Criteria.	

Page

5 of 5

File Number: 3247.21535

Date Printed: 03/20/2000 15:27:15
DBF File: N/3247/21535/TEM/DBATA.DBF
EXP File: N/3247/21535/TABLEPRS.FXP

() Tabie 3-32 Former IFG Facility Syracuse, NY

Detected Method 8082 PCB Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98) mg/Kg	GM98-SED01-C 0.0 - 0.5 N 11/17/1998 mg/Kg	GM98-SED01B-C 0.5 - 1.0 ft 11/7/1998 mg/Kg	GM98-SED02-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED03-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED04-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED05-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED06-C 0.0 - 0.5 ft 11/18/1998 mg/Kg
Compound		;						
Aroclor 1248 Aroclor 1254	19.3	14	17	0.72	0.15	0.61	1.5	1.3
Aroclor 1260	19.3	1	1	L	0.041	1 1	1 1	036
_RACES								
NOTES: not detected, J - estimated, N - tentatively identifiedC - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds	N - tentatively identif ib sample, NC - no crit	ed. eria, 🛚 - Exceeds NYS	NYS Sediment Criteria.					

File Number: 3247.21535

Page 1 of 5

Sediment Data Summary Former IFG Facility Syracuse, NY Table 3-32

Detected Method 8082 PCB Data

	NYS Sediment Criteria - BAL Chronic (3/98) mg/Kg	GM98-SED07A-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED07B-C 0.5 - 1.0 ft 11/18/1998 mg/Kg	GM98-SED08-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED09-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED10-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED11A-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED11B-C 0.5 - 1.0 ft 11/18/1998
Сотроинд								0
Aroclor 1248	19.3	1.8	7.9	[25]	0.43	62.0	8-1	4.4
	19.3	1	ļ	. !	1) 1	₹ 1	ti l
Aroclor 1260	193	0.35	1	1	0.15	0.51	0.33	1
	68							

--- not detected, J - estimated, N - tentatively identified. 300 NOTES:

-C - composite sample, -G · grab sample, NC · no criteria, [] · Exceeds NYS Sediment Criteria.

Ś ō ~ Page File Number: 3247.21535

Date Printed: 03/20/2000 15:27:21 DBF File: N:\0247\21535\TEMPDATA.DBF FXP File: N:\0347\21535\TABLEPRS.FXP

Tabie 3-32
Former IFG Facility

Detected Method 8082 PCB Data Syracuse, NY Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98) mg/Kg	GM98-SED12-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED13-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED14-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED15-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED16-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED17-C 0.0 - 0.5 R 11/19/1998 mg/Kg	GM98-SED19-C 0.0 - 0.5 ft 11/19/1998 mg/Kg
Compound		•						
Arachar 1954	19.3	I	5.6	0.89	0.32	0.75	0.20	1
Amelor 1260	10.3	0.32		0.45	700			0.14
	2	700	l	C+7)	V.24	0.31	0.34	1
							-	
								
NOTES: not detected, J - estimated, N - tentatively identifiedC - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.	J, N - tentatively identifrab sample, NC - no crit	īed. eria, [] - Exceeds NY!	S Sediment Criteria.					

3 of

File Number: 3247.21535

Date Printed: 03/20/2000 15:27:21 DBF File: N:0247/21535/TEMPDATA.DBF FXP File: N:0247/21535/TABLEPRS.FXP

Table 3-32 Former IFG Facility Syracuse, NY

Detected Method 8082 PCB Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98) mg/Kg	GM98-SED20A-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED20B-C 0.5 - 1.0 ft 11/20/1998 mg/Kg	GM98-SED21A-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED21B-C 0.5 - 1.0 ft 11/20/1998 mg/Kg	GM98-SED22-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED23-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED24-C 0.0 - 0.5 ft 11/20/1998 mg/Kg
Сотроипа								
		0.16	0.066		0.031	-	0.061	860.0
		Ī	1	1	1	ı	1	1
Aroclor 1260	19.3	0.27	0.067	0.045	0.079	0.093	0.025	0.063
			•					
RACEF								

300 NOTES: 060728

--- not detected, J - estimated, N - tentatively identified.
-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

4 of 5 Page

File Number: 3247,21535

Date Printed: 03/20/2000 15:27:21 DBF File: N/U24721535/TEMPDATA DBF FXP File: N/U24721535/TABLEPRS.FXP

Table 3-32
Former IFG Facility
Syracuse, NY

Sediment Data Summary Detected Method 8082 PCB Data

	NYS Sediment Criteria - BAL Chronic (3/98) mg/Kg	GM98-SED25-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED26-C 0.0 - 0.5 R 11/20/1998 mg/Kg	
Compound				
Aroclor 1248 Aroclor 1254 Aroclor 1260	93 93		 13	
RACES				

--- - not detected, J - estimated,. N - tentatively identified.

: NOTES: 60729

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Date Printed: 03/20/2000 15:27:21
DBF File: N/324721535/TEMPDATA.DBF
FXP File: N/324721535/TABLEPRS.FXP

File Number: 3247.21535

5 of 5

Former IFG Facility () Table 3-33

Detected Method 0010/ /4/0/9010B/9014 Metals and Cyanide Data

	NYS Sediment Criteria - LEL (3/98) mg/Kg	GM98-SED01-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED01B-C 0.5 - 1.0 ft 11/17/1998 mg/Kg	GM98-SED02-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED03-C 0.0 - 0.5 ft 11/17/1988 mg/Kg	GM98-SED04-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED05-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED06-C 0.0 - 0.5 ft 11/18/1998 mg/Kg
Compound								
Aluminum	NC	4790	7210			4444		-
Antimony	2	0.27.3	0.39.1	0.23 J		0.17.1	0.20.1	0.28.1
Arsenic	9	4.4	[6.4]	4.9	[6.7]	3.4	4.2	[6.2.1
Barium	NC	55,4	63.7	- Tank		•	! !	[]
Beryllium	NC	0.26 J	0.39 J	-	1	1	-	1
Cadmium	9.0	[12.1]	[141]		-	1	1	1
Calcium	NC	31300	23300	ļ		1	1	ı
Chromium	26	[992]	[153]	23.9	11.4	12.5	22.9	130,41
Cobalt	NC NC	3.9 J	5.5 J	-	-	I		. 1
Copper	NC	.69.7	128	31.1	29.3	14.6	35.1	54.9
Iron	200000	11400	16300	1	-	1	1	-
Lead	31	[78.43]	[[60.5 J]	24.1	[36.6]	12.4	[40.3]	[66.4.]
Magnesium	NC	6940	6610	1		-	· .	, 1
Manganese	460	167	190	1	1	1	1	
Nickel	16	[31.8]	[57.9]	15.1	7.9	7.2	12.3	15.4
Potassium	NC	423 J	903	-	1	1		
Selenium	NC	0.62 J	0.93	0.56 J	0.83	0.45 J	0.49 J	1.1
Silver	1	0.49.]	[1.4.1]	1	1	-	-	
Sodium	NC	226	261	1			-	-
Vanadium	NC	12.9	17.6	ŀ	1	1		1
Zinc	120	119	[146]	87.5	59.6	69.6	[133]	[223]
Cyanide	NC	T	1	1	1	1	. 1	. 81
Þ								
۵۵								
= 6								

--- - not detected, J - estimated, N - tentatively identified. 006073

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

File Number: 3247.21535

'n I of

Page

Date Printed: 03/20/2000 15:27:25
DBF File: N:0247/21535/TEMPDATA DBF
FXP File: N:0247/21535/TABLEPRS.FXP

() Tadre 3-33

Sediment Data Summary Detected Method 6010/7470/9010B/9014 Metals and Cyanide Data

	NYS Sediment Criteria - LEL (3/98) mg/Kg	GM98-SED07A-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED07B-C 0.5 - 1.0 ft 11/18/1998 mg/Kg	GM98-SED08-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED09-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED10-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED11A-C 0.0-0.5 ft 11/18/1998 mg/Kg	GM98-SED11B-C 0.5 - 1.0 ft 11/18/1998 mg/Kg
Compound							ì	
Aluminum	NC							
Antimony	2	0.42 J	0.31.7	1050	161'0	0.55 J	0.35.5	0.461
Arsenic		5.7	4.9	(7.01	2.2	5.2	5.7	1.07
Barium	NC	-	***				· 1	0.0
Beryllium	NC	1	-	I	1	-		
Cadmium	0.6	1		1	1	1		
Calcium	NC	1	-	1	1	ı	1	
Chromium	26	[26.6.]	[75.1]	[108]	17.5	25.0	[36.1]	 [56.6.]
Cobalt	NC	-	-	1	-	-	7	
Соррет	NC	46.3	60.7	109	14.7	50.1	71.5	70.4
Iron	200000		-	1		i		.
Lead	31	[55,7]	[72.4]	[172]	17.0	[61.01		1361
Magnesium		ı		-	-		·	
Manganese	460		1	1	1	1	ī	
Nickel	16	14.3	[28.6]	[44.0]	6.5 J	11.9	[19.1]	[21.7]
Potassium	NC	1	1	-	-	-		,
Selenium		0.60 J	0.60 J	1.2	1	0.82 J	0.79 J	0.70 J
Silver		-	1	1	-	1	1	
Sodium		-	1	***	1	1	-	
Vanadium	NC	1	1	1	-	1		1
	120	[174]	[143]	[247]	67.1	[390]	[228]	[200]
Cyanide	NC	1	-		1	·	, ,	
				Additional contrated was a visit of a substantial				

--- - not detected, J - estimated, N - tentatively identified. NOTES:

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Date Printed: 03/20/2000 15:27:25 DBF File: N/324721535/TEMPDATA_DBF FXP File: N/324721535/TABLEPRS.FXP

File Number: 3247.21535

Jo d

Former IFG Facility () Table 3-33 Syracuse, NY

Sediment Data Summary

		Detected Method 6010/7470/9010B/9014 Metals and Cyanide Data	6010/7470/9010В	//9014 Metals and	d Cyanide Data			
	NYS Sediment Criteria - LEL (3/98) mg/Kg	GM98-SED12-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED13-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED14-C 0.0 - 0.3 ft 11/19/1998 mg/Kg	GM98-SED15-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED16-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED17-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED18A-C 0.0 - 0.5 ft 11/19/1998 mg/Kg
Compound								,
Aluminum	NC							
Antimony	2	0.49.1	0.33.1	-	0.24.5	0.31	0.23 J	
Arsenic	9	4.2	4.5	5.2	3.5) R	43	
Ватит	NC	1	-	-	: 1	î I	3 1	₄
Beryllium	NC		-	1	I	1		
Cadmium	9.0			į	-			I
Calcium	NC	***	1	I	i	I	1	
Chromium	26	20.7	[31.5]	681	20.2		73.1	13 5 7
Cobalt	NC		I		1		,	
Copper	NC	47.6	. 62.1	29.8	48.9	35.4	. .	701
Iron	200000		1	I	1		7.50	9.0
Lead	31	[42.5]	[67.5]	26.9	[42.91		[543]	
Magnesium	NC		-	1				}
Manganese	460	1	1	***	1	1	I	
Nickel	16	11.1	15.8	[19.1]	12.2	8.4	10.8	11.2
Potassium	NC	1		1		-		-
Selenium	NC	0.85	0.54 J	0.54 J	0.52 J	1	0.58 J	041
Silver	1	1	1-1-			1		•
Sodium	NC			I	ı	1		-
Vanadium	NC	1	-		1	1	-	
Zinc	120	[146]	[163]	85.8	[147]	[122]	109	44.0
Cyanide	NG	1	. 1	1		[]	<u> </u>	î I
R.A								
√ CEF								

--- - not detected, J - estimated, N - tentatively identified. :: NOTES: R0060733

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Date Printed: 03/20/2000 15:27:25 DBF File: N:\0247\overline{OBF File: N:\0347\overline{OBF File: N:\0

3 Page

\$ ō

File Number: 3247.21535

Tabie 3-33 Former IFG Facility Syracuse, NY

Detected Method 6010/7470/9010B/9014 Metals and Cyanide Data Sediment Data Summary

	NYS Sediment Criteria - LEL (3/98) mg/Kg	GM98-SED18B-C 0.5 - 1.0 ft 11/19/1998 mg/Kg	GM98-SED19-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED20A-C 0.0 - 0.5 fl 11/20/1998 mg/Kg	GM98-SED20B-C 0.5-1.0 ft 11/20/1998 mg/Kg	GM98-SED21A-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED21B-C 0.5 - 1.0 ft 11/20/1998 mg/Kg	GM98-SED22-C 0.0 - 0.5 ft 11/20/1998 mg/Kg/
Compound							1	
Aluminum	NC							
Antimony	2			-	0,18.3	0.23.1		I
Arsenic	9	2.3	3	5.9	[11.3]	4.7	[83]	[12.7.]
Barium	NC				, , ,		[[,::,]
Beryllium	NC		-	1	ı	1	-	
Cadmium	9.0			1	1			I
Calcium	NC	1	-	ı	1	I	-	
Спотит		833	7.6.1	17.1.1	12.1.3	691	8.3.1	100
Cobalt	NC		1	1	ı) 	
Copper	NC	6.7	14.7	22.1	34.1	26.1	13.7	
Iron	200000			1		1		
Lead	31	2.5	10.6	21.7	17.8	1.6	2.01	70
Magnesium	NC			1		1		<u> </u>
Manganese	460	1	1	-	1	-		1
Nickel	16	7.8	4.5 J	11.5	13.0	-		751
Potassium	NC	1	-		1	1	-	0.51
Selenium	NC	0.45 J	43 J	0.41 J	0.39 J	ı	0.34 J	-
Silver	1	1	1	***	1	ı		
Sodium	NC	-		1			1	1
Vahadium	NC	1	1		-	1	•	
Zinc	120	35.4	50.9	91.4	53.3	47.2	40.4	9.09
Cyanide	NC	1	1	1	1	1	ı	
₽#								
CFF.								
NOTES: not detected, J - estimated, N - tentatively identified	I, N - tentatively identi	fied.						
	ab sample, NC - no cri	teria, [] - Exceeds NYS	S Sediment Criteria.					

Date Printed: 03/20/2000 15:27:25 DBF File: N:0247/21535/TEMPDATA DBF FXP File: N:0247/21535/TABLEPRS.FXP

File Number: 3247.21535

4 of 5

Former IFG Facility Syracuse, NY **Table 3-33**

Sediment Data Summary

Detected Method 6010/7470/9010B/9014 Metals and Cyanide Data

	NYS Sediment Criteria - LEL (3/98) mg/Kg	GM98-SED23-C 0.0 - 0.5 N 11/20/1998 mg/Kg	GM98-SED24-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED25-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED26-C 0.0 - 0.5 ft 11/20/1998 mg/Kg
Compound		i			
Aluminum	NC				
Antimony	2	0.4.3	0.41.J		021J
Arsenic	9	3.7	3.4	[9.6]	[13]
Barium	NG	1	i		-
Beryllium	NC	-	1		
Cadmium	9.0	ļ	1	1	
Calcium	NC			·	
Chromium	26	14.1.3	21.23	[26,1 J]	[45.6.1]
Cobalt	NC				-
Copper	NC	29.3	55.9	28.3	79.7
Iron	200000			-	-
Lead	31	[42.9]	[57.4.]	[343]	
Magnesium	NC			·	-
Manganese	460	1			1
Nickel	16	11.4	13.2		[24]
Potassium	NG.	-	1		1
Selenium	NC	0.76	0.69 J		0.74.1
Silver		1			
Sodium	NC		1		
Vanadium	NC	1	1	-1	1
Zinc	120		[158]	98.1	[257]
Cyanide	NC	ı	1.2	ľ	_
D.*					
655					

--- - not detected, J - estimated, N - tentatively identified.

.: NOTES: 060735

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Date Printed: 03/20/2000 15:27:25
DBF File: N/024721535/TEMPDATA.DBF
FXP File: N/024721535/TABLEPRS.FXP

File Number: 3247,21535

Ś Jo Ś

Table 3-34 Former IFG Facility Syracuse, NY Sediment Data Summary Detected TOC Data

	NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED01-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED01B-C 0.5 - 1.0 ft 11/17/1998 mg/Kg	GM98-SED02-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED03-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED04-C 0.0 - 0.5 ft 11/17/1998 mg/Kg	GM98-SED05-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED06-C 0.0 - 0.5 R 11/18/1998 mg/Kg
Сомроила								
TOC	NC	34400	41000	35200	38100	12700	31600	45800
								2

NOTES: ---- not detected, J - estimated, N - tentatively identified.

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Page 1 of

Ś

Sediment Data Summary Former IFG Facility **Detected TOC Data** Syracuse, NY **Table 3-34**

	NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED07A-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED07B-C 0.5 - 1.0 ft 11/18/1998 mg/Kg	GM98-SED08-C 0.0 - 0.5 R 11/18/1998 пg/Kg	GM98-SED09-C 0.0 - 0.5 R 11/18/1998 пв/Кg	GM98-SED10-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED11A-C 0.0 - 0.5 ft 11/18/1998 mg/Kg	GM98-SED11B-C 0.5 - 1.0 ft 11/18/1998 mg/Kg
Compound TOC	NC	34700	34200	64500	0029	\$0000 I		0000
				20212	0710	r poner	04400	007/0
				,				

--- - not detected, J - estimated, N - tentatively identified.

.; NOTES: 060738

-C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.

Jo d Page

Ś

File Number: 3247,21535

Date Printed: 03/20/2000 15:27:29
DBF File: N/324721535/TEMPDATA.DBF
FXP File: N/324721535/TABLEPRS.FXP

Sediment Data Summary Former IFG Facility **Table 3-34** Syracuse, NY

Detected TOC Data

		NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED12-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED13-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED14-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED15-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED16-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED17-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED18A-C 0.0 - 0.5 ft 11/19/1998 mg/Kg
Сотроинд								,))
TOC		NC	27900	28100	37500	29500	61100	41000	14800
-									
RACER									
0060739	not detected, J - estimated, N - tentatively identifiedC - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.	.d, N - tentatively identif grab sample, NC - no crit	fied. eria, [] - Exceeds NYS	Sediment Criteria.					

3 of

40

File Number: 3247.21535

Page

Date Printed: 03/20/2000 15:27:29
DBF File: N/324721535/TEMPDATA DBF
FXP File: N/324721535/TABLEPRS.FXP

Sediment Data Summary Former IFG Facility Syracuse, NY **Table 3-34**

	Č
	GM08. CED21A.C
	GM08_CED20B_C
OC Data	GM08-SEDJ0A-C GM08-SEDJ0R-C CM08-SEDJ1A O SEDJ0A-C
Detected TOC Dats	GM98-SED18B-C GM98-SED19-C
	GM98-SED18B-C
	NYS Sediment

	NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED18B-C 0.5 - 1.0 ft 11/19/1998 mg/Kg	GM98-SED19-C 0.0 - 0.5 ft 11/19/1998 mg/Kg	GM98-SED20A-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED20B-C 0.5 - 1.0 ft 11/20/1998 mg/Kg	GM98-SED21A-C 0.0 - 0.5 fl 11/20/1998 mg/Kg	GM98-SED21B-C 0.5 - 1.0 ft 11/20/1998 mg/Kg	GM98-SED22-C 0.0 - 0.5 ft 11/20/1998 mg/Kg
Compound								
TOĆ	NC	13700	16800	22700	20500	25400 J	11100	26800
				•				
					,	ļ		
		-						
RACI								
NOTES: not detected, J - estimated, N - tentatively identified. C - composite sample, -G - grab sample, NC - no criteria, [] - Exceeds NYS Sediment Criteria.	, N - tentatively identi ab sample, NC - no cri	fied. teria, [] - Exceeds NYS	Sediment Criteria.					

4 of 5 Page

Tabie 3-34
Former IFG Facility
Syracuse, NY
Sediment Data Summary
Detected TOC Data

	NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED23-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED24-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED25-C 0.0 - 0.5 ft 11/20/1998 mg/Kg	GM98-SED26-C 0.0 - 0.5 ft 11/20/1998 mg/Kg
Сотроипд					
TOC	NC	35600	37900	33900	42400
R A CEI					
NOTES: not detected, J - estimated, N - tentatively identified	1, N - tentatively identifrab sample, NC - no crit	ied. eria, [] - Exceeds NYS	S Sediment Criteria.		

Page 5 of 5

File Number: 3247.21535

Date Printed: 03/20/2000 15:27:29
DBF File: N:0247/21535/TEMPDATA.DBF
FXP File: N:0247/21535/TABLEPRS.FXP

Table 3-35
Former IFG Facility
Syracuse, NY

Sediment Data Summary

Detected Method 8290 Dioxin and Furan Data

	NYS Sediment Criteria - BAL Chronic (3/98)	GM98-SED01 0.0 - 0.5 ft 11/17/1998	GM98-SED01B 0.5 - 1.0 ft 11/17/1998	GM98-SED07A 0.0 - 0.5 ft 11/18/1998	GM98-SED11A 0.0 - 0.5 ft 11/18/1998	GM98-SED11B 0.5 - 1.0 ft 11/18/1998	GM98-SED16 0.0 - 0.5 ft	GM98-SED17 0.0 - 0.5 ft
Compound	mg/kg	ng/Kg	ng/Kg	ng/Kg	ng/Kg	ng/Kg	ng/Kg	ng/Kg
2,3,7,8-Tetrachlorodibenzo-p-dioxin	NC	3.93	3.83	13.3	6.04	4.68	2.58	209
2,3,7,8-Tetrachlorodibenzofuran	NC	16.5	20.3	13.5.1	18.2	2.8	12.2.5	33.7
1,2,3,7,8-Pentachlorodibenzofuran	NC	6.10	6.46	8.06	13.4	19.9	5.42	25.7
1.2,3,7,8-Pentachlorodibenzo-p-dioxin	NC	96'9	6.03	23.8	11.8	13.8	5.6	11.2
2,3,4,7,8-Pentachlorodibenzofuran	NC	19.9	27.1	10.9	14	22.2	8.54	25.9
1,2,3,4,7,8-Hexachlorodibenzofuran	NC	691	24.1	14.3	22.7.1	33.6.1	10.6.1	40.2.1
1,2,3,6,7,8-Hexachlorodibenzofuran	NC	7.43	10.1	8.09	14.6 J	20.2 J	1	22.4 J
1.2,3,4,7,8-Hexachlorodibenzo-p-dioxin	NC			6.37	6.92.1	10.1 J	1	6.64 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	NC	16.1	16.7	33.7	29.8 J	40.1 J	10.5 J	29.5 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	NO	15.8	16	48	28.9 J	35.9 J	12.1	24.5.1
2,3,4,6,7,8-Hexachlorodibenzofuran	NC	5.12	6.63	7.37	10.6 J	15.6 J	1	17.8 J
1,2.3,4,6,7,8-Heptachlorodibenzofuran	OZ.	54	679	80.2	131.1	193.1	49.5 J	162.1
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	NC	212	216	381	444 J	676 J	167 J	575 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran	NC	9.53	12.2	12.4	18.8.1	34.8.3	7.64.3	3191
Octachlorodibenzo-p-dioxin	NC	1870	1900	3050	2950	5680	1860 J	4220
Octachlorodibenzofuran	Ç	149	183	206	324.1	468 J	141.1	413.1
Total Tetra-Dioxins	NC	20.9	23.6	73.2	42.2	44.8	20.2	52.2
Total Penta-Dioxins	S.C	27.7	27.1	140	62.4	76.2	24.2	66.2
Total Hexa-Dioxins	NC	187	172	999	355 J	432 J	143 J	326 J
Total Hepta-Dioxins	NO	491	499	879	F016	1330 J	370.1	1250.1
Total Tetra-Furans	NC	352	427	172	260	403	127	394
Total Penta-Furans	NC.	165	203	103	151	250	76.9	237
Uotal Hexa-Furans	NC	104	133	134	214 J	320 J	78.3 J	288 J
Stotal Hepta-Furans	NC	170		214	350.1	571.1	127.1	479.1
C NOTES: — not detected, I - estimated, N - tentatively identified. C - composite sample, -G - grab sample, NC - no criteria. II - Exceeds	 N - tentatively iden rab sample, NC - no c 	tified. riteria. R - Exceeds NY	NYS Sediment Criteria					
0								

Date Printed: 03/20/2000 15:27/42
DBF File: N/3247/21535/TEMPDATA.DBF
FXP File: N/3247/21535/TABLEPRS.FXP

Page 1 of 2

Table 3-35 Former IFG Facility Syracuse, NY

Detected Method 8290 Dioxin and Furan Data Sediment Data Summary

	NYS Sediment Criteria - BAL Chronic (3/98) mg/kg	GM98-SED18A 0.0 - 0.5 ft 11/19/1998 ng/Kg	GM98-SED19 0.0 - 0.5 ft 11/19/1998 ng/Kg	GM98-SED20A 0.0 - 0.5 ft 11/20/1998 ng/Kg	GM98-SED20B 0.5 - 1.0 ft 11/20/1998 ng/Kg
Сотроила					
2,3,7,8-Tetrachlorodibenzo-p-dioxin	NC		1.02	4.96	
2,3,7,8-Tetrachlorodibenzoftran	NC	0.58	3.66	1011	2.78
1,2,3,7,8-Pentachlorodibenzofuran	NC			5.76	-
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	NC	1	1	11	1
2,3,4,7,8-Pentachlorodibenzofuran	NC	1	1	6.47	
1,2,3,4,7,8-Hexachlorodibenzofuran	NC	1	1	10.61	1
1,2,3,6,7,8-Hexachlorodibenzofuran	NC	************ !	1	5.62 J	1
1,2,3,4,7,8-Hexachiorodibenzo-p-dioxin	NC	1	ı	1	1
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	NC C	1	1	21.3 J	-
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	NC	,	1	2431	-
2,3,4,6,7,8-Hexachlorodibenzofuran	NC			1	-
1,2,3,4,6,7,8-Heptachlorodibenzofuran	NC	1	16.1.3	44.5 J	8.92.1
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	NC	9.73 J	73.5 J	317 J	36.91
1,2,3,4,7,8,9-Heptachlorodibenzoftuan	NC	1	ì	7.24.1	1
Octachlorodibenzo-p-dioxin	NC	97.5 J	749 J	1770	385 J
Octachlorodibenzofuran	NC	l	40.6 J	95.5 J	23.11
Total Tetra-Dioxins	NC	***	5.39	34.8	3.99
Total Penta-Dioxins	NC	1	1	55.8	-
Total Hexa-Dioxins	NC	1	41.7 J	309 J	24.2 J
Total Hepta-Dioxins	NC	20.5 J	155.5	802 J	81.6.1
Total Tetra-Furans	NC	1.16	36.5	152	46.5 J
Total Penta-Furans	NC	1	8.28	65.8	6.74.1
Total Hexa-Furans	NC	I	17.71	76.1 J	6.39 J
Protal Hepta-Furans	NG	71	38.61	1403	20.8.1
=R 0 0					
ONOTES: not detected, J - estimated, N - tentatively identified.	 N - tentatively identified sample. NC - no cr 		NVS Sediment Oritoria		
-0 - (J	and and and and		Common Cincin		

Jo N Page

7

File Number: 3247.21535

Date Printed: 03/20/2000 15:27:42
DBF File: N/3247/21535/ITAMPDATA.DBF
FXP File: N/3247/21535/IABLEPRS.FXP

Former IFG Facility Table 3-36 Syracuse, NY

1998 Sediment Samples	8290 Dioxins and Furans Toxicity Equivalent Quotient (TEQ) Data
-----------------------	---

					,			
,	Toxicity Equivalent	GM98-SED01	GM98-SED01B	GM98-SED07A	GM98-SED11A	GM98-SEDI1B	GM98-SED16	GM98-SED17
	Factor (TEF)	0.0 - 0.5 ft. 11/17/1998 ng/Kg	0.5 - 1.0 ft. 11/17/1998 ng/Kg	0.0 - 0.5 ft. 11/18/1998 ng/Kg	0.0 - 0.5 ft. 11/18/1998 ng/Kg	0.5 - 1.0 ft. 11/18/1998 ng/Kg	0.0 - 0.5 ft. 11/19/1998 ng/Kg	0.0 - 0.5 ft. 11/19/1998 ng/Kg
Compound)
2,3,7,8-Tetrachlorodibenzo-p-dioxin	_	3.93	3.83	13.3	6.04	4.68	2.58	209
2,3,7,8-Tetrachlorodibenzofuran	0.1	1.65	2.03	135	1.82	0.28	1.22	4.17
1,2,3,7,8-Pentachlorodibenzofuran	0.05	0.31	0.32	0.4	0.67	-	0.27	1.30
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.5	3,48	3.02	11.9	5.9	6'9	2.8	671
2,3,4,7,8-Pentachlorodibenzofuran	0.5	9.95	13.55	5.45	7	11.1	477	12.05
1,2,3,4,7,8-Hexachlorodibenzofuran	0.1	69'1	2.41	143	2.27	3.36	106	4.03
1,2,3,6,7,8-Hexachlorodibenzofuran	0.1	0.74	1.01	0.81	146	2.02	 0.5	102
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.1	0.5	0.5	0.64	69:0	101	0.5	47.7
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.1	1.61	1.67	3.37	2.98	401	104	200
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.1	1.58	1.6	4.8	2.89	3.50	CO:1	2,33
2,3,4,6,7,8-Hexachlorodibenzofuran	0.1	0.51	0.66	0.74	1.06	1.56	7.7 0.5	1.79
1,2,3,7,8,9-Hexachlorodibenzofuran	0.1	0.5	0.5	0.5	0.5		0.5	0/:1
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.01	0.54	0.68	0.8	1.31	1.93	0.5	162
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	0.01	2.12	2.16	3.81	4.44	6.76	191	575
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.01	0.1	0.12	0.12	0.19	0.35	0.08	0.32
Octachlorodibenzo-p-dioxin	0.001	1.87	- 61	3.05	2.95	5.68	1.86	400
Octachlorodibenzofuran	0.001	0.15	0.18	0.21	0.32	0.47	0.14	041
Total TEQ		31.22	36.15	52.68	42.49	55.19	20,69	56.2
	**************************************					% 1000% 1700 000000000000 00 000000000 00		•

NOTES:

Date Printed: 03/20/2000 15:27:49
DBF File: N/3247/21535/TEMP.DBF
FXP File: N/3247/21535/DIOSDTEQ.FXP

File Number: 3247.21535

~ 1 of

(Tawe 3-36 Former IFG Facility Syracuse, NY

1998 Sediment Samples

		8290 Dioxins and	and Furans Toxicity Equivalent Quotient (TEQ) Data	Equivalent Quot	ient (TEQ) Data	
	Toxicity Equivalent	GM98-SED18A	GM98-SED18B	GM98-SED19	GM98-SED20A	GM98-SED20B
	Factor (TEF)	0.0 - 0.5 ft. 11/19/1998 ng/Kg	0.5 - 1.0 ft. 11/19/1998 ng/Kg	0.0 - 0.5 ft. 11/19/1998 ng/Kg	0.0 - 0.5 ft. 11/20/1998 ng/Kg	0.5 - 1.0 ft. 11/20/1998 ng/Kg
Compound						
2,3,7,8-Tetrachlorodibenzo-p-dioxin	-	-	-	1.02	4 96	
2,3,7,8-Tetrachlorodibenzofuran	0.1	90'0	0,01	0.37	1,01	0.28
1,2,3,7,8-Pentachlorodibenzofuran	0.05	0.25	0.25	0.25	0.29	0.25
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.5	2.5	2.5	2.5	5.5	2.5
2,3,4,7,8-Pentachlorodibenzofuran	0.5	2.5	2.5	2.5	3.24	2.5
1,2,3,4,7,8-Hexachlorodibenzofuran	0,1	6.5	0.5	0.5	1.06	0.5
1,2,3,6,7,8-Hexachlorodibenzofuran	0.1	0.5	0.5	0.5	0.56	0.5
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.1	0.5	0.5	0.5	0.5	0.5
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.1	0.5	0.5	0.5	2.13	0.5
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.1	0.5	0.5	0.5	2.43	0.5
2,3,4,6,7,8-Hexachlorodibenzofuran	0.1	0.5	0.5	0.5	0.5	0.5
1,2,3,7,8,9-Hexachlorodibenzofuran	0.1	0.5	0.5	0.5	0.5	0.5
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.01	0.05	0.05	0.16	0.45	0.09
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	0.01	0.1	0.05	0.74	3.17	037
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.01	0.05	0.05	0.05	0.07	0.05
Octachlorodibenzo-p-dioxin	0.001	0.1	0.01	0.75	1.77	0.39
Octachlorodibenzofuran	0.001	0.01	0.01	0.04	0.1	0.02
Total TEQ		10.11	566	11,87	28.23	10.94
						1.50 (3000) (00000) (00000) (0.000) (0.000) (0.0000) (0.0

S3. NOTES: 1060746

File Number: 3247,21535

2 of 2

<u> </u>	
S)	
9	
ď	

Fish Data - 1985 Ley Creek Sampling Program

Total Weight (g)	09	62	64	98	59	65	11	134	2,680	2,885	1,884	3,481
Lipid Weight (2)	0.25	0.26	0.85	1.1	0.40	0.10	1.6	0.07	7.3	0.17	4.8	0.24
Dry Weight (%)	25	27.4	26.0	26.5	25.1	26.0	25.6	19.4	31.2	20.9	30.9	21.7
Total PCB (ug/g)	<u><0.2</u>	₹0.3	<u><</u> 0.2	₹0.4	<0.2	₹0.3	\$	<u><0.2</u>	6.8	<0.3	3.4	1.1
Aroclor 1254 (ug/g)	I	•	t	ı	•	1	t		2.7	ı	1.2	0.53
Aroclor 1248 (ug/g)	<0.2	<u><</u> 0.3	_ <u></u> <0.2	<u><0.4</u>	<u><0.2</u>	<u><</u> 0.3	, S	<0.2	4.1	<0.3	2.2	0.55
Species	Blueqil]	Bluegill	Bluegill	Bluegill	Bluegill	Pumpkinseed	Shiners	Brown Bullhead	Carp	Carn	Carp	Carp

.,,									Wet Weight Concentration (mg/kg)	tion (mg/kg)		
	#	Length (mm)	Mass (g)	Percent Lipids	Percent Moisture	Aroclor- 1016	Aroclor- 1221	Aroclor- 1232	Aroclor- 1242	Aroclor- 1248	Aroclor- 1254	Arock 126
										<u> </u>		
	က	65	7	0.5 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	NC 98.0	0.1 U	
	20	17 - 61	10	0.1%	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1
	26	32 - 47	19	0.1 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1
-	-	95	7	0.1%	N/A	0.5 U	1.0 U	0.5 U	0.5 U	2.4	0.5 U	0.5
Pumpkinseed #2 (Edible Portion)	-	77	8.5	0.1%	N/A	0.1 U	0.2 U	0.1 U	0.1 U	1.7	0.1 U	0.1 L
Pumpkinseed #3 (Edible Portion)	-	84	9.5	0.1%	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.11.3	0.1 U	0.1 L
Golden Shiner #1 (Whole Fish)	-	186	83	0.1%	79.7 %	0.1 U	0.2 U	0.1 U	0.1 U	0.19	0.1 U	0.1 C
Golden Shiner #2 (Whole Fish)	-	96	12	0.5 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.38	0.1 U	0.1 U
	25	30 - 61	25	0.2 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.24	0.1 U	0.1 U
White Sucker #3 (Whole Fish)	τ-	120	17	0.2 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.82	0.1 U	0.23 J

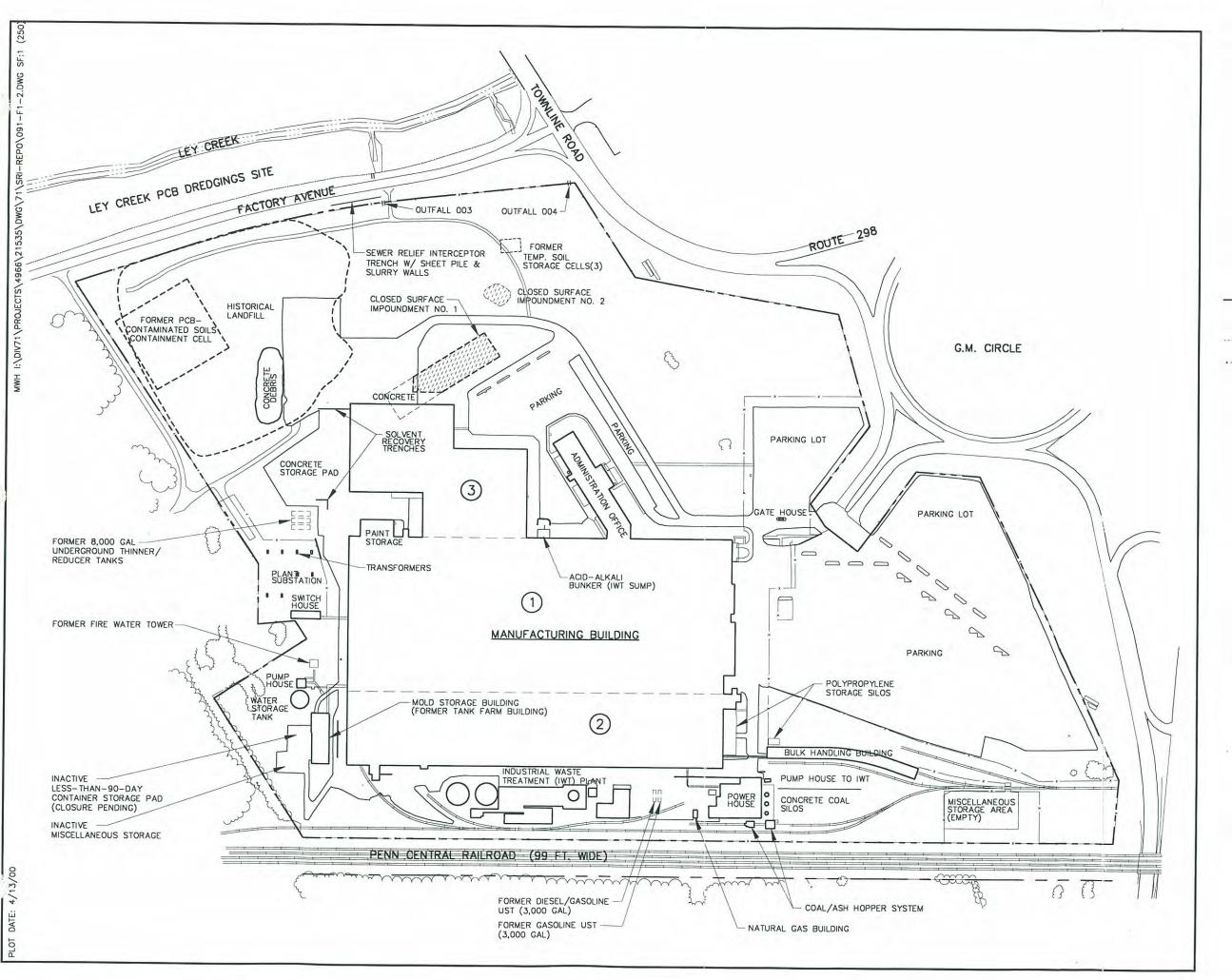
Page 1 of 2

8	
1992	
Fish Data	
3-38. I	
<u>rable 3</u>	

i	-		;					Wet Weig	Wet Weight Concentration (mg/kg)	tion (mg/kg)		
rish dample	#=	(mm)	Mass (g)	Percent Lipids	Percent Moisture	Aroclor- 1016	Aroclor- 1221	Arocior- 1232	Aroclor- 1242	Aroclor- 1248	Aroclor-	Aroclor-
DOWNSTREAM												
Dace (Whole Fish)	14	32 - 80	22	0.5 %	N/A	0.1 U	0.2 U	0.1 U	0.1 U	0.87	0.1 U	NC 55.0
White Sucker #6 (Whole Fish)	-	120	19	0.1% ل	N/A	0.1 U	0.2 U	0.10	0.1 U	0.46 J	0.1 U	0.1 U
Carp #1 (Whole Fish)	-	550	2,727	2.3 %	% 0.97	0.1 U	0.2 U	0.1 U	0.1 U	0.47	0.1 U	L 7.0
Carp #4 (Whole Fish)	-	508	2,386	1.2 %	% 8'22	0.1 U	0.2 U	0.1 U	0.1 U		0.1 U	0.35
Carp #2 (Filet)	-	545	2,727	1.1%	73.3 %	0.1 U	0.2 U	0.1 U	0.1 U	0.11	0.1 U	0.4 U
Carp #3 (Filet)	-	099	4,091	3.0 %	72.6 %	0.1 U	0.2 U	0.1 U	0.1 U	0.2	0.1 U	0.1 U
Pumpkinseed #1 (Edible Portion)	-	120	24	0.1 %	Α'N	0.1 U	0.2 U	0.1 U	0.1 U	0.32	0.1 U	0.10

ฐ ≥⊃¬∃₹

Insufficient sample volume for analysis.


Not detected at the indicated quantitation limit.

Detected results are estimated.

Detection limits are estimated.

Detection serve estimated.

Detection serve are estimated.

LEGEND

PROPERTY LINE
TREE LINE
APPROX. LOCATION

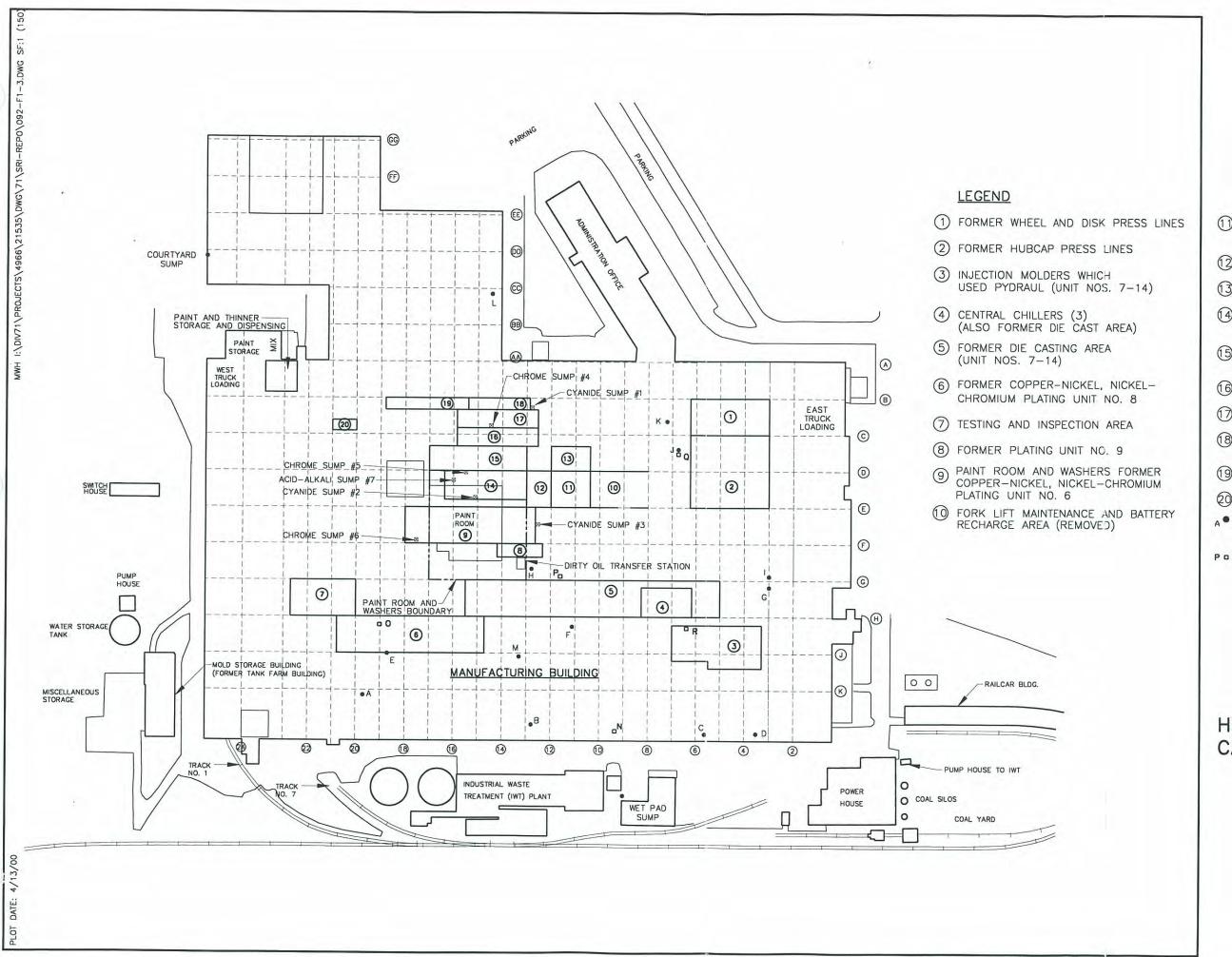
FENCE

ORIGINAL BUILDING -

CONSTRUCTED IN 1952

ADDITIONS—CONSTRUCTED

3 ADDITION—CONSTRUCTED
IN 1974 — 1975


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

FACILITY PLAN

FILE NO. 4966.21535.091 DATE: APRIL 2000

LEGEND CON'T

- FORK LIFT MAINTENANCE AND BATTERY RECHARGE AREA (REMOVED)
- (2) KOLENE UNIT (REMOVED)
- (13) FORMER CHEMICAL AND ANODE CRIB
- PAINT ROOM AND WASHERS FORMER COPPER-NICKEL, NICKEL-CHROMIUM PLATING UNIT NO. 5
- 15 FORMER NICKEL-CHROME PLATING UNIT NO. 4
- 16 FORMER CHROME PLATING UNIT NO. 3
- 17 FORMER CHROME PLATING UNIT NO. 2
- (8) FORMER NICKEL-CHROMIUM PLATING UNIT NO. 1
- 19 FORMER CHROME PLATING UNIT NO. 7
- O FORMER AUTOMATIC PAINT STRIPPER
- A HYDRAULIC OIL SUMP (OUT OF SERVICE)
- P HYDRAULIC OIL UNDERGROUND STORAGE TANK (REMOVED)

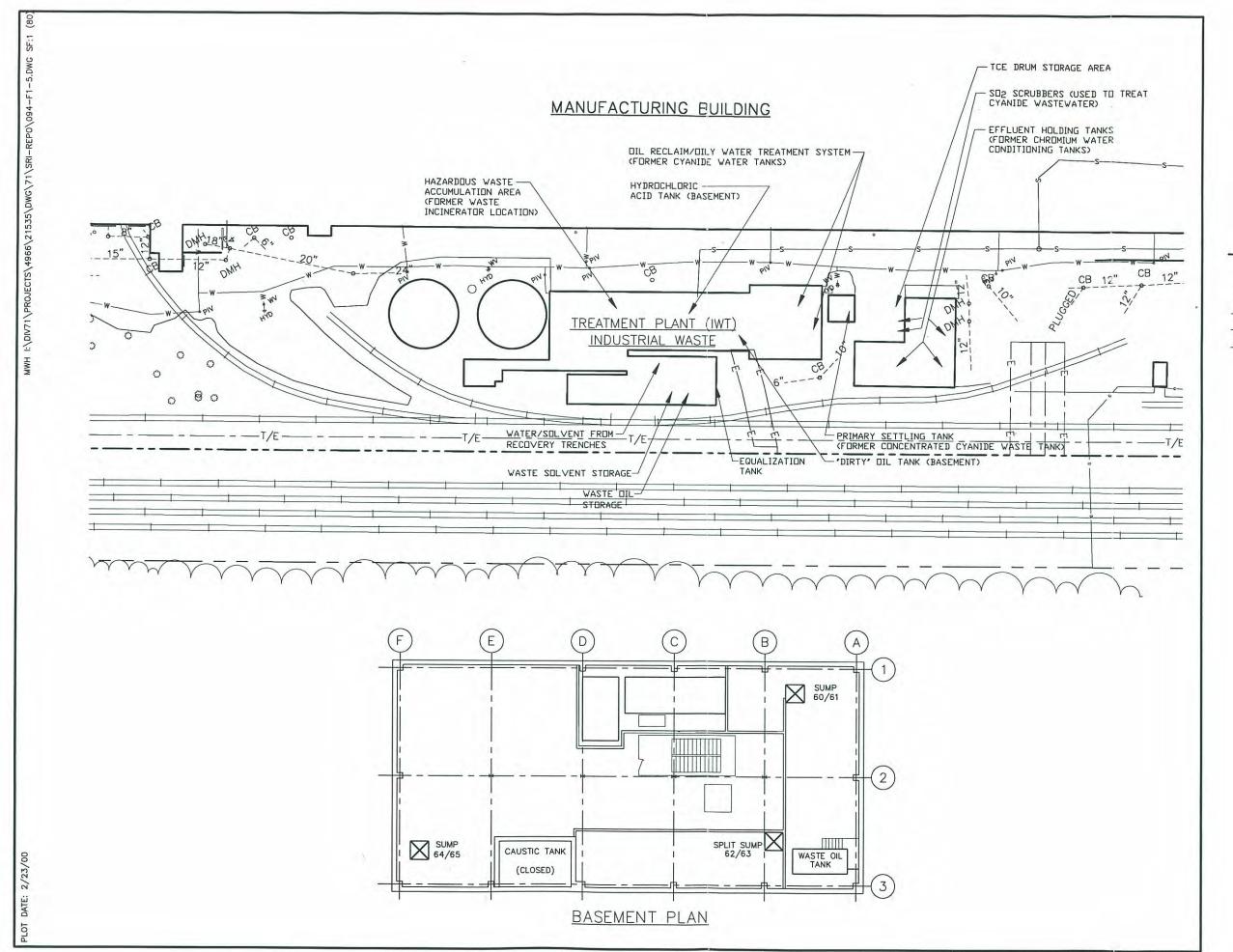
GENERAL MOTORS CORP. SYRACUSE, NEW YORK

HISTORIC PLATING / DIE CASTING / PRESS LINES OPERATION LAYOUT

FILE NO. 4966.21535.092 DATE: APRIL 2000

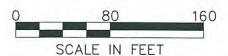
LEGEND

- A HYDRAULIC OIL SUMP (OUT OF SERVICE)
- Po HYDRAULIC OIL UNDERGROUND STORAGE TANK (REMOVED)


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

HISTORIC INJECTION MOLDING OPERATION LAYOUT

FILE NO. 4966.21535.093 DATE: APRIL 2000



& ELECTRIC

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

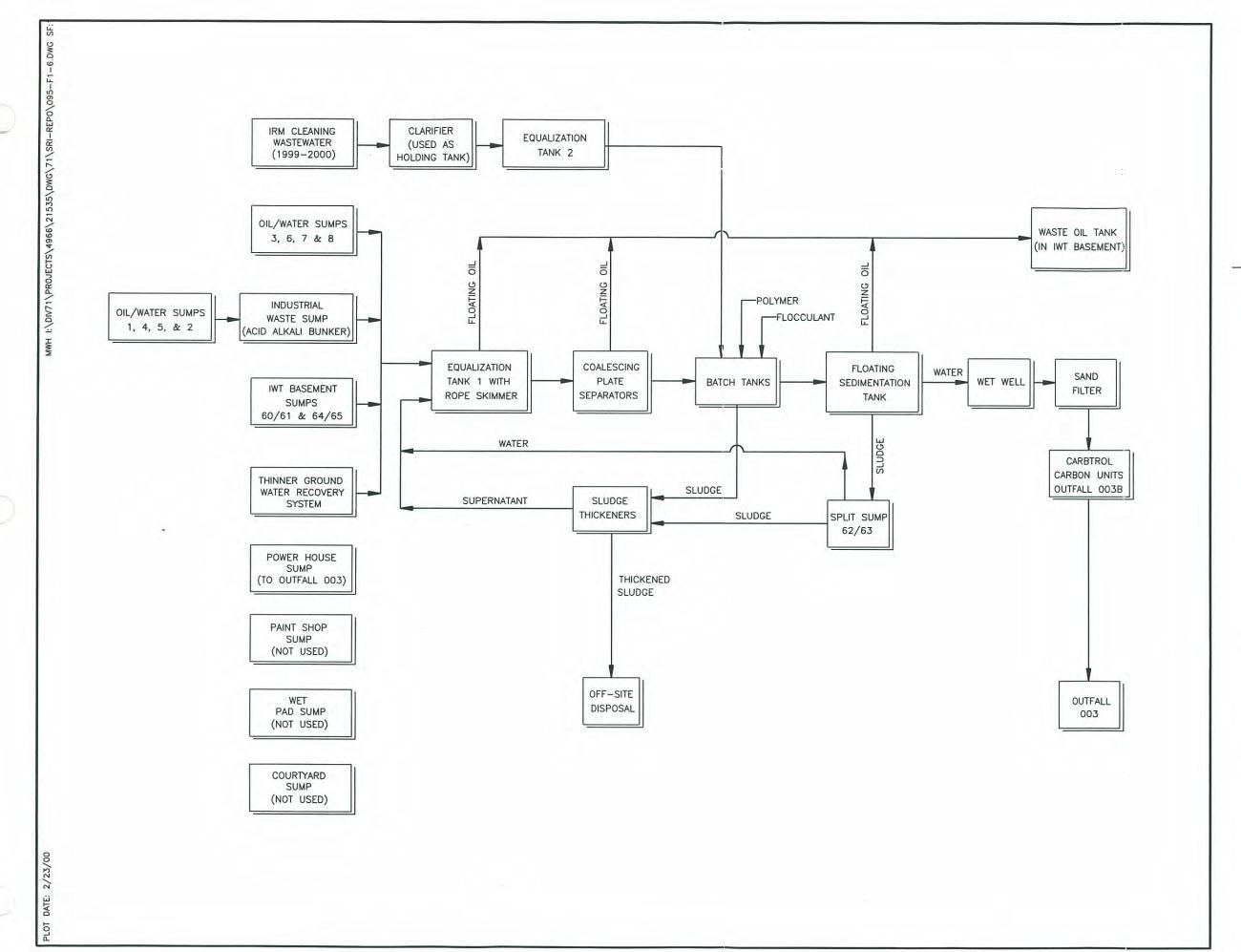
IWT PLANT LAYOUT & BASEMENT PLAN

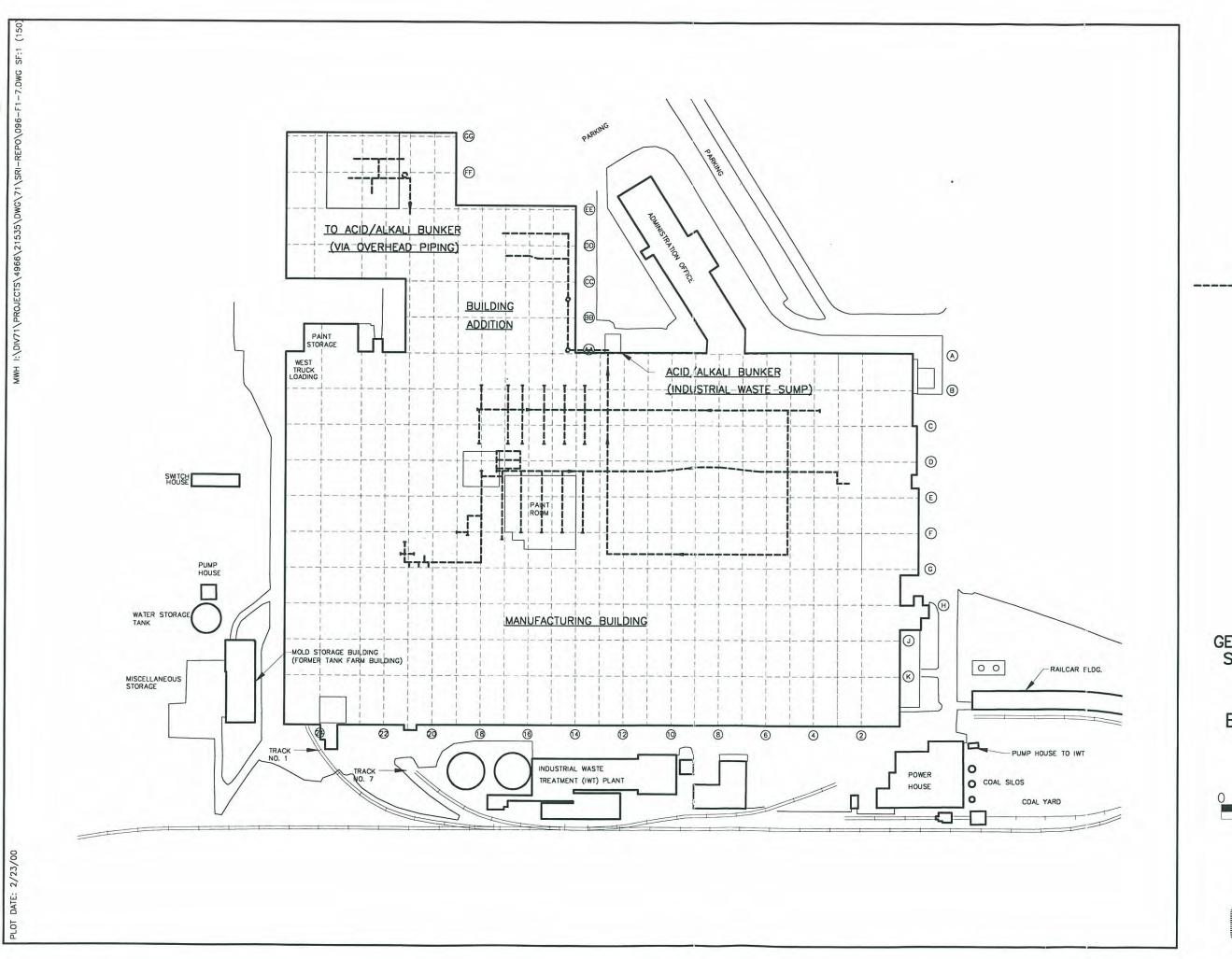
FILE NO. 4966.21535.094

DATE: MARCH 2000

<u>LEGEND</u>

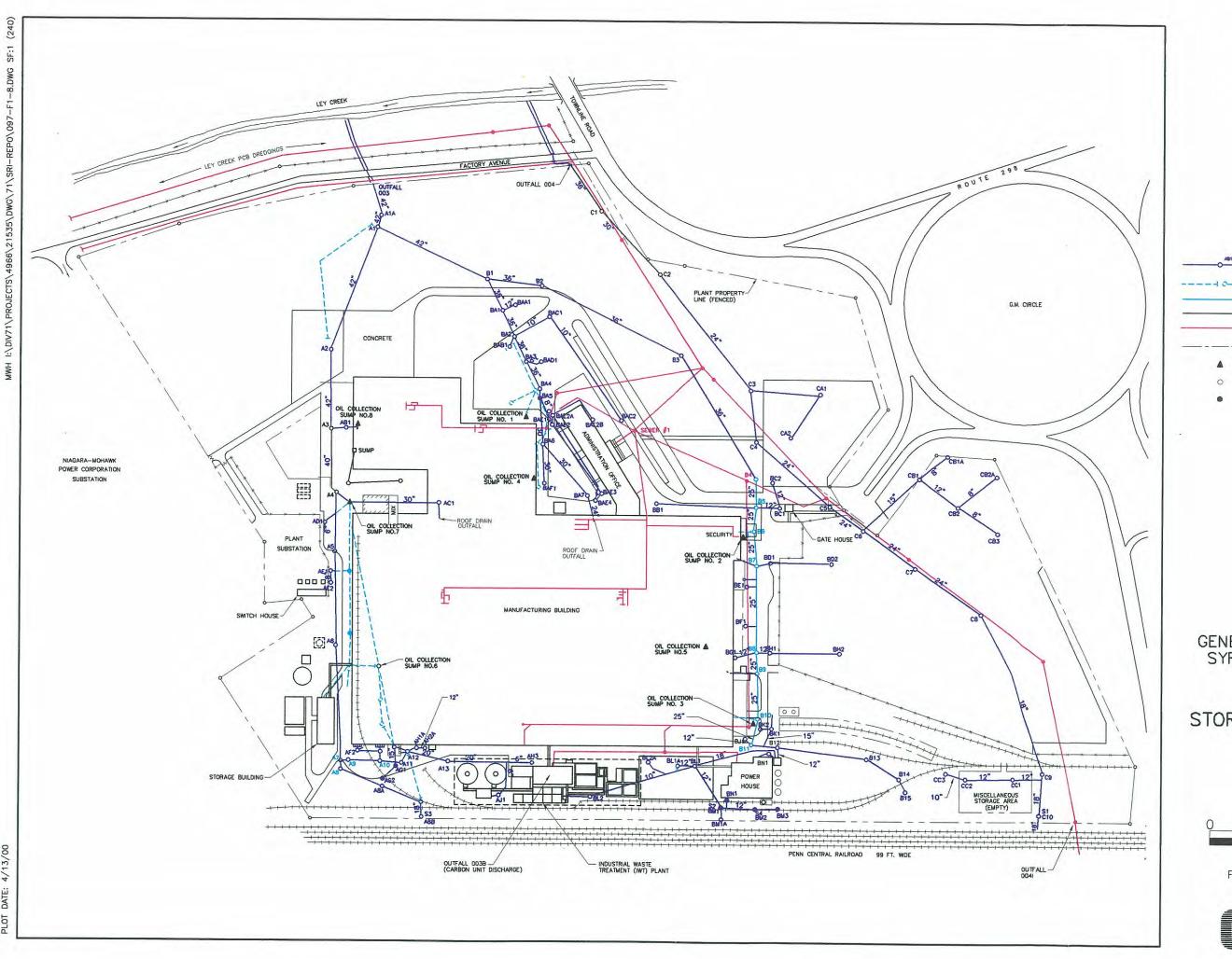
FLOW DIRECTION


GENERAL MOTORS CORP. SYRACUSE, NEW YORK


INDUSTRIAL WASTE TREATMENT PLANT PROCESS SCHEMATIC

NOT TO SCALE

FILE NO. 4966.21535.095 DATE: MARCH 2000


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

EXISTING PROCESS
SEWER SYSTEM

FILE NO. 4966.21535.096 DATE: MARCH 2000

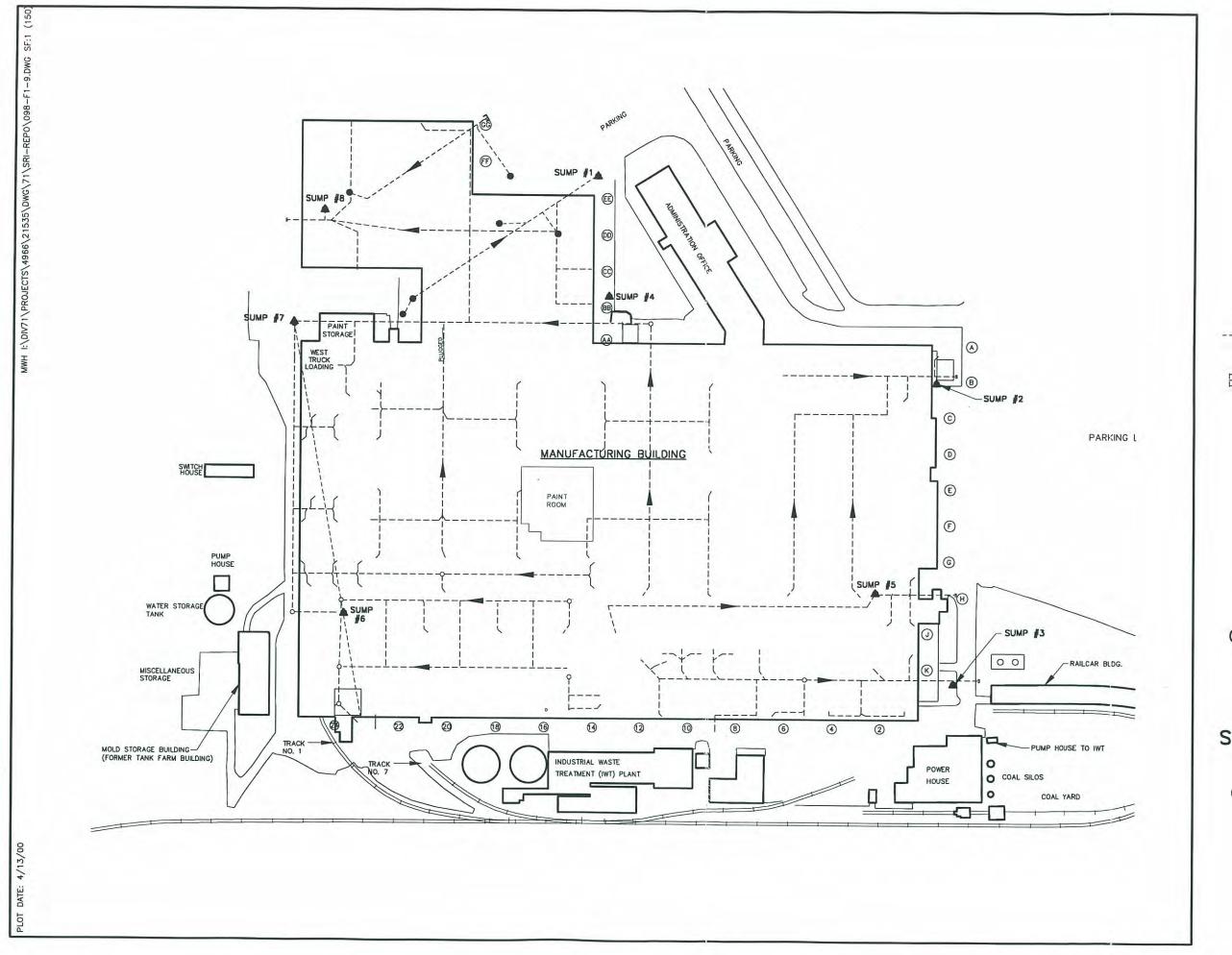
LEGEND

ACTIVE STORM SEWER PLUGGED STORM SEWER SLIP LINED STORM SEWER

PROPERTY LINE

OIL COLLECTION SUMP MANHOLE

BURIED MANHOLE


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

STORM AND SANITARY **SEWERS**

FILE NO. 4966.21535.097 DATE: MARCH 2000

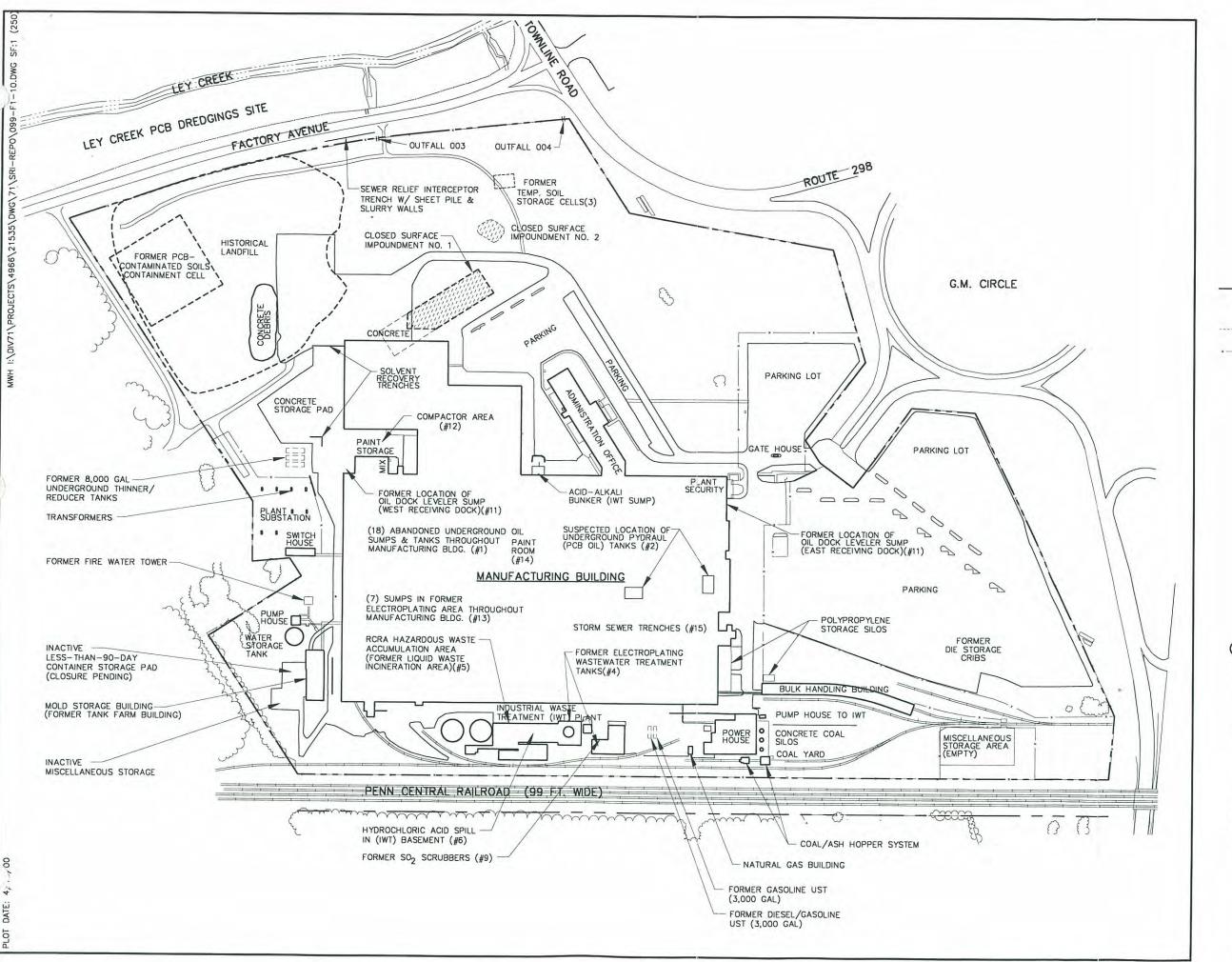
LEGEND

OIL/WATER COLLECTION SUMP

MANHOLE

E--- CAPPED PIPE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK


INACTIVE HISTORIC STORM SEWER LAYOUT

FILE NO. 4966.21535.091 DATE: MARCH 2000

RACER0060758

LEGEND

PROPERTY LINE
TREE LINE
APPROX. LOCATION
FENCE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

POTENTIAL AREAS OF CONCERN

FILE NO. 4966.21535.099 DATE: APRIL 2000

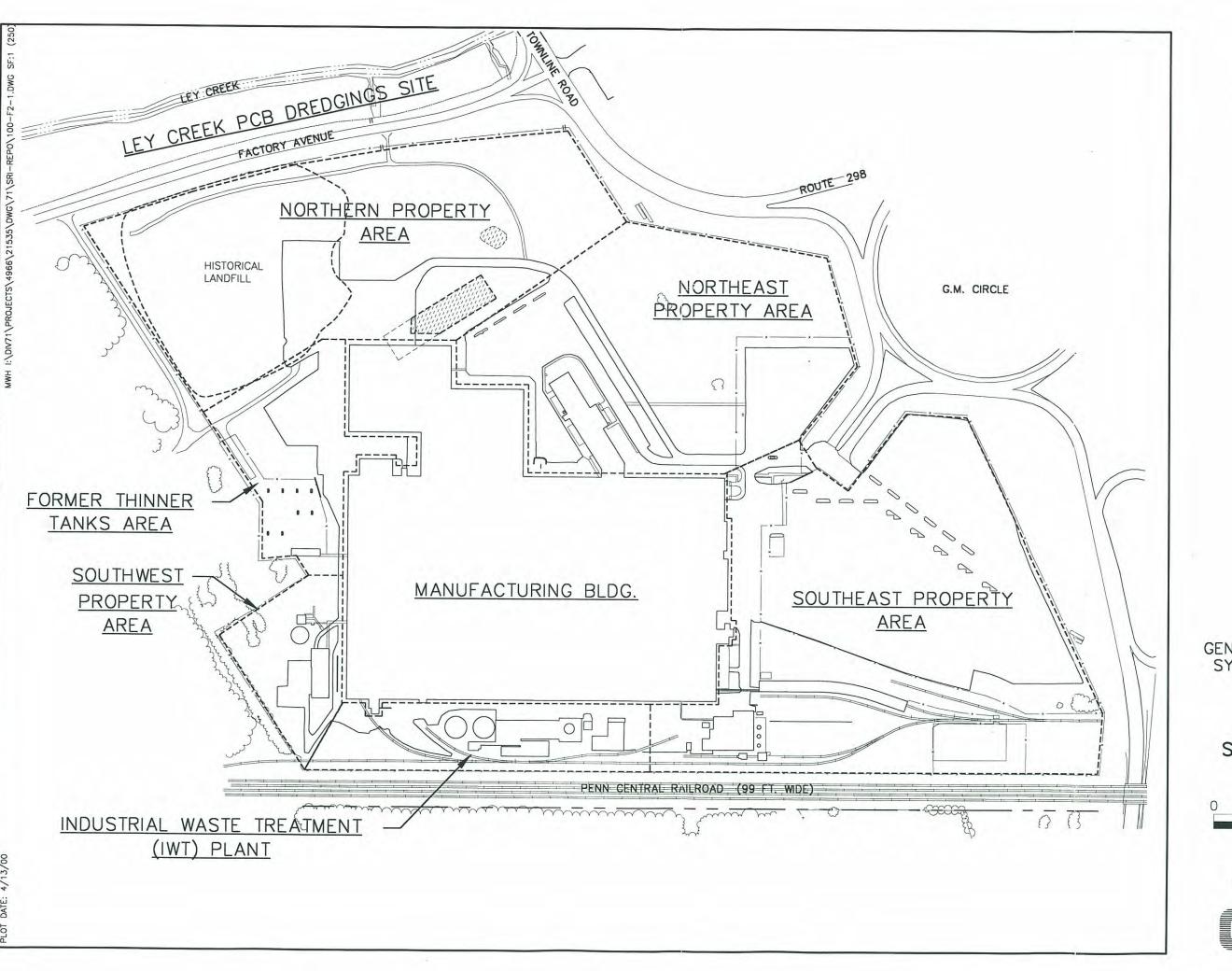


FIGURE 2-1

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SITE SUB-AREAS

FILE NO. 4966.21535.100 DATE: APRIL 2000

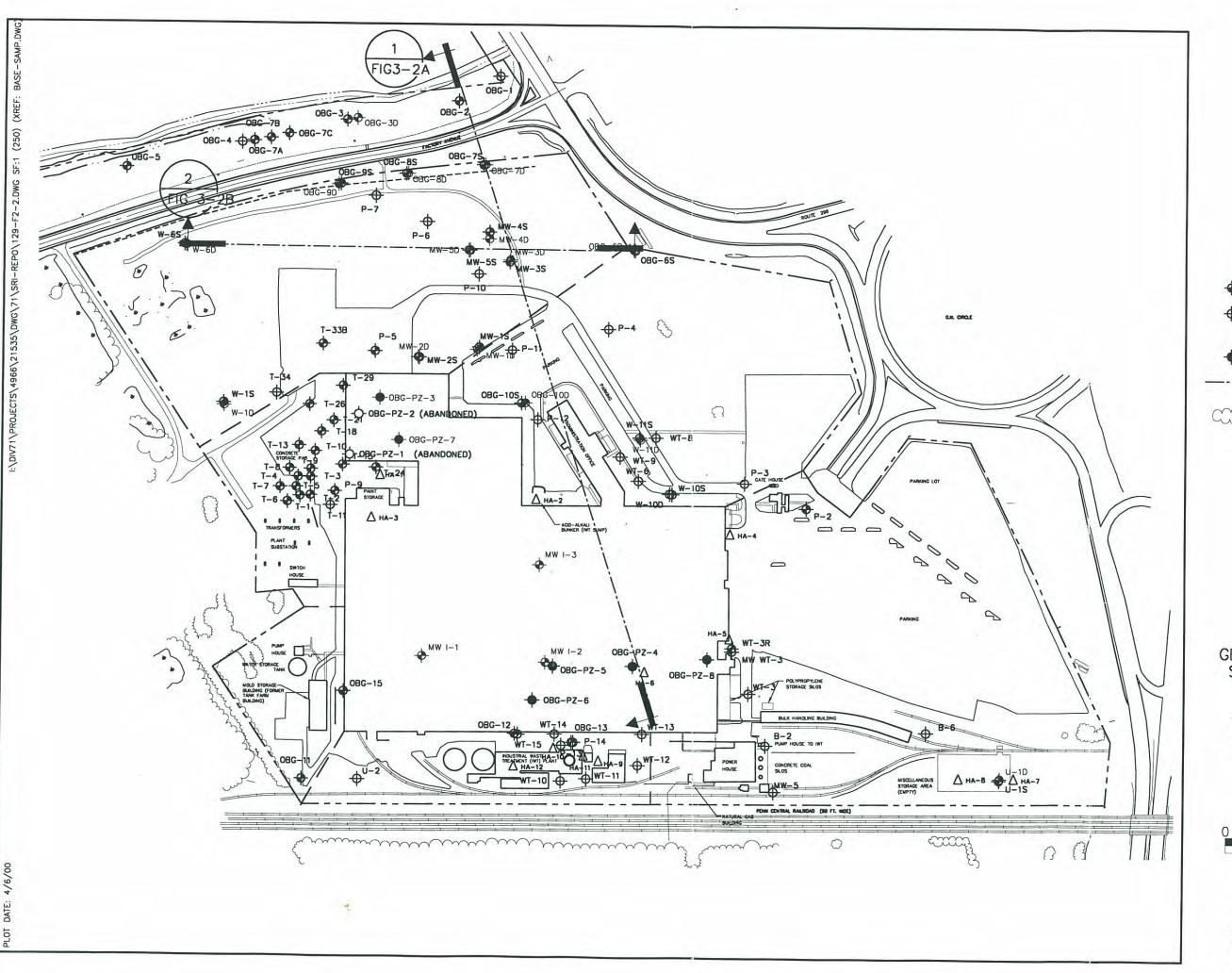


FIGURE 2-2

LEGEND

- MONITORING WELL
- ♦ MONITORING WELL NOT SAMPLED
- PIEZOMETER

--- PROPERTY BOUNDARY

TREE LINE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

MONITORING WELL LOCATION PLAN

FILE NO. 4966.21535.129 DATE: APRIL 2000

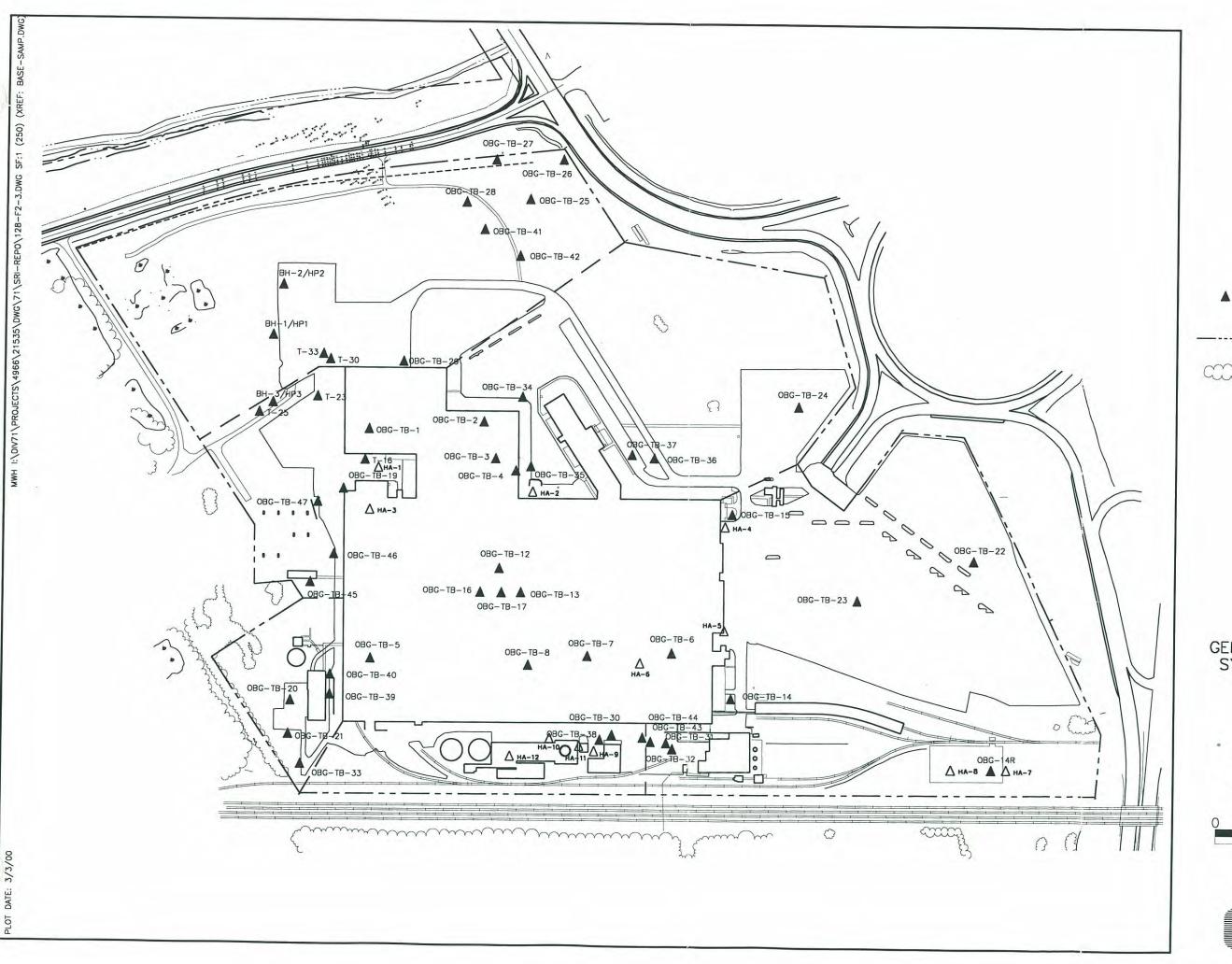


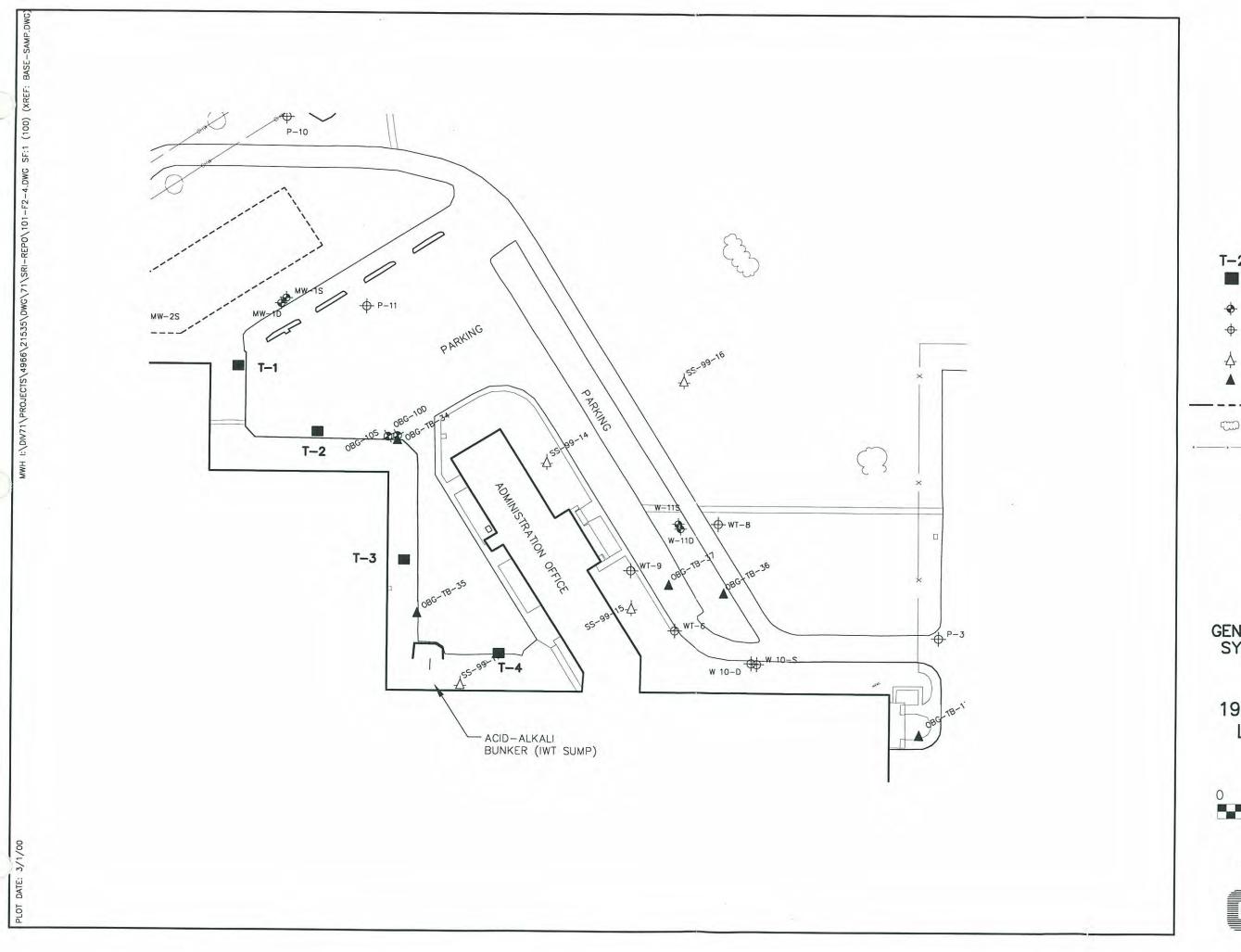
FIGURE 2-3

LEGEND

SOIL BORING

--- PROPERTY BOUNDARY

TREE LINE


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SOIL BORING LOCATION PLAN

FILE NO. 4966.21535.128 DATE: MARCH 2000

LEGEND

MAY 1985 TRENCH LOCATION

- MONITORING WELL

MONITORING WELL NOT SAMPLED

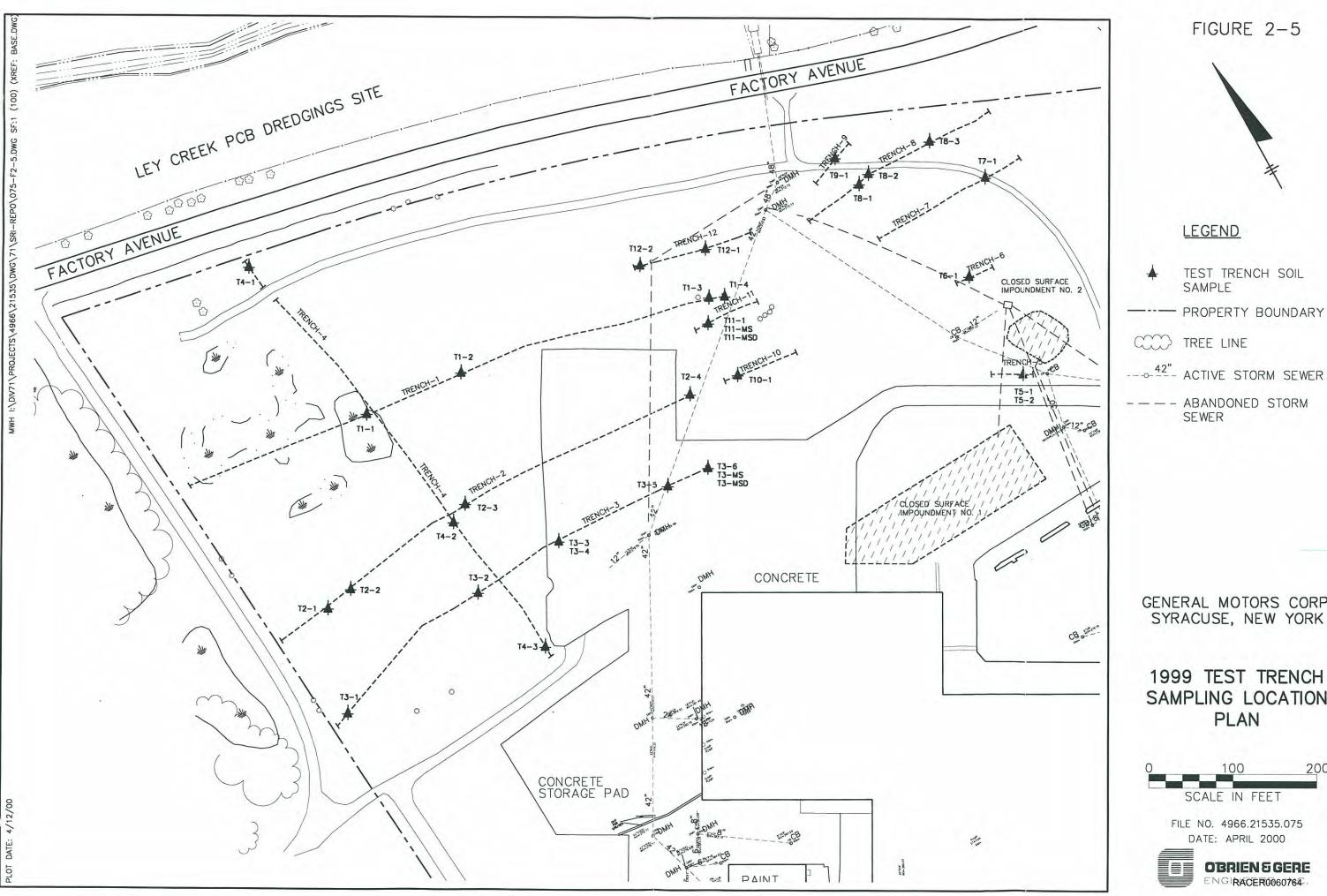
SURFACE SOIL SAMPLE

▲ SOIL BORING

PROPERTY LINE

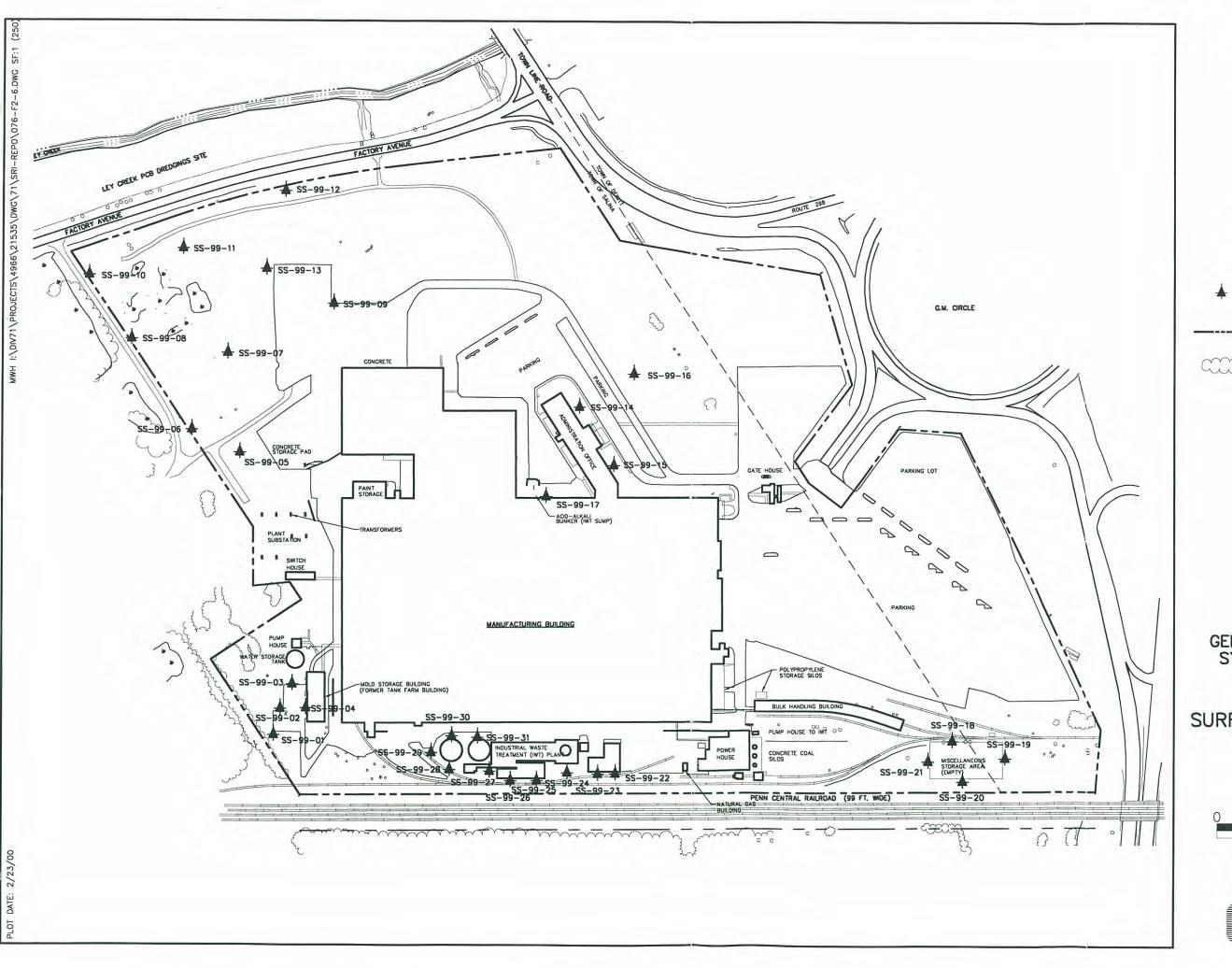
TREE LINE

·--- FENCE


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

1985 TEST TRENCH LOCATION PLAN

FILE NO. 4966.21535.101 DATE: MARCH 2000



GENERAL MOTORS CORP. SYRACUSE, NEW YORK

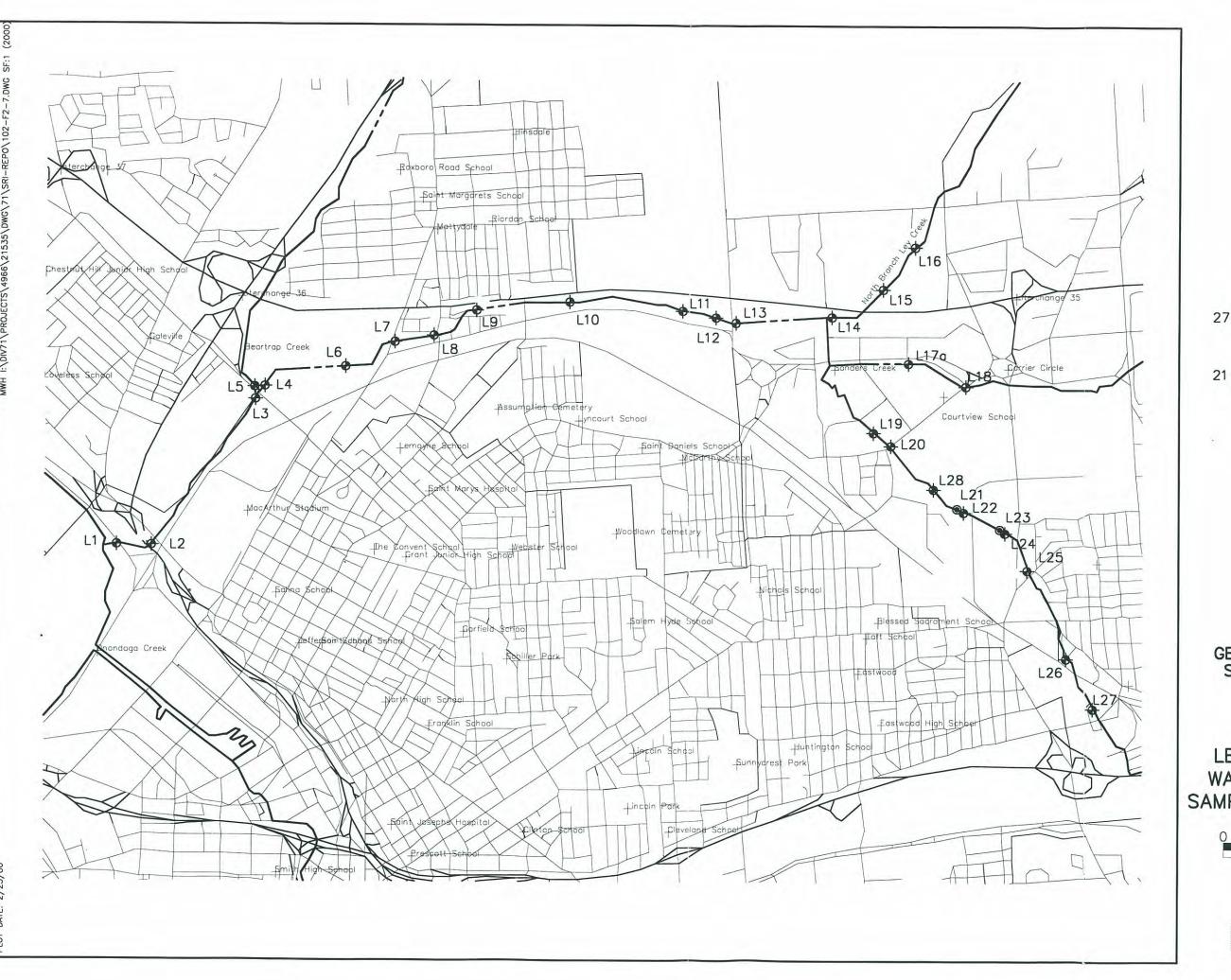
1999 TEST TRENCH SAMPLING LOCATION

LEGEND

★ SURFACE SOIL SAMPLE

---- PROPERTY BOUNDARY

TREE LINE


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

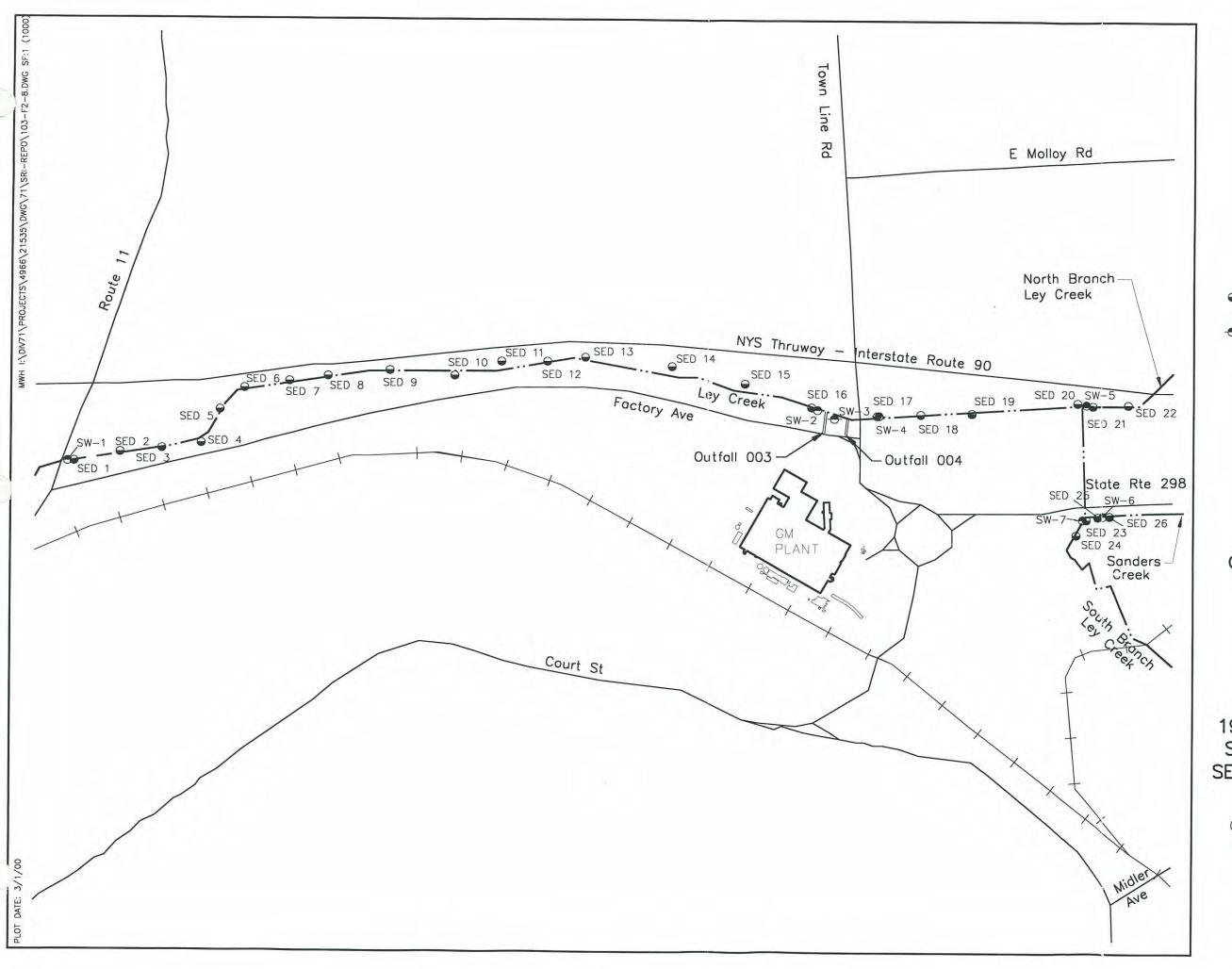
SURFACE SOIL SAMPLING LOCATION PLAN

FILE NO. 4966.21535.076 DATE: MARCH 2000

LEGEND

SEDIMENT SAMPLE LOCATION

SURFACE WATER
SAMPLE LOCATION


GENERAL MOTORS CORP. SYRACUSE, NEW YORK

1996 NYSDEC LEY CREEK SURFACE WATER AND SEDIMENT SAMPLING LOCATION PLAN

FILE NO. 4966.21535.102 DATE: MARCH 2000

LEGEND

- SEDIMENT CORE SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

1998/1999 LEY CREEK SURFACE WATER AND SEDIMENT / SAMPLING LOCATION PLAN

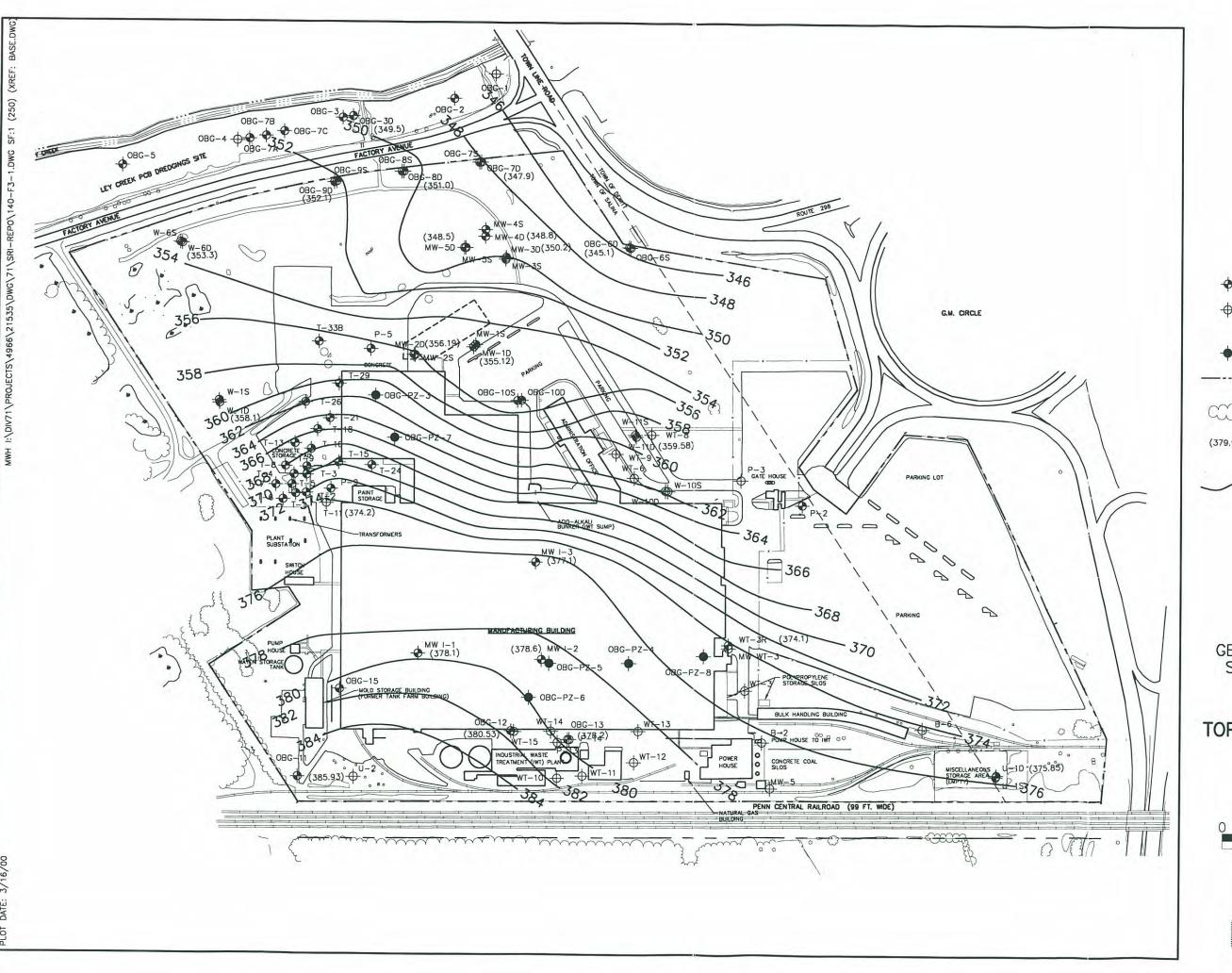


FIGURE 3-1

LEGEND

- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- ◆ PIEZOMETER
- --- PROPERTY BOUNDARY
- TREE LINE
- (379.90) TOP OF TILL ELEVATION

____ ELEVATION CONTOUR

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

TOP OF TILL ELEVATION CONTOUR MAP

FILE NO. 4966.21535.140 DATE: MARCH 2000

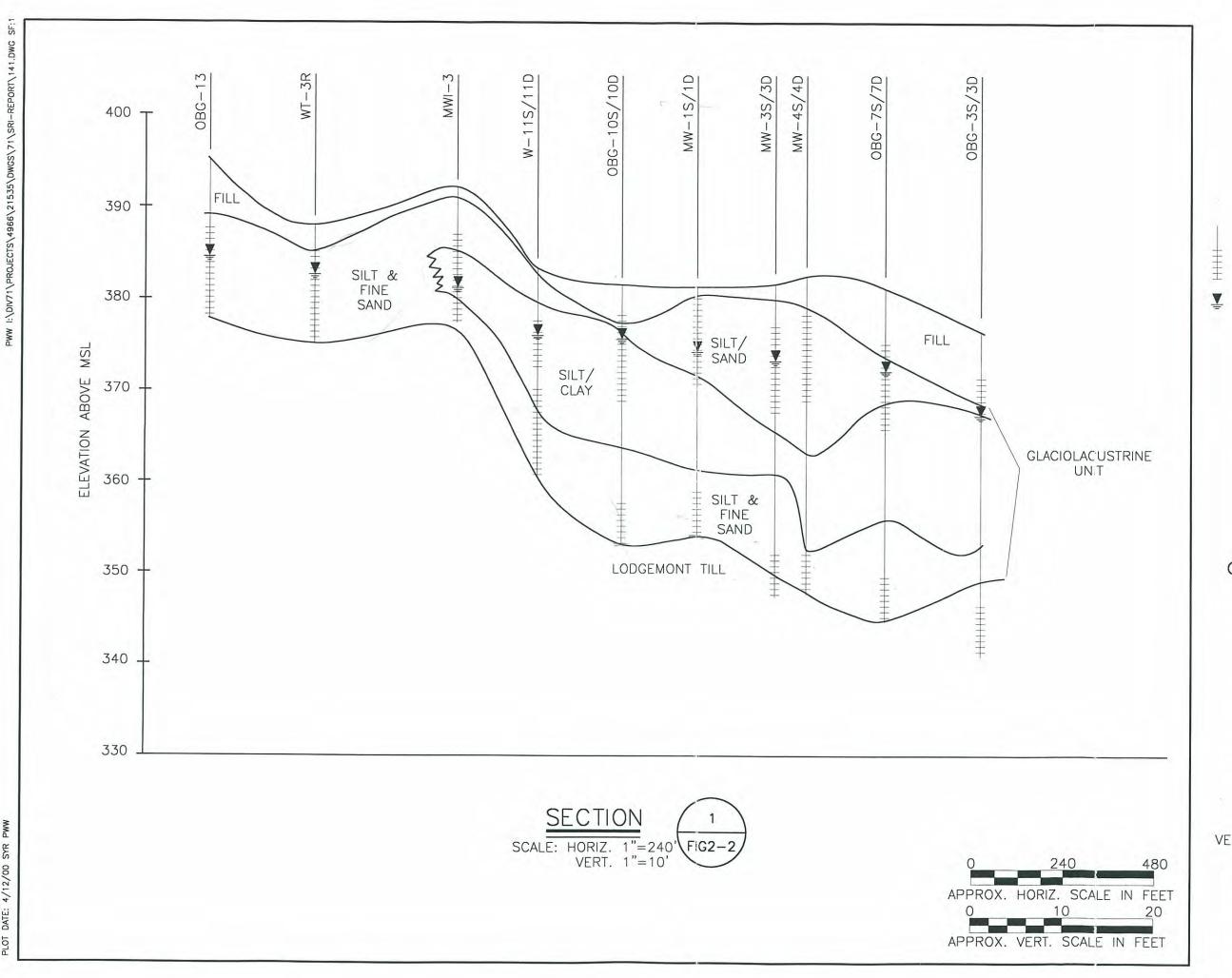


FIGURE 3-2A

LEGEND

MONITORING WELL SCREENED INTERVAL

GROUND WATER ELEVATION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

GENERALIZED HYDROGEOLOGIC CROSS SECTION

SCALE AS NOTED

VERTICAL EXAGGERATION = 24X

FILE NO. 4966.21535.141 DATE: APRIL 2000

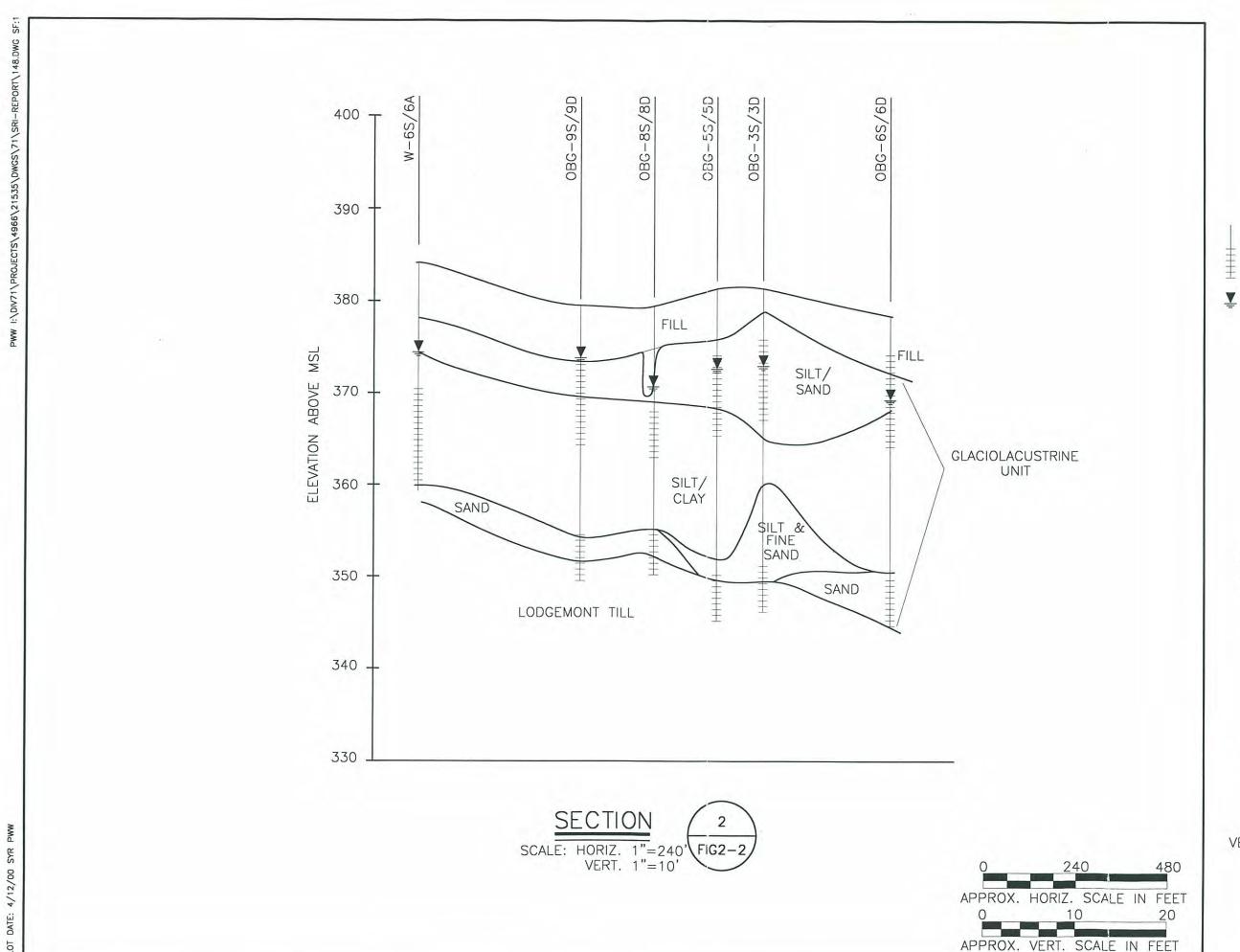


FIGURE 3-2B

LEGEND

MONITORING WELL SCREENED INTERVAL

GROUND WATER ELEVATION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

GENERALIZED HYDROGEOLOGIC CROSS SECTION

SCALE AS NOTED

VERTICAL EXAGGERATION = 24X

FILE NO. 4966.21535.148 DATE: APRIL 2000

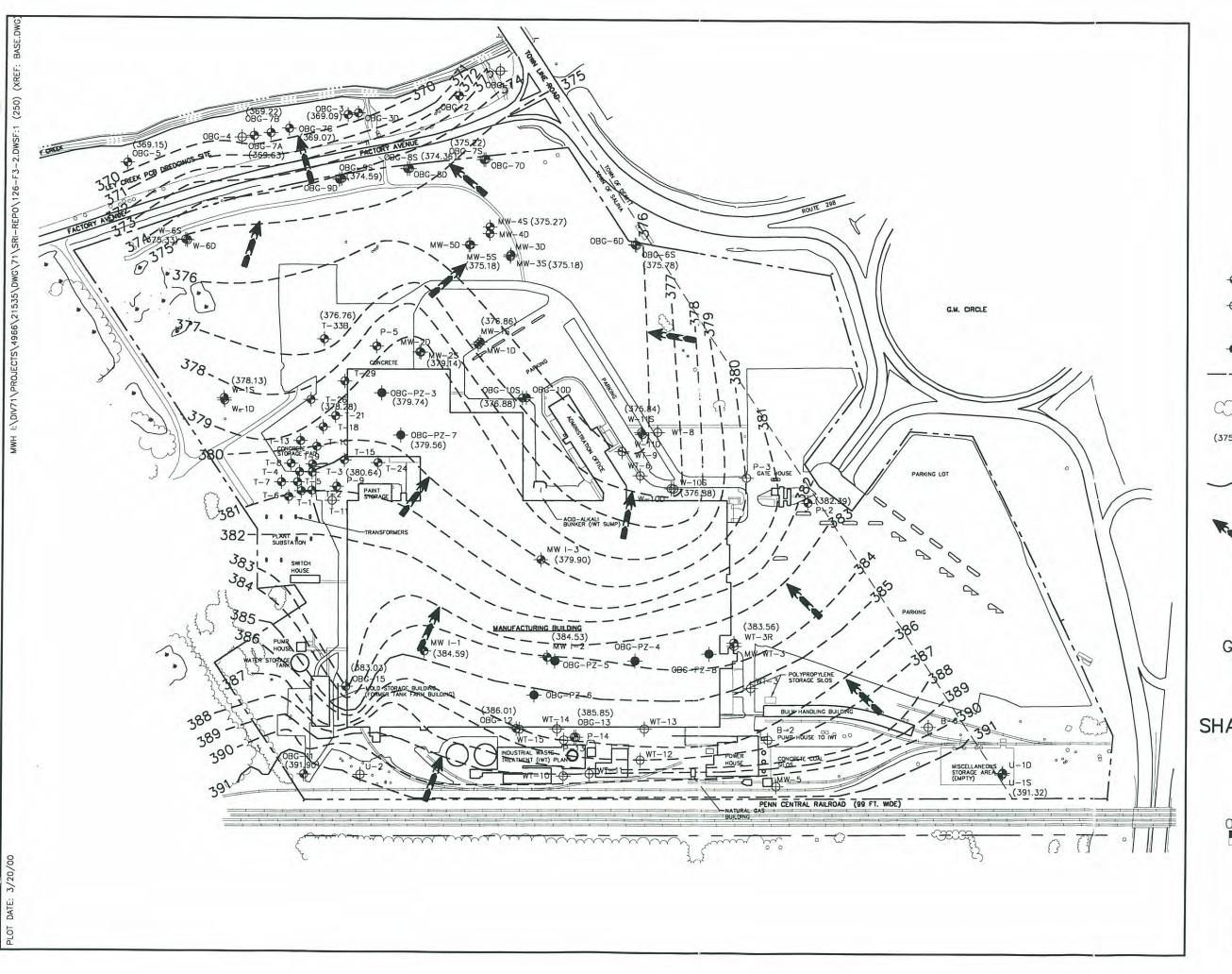


FIGURE 3-3

LEGEND

- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- PIEZOMETER
- --- PROPERTY BOUNDARY
- TREE LINE
- (375.78) GROUND WATER ELEVATION
- GROUND WATER
 ELEVATION CONTOUR
- SHALLOW GROUND WATER FLOW DIRECTION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SHALLOW GROUND WATER ELEVATION MAP (10/27/99)

FILE NO. 4966.21535.126 DATE: MARCH 2000

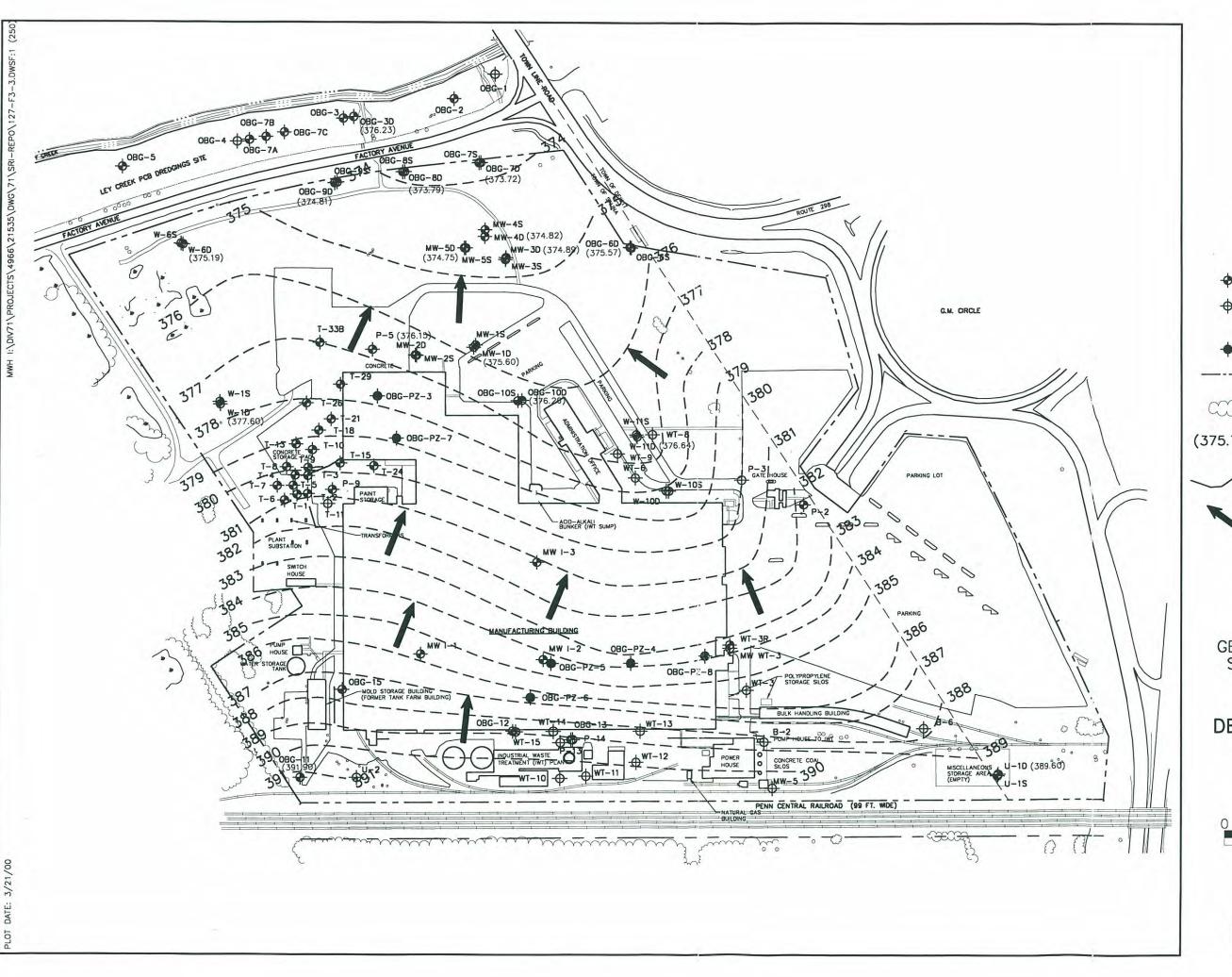
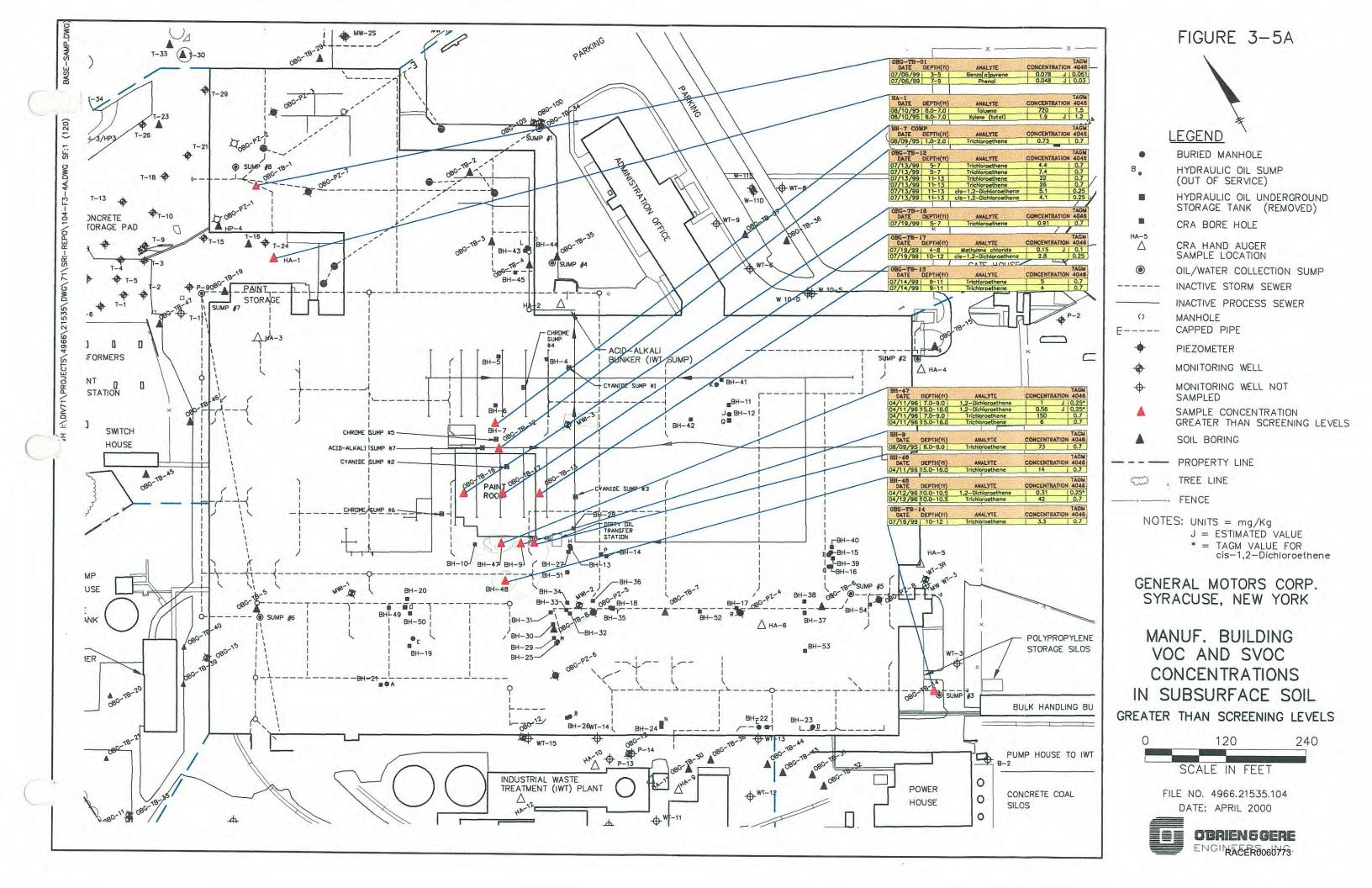
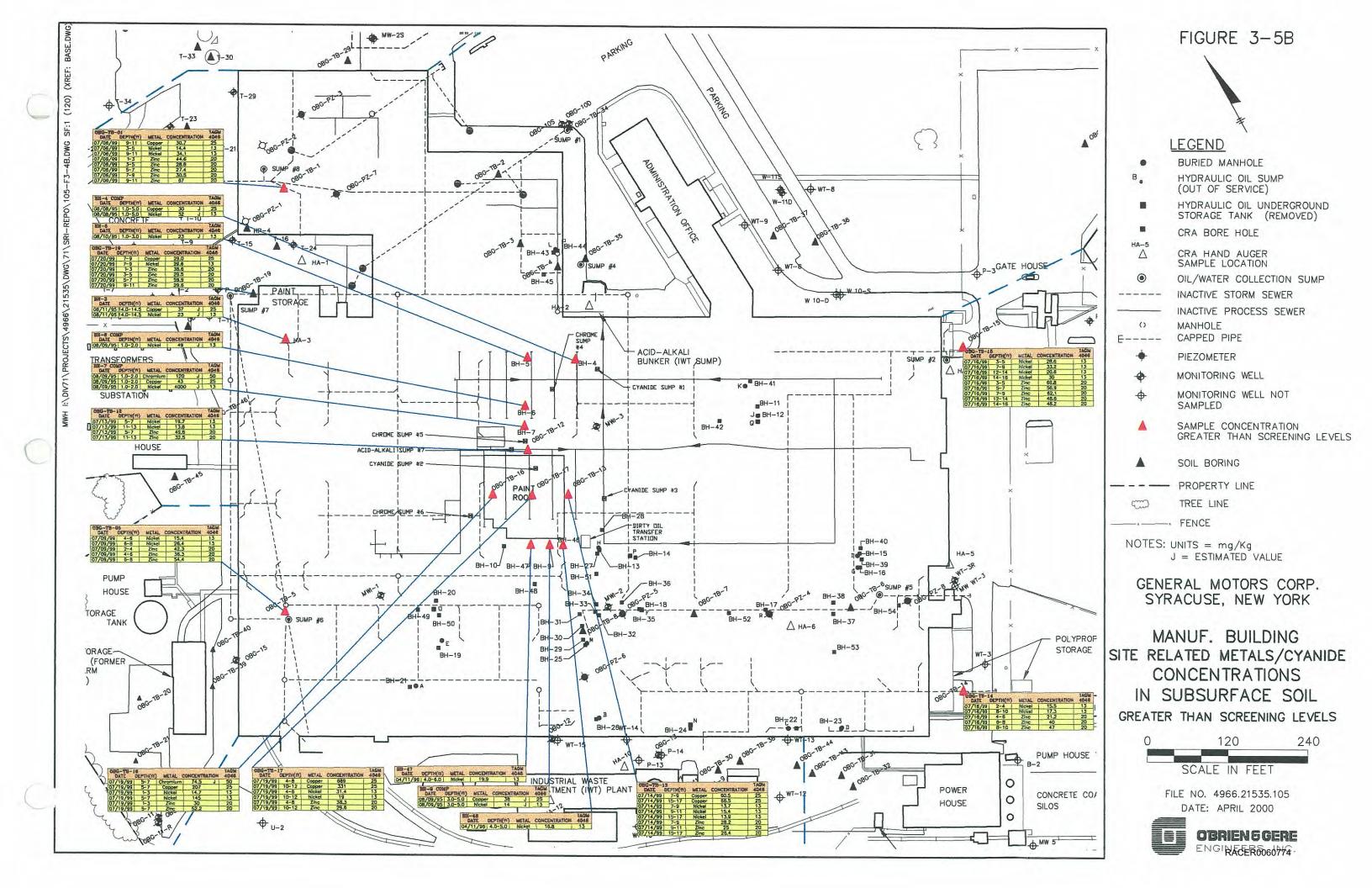


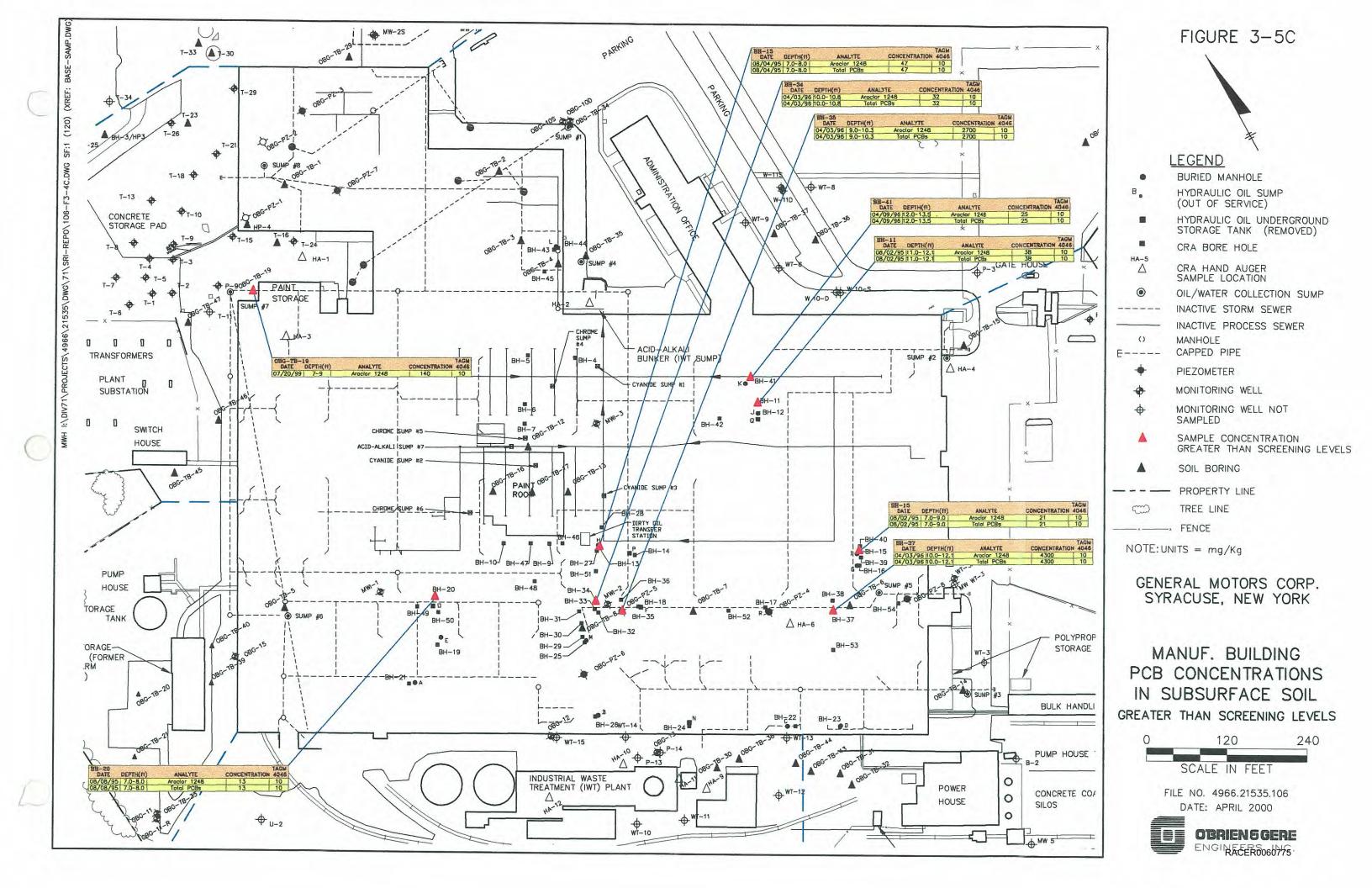
FIGURE 3-4

LEGEND

- **MONITORING WELL**
- ♦ MONITORING WELL NOT SAMPLED
- PIEZOMETER
- --- PROPERTY BOUNDARY
- TREE LINE
- (375.78) GROUND WATER ELEVATION
 - ____ EQUIPOTENTION/LIMITS
 - SHALLOW GROUND WATER FLOW DIRECTION


GENERAL MOTORS CORP. SYRACUSE, NEW YORK


DEEP GROUND WATER ELEVATION MAP (10/27/99)



FILE NO. 4966.21535.127 DATE: MARCH 2000

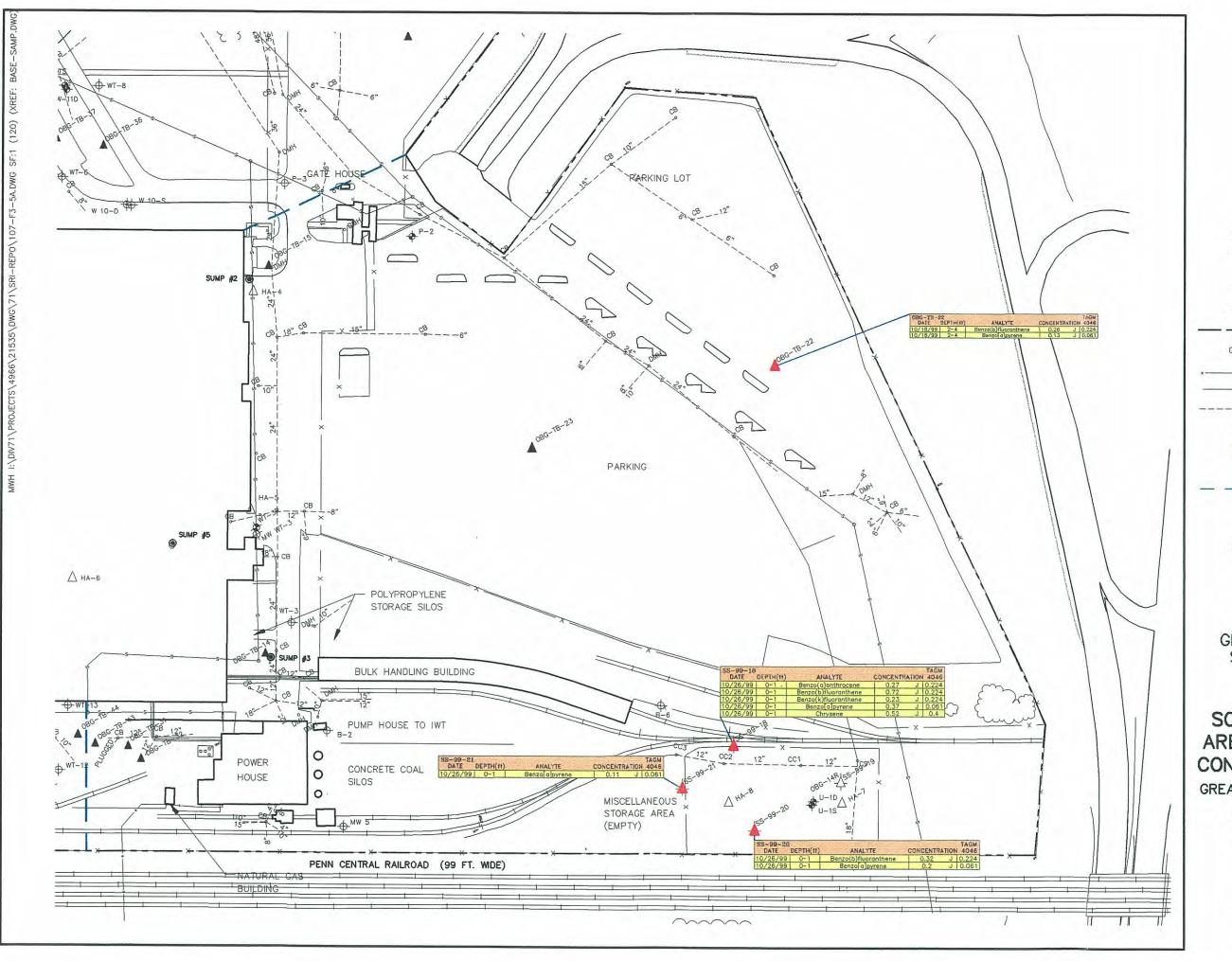


FIGURE 3-6A

LEGEND

MONITORING WELL

MONITORING WELL NOT SAMPLED

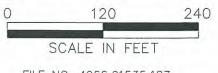
SOIL BORING

-- PROPERTY LINE

TREE LINE

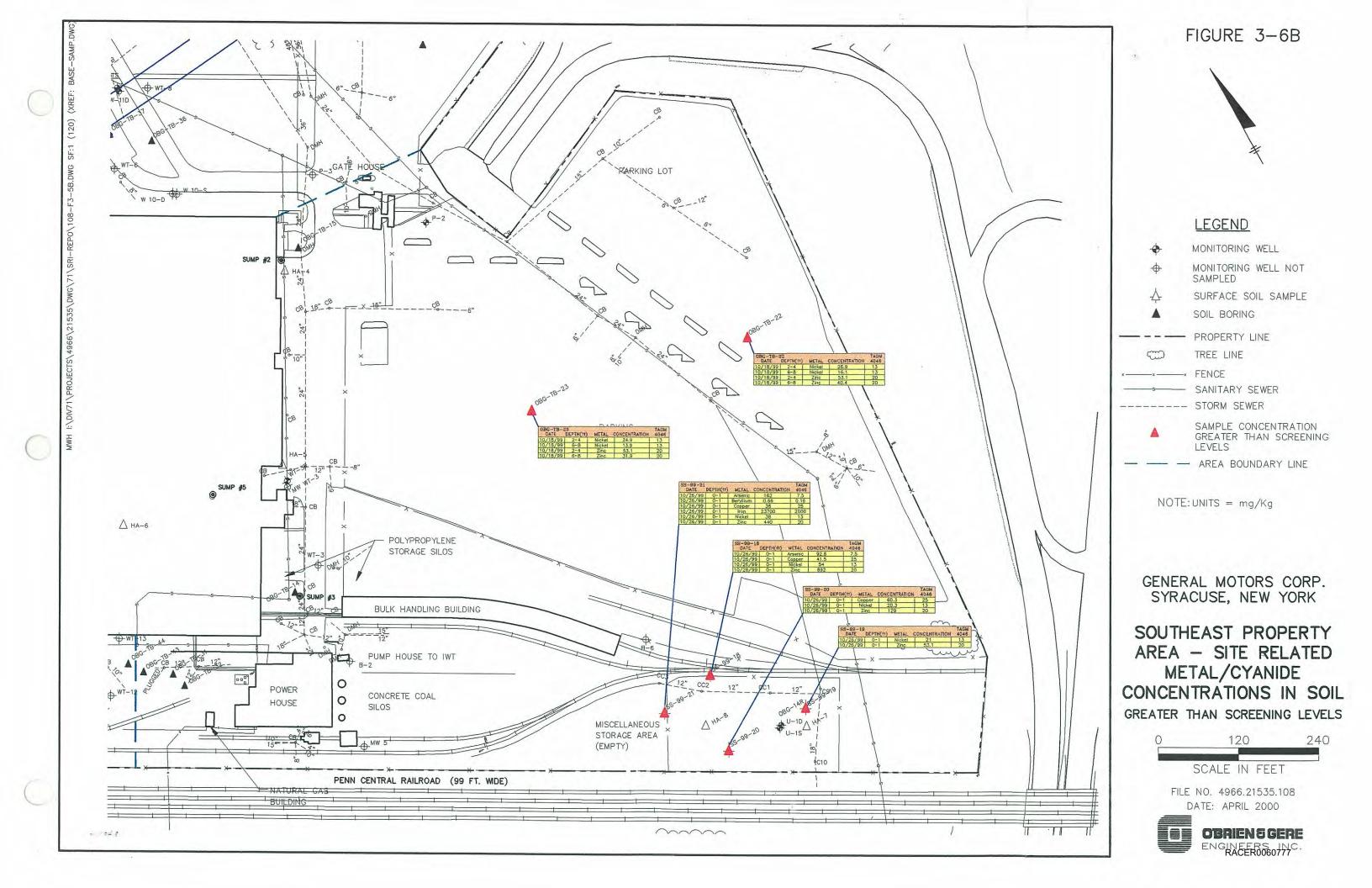
SANITARY SEWER

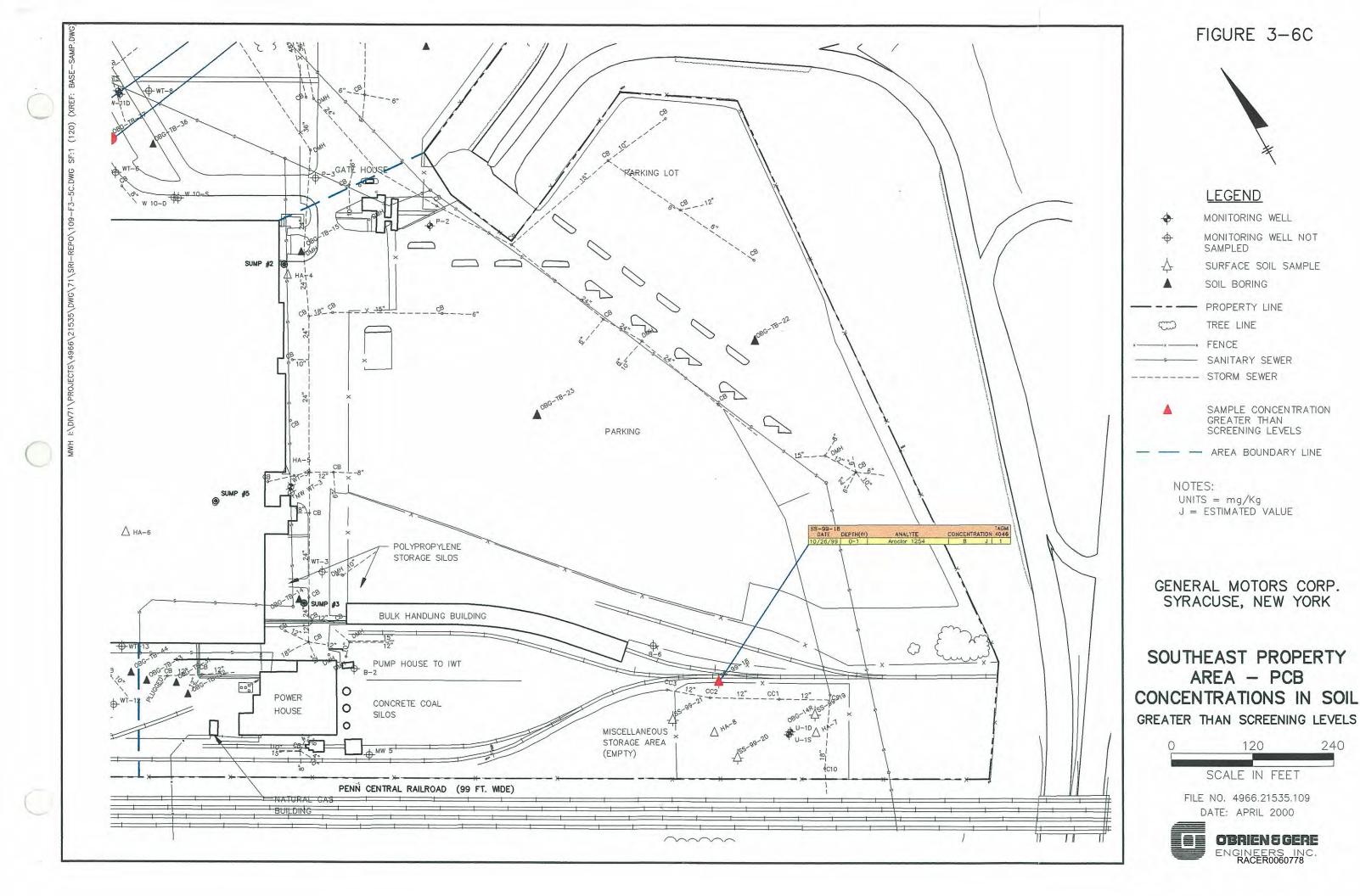
---- STORM SEWER


SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

- AREA BOUNDARY LINE

NOTES: UNITS = mg/Kg J = ESTIMATED VALUE


GENERAL MOTORS CORP. SYRACUSE, NEW YORK


SOUTHEAST PROPERTY AREA - VOC AND SVOC CONCENTRATIONS IN SOIL GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.107 DATE: APRIL 2000

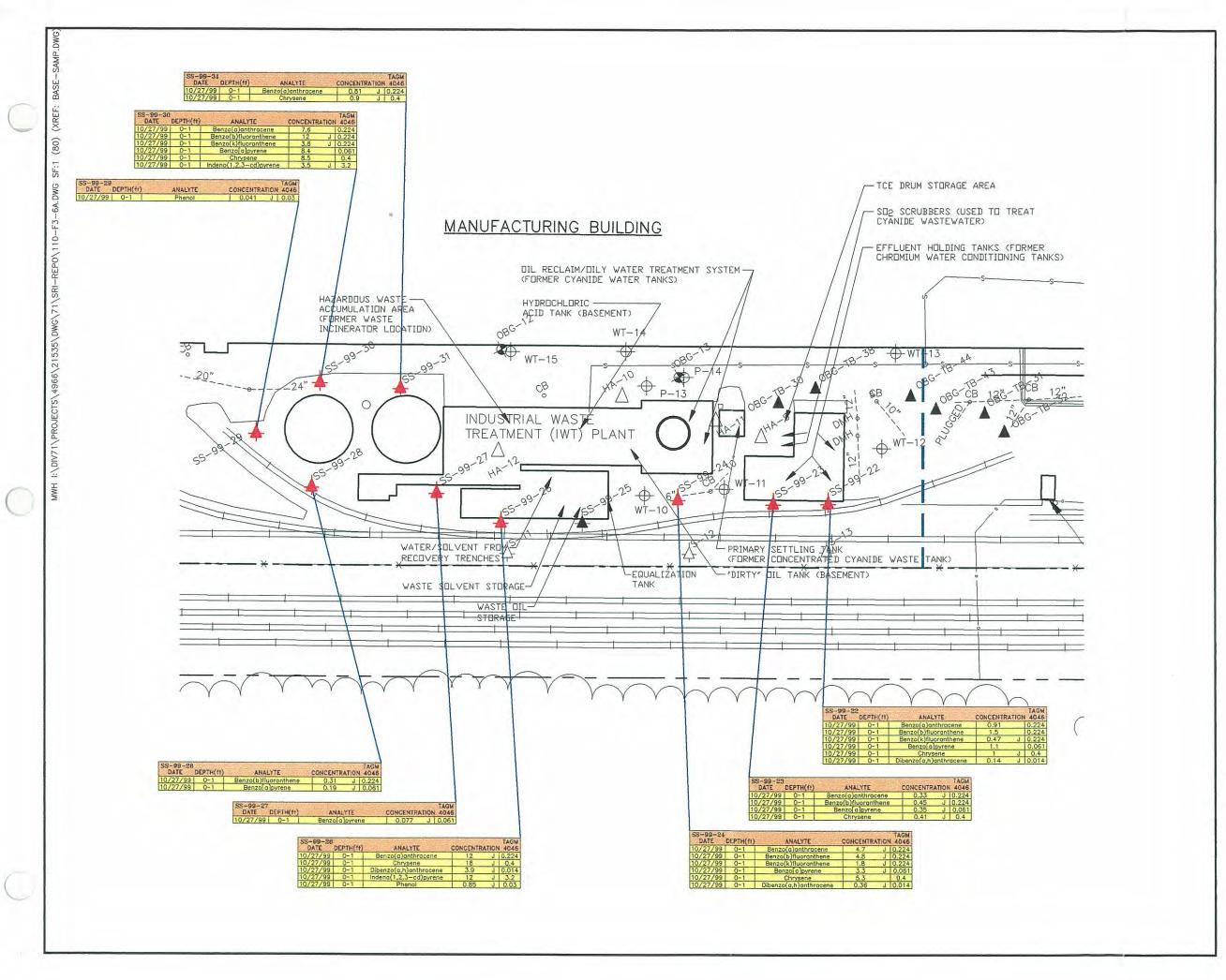


FIGURE 3-7A

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- **MONITORING WELL**
- MONITORING WELL NOT SAMPLED
- SURFACE SOIL SAMPLE
- ▲ SOIL BORING
- --- PROPERTY LINE
- SANITARY SEWER
- ---- STORM SEWER
- --- AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

IWT PLANT AREA
VOC AND SVOC
CONCENTRATIONS IN SOIL
GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.110 DATE: APRIL 2000

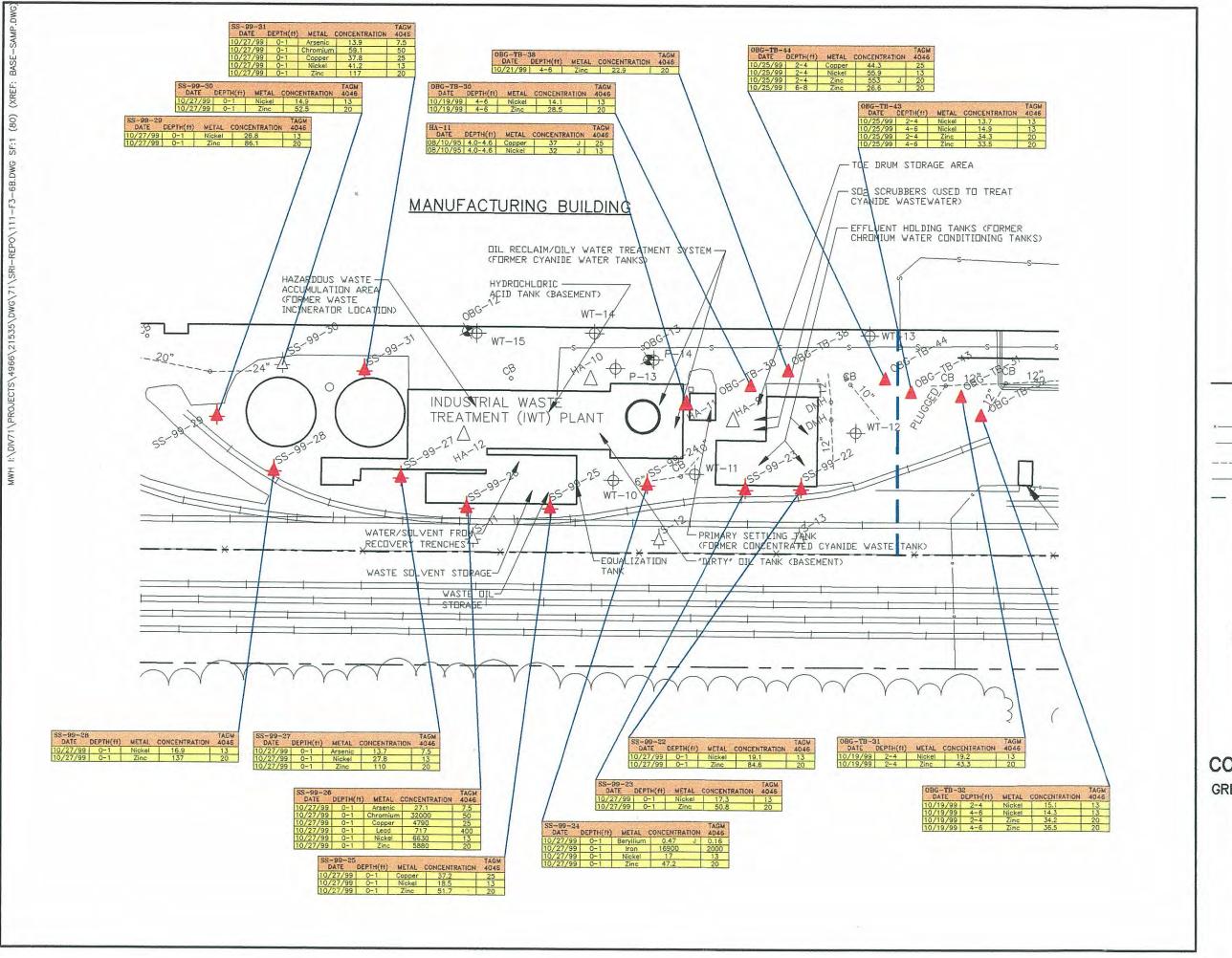


FIGURE 3-7B

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- ↓ SURFACE SOIL SAMPLE
- ▲ SOIL BORING

PROPERTY LINE
TREE LINE

SANITARY SEWER

- - AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

IWT PLANT AREA
METALS/CYANIDE
CONCENTRATIONS IN SOIL
GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.111 DATE: APRIL 2000

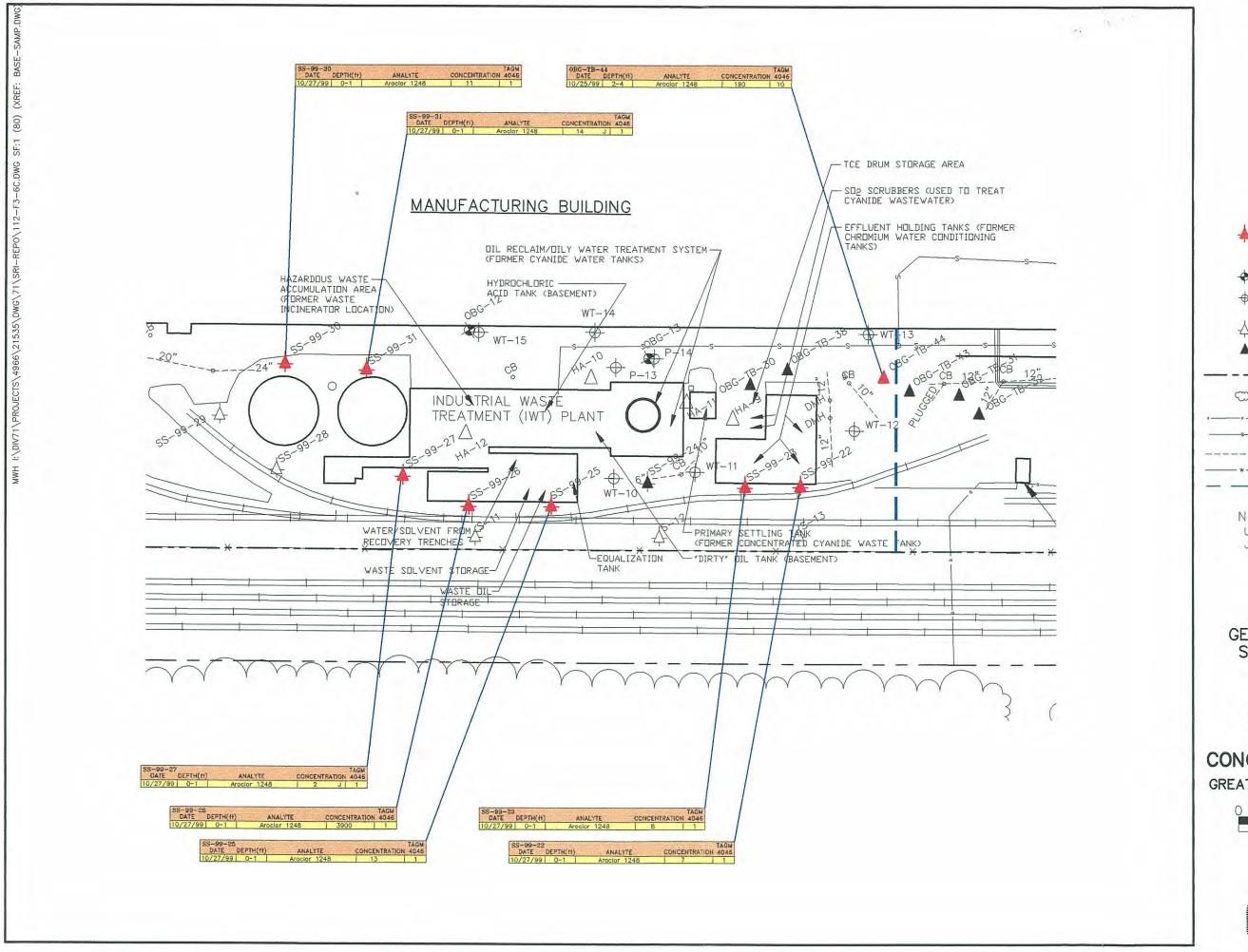


FIGURE 3-7C

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

- MONITORING WELL NOT SAMPLED

4 SURFACE SOIL SAMPLE

▲ SOIL BORING

PROPERTY LINE

-×----× FENCE

SANITARY SEWER

---- STORM SEWER
----- WATER

- - AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

IWT PLANT AREA
PCB
CONCENTRATIONS IN SOIL
GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.112 DATE: APRIL 2000

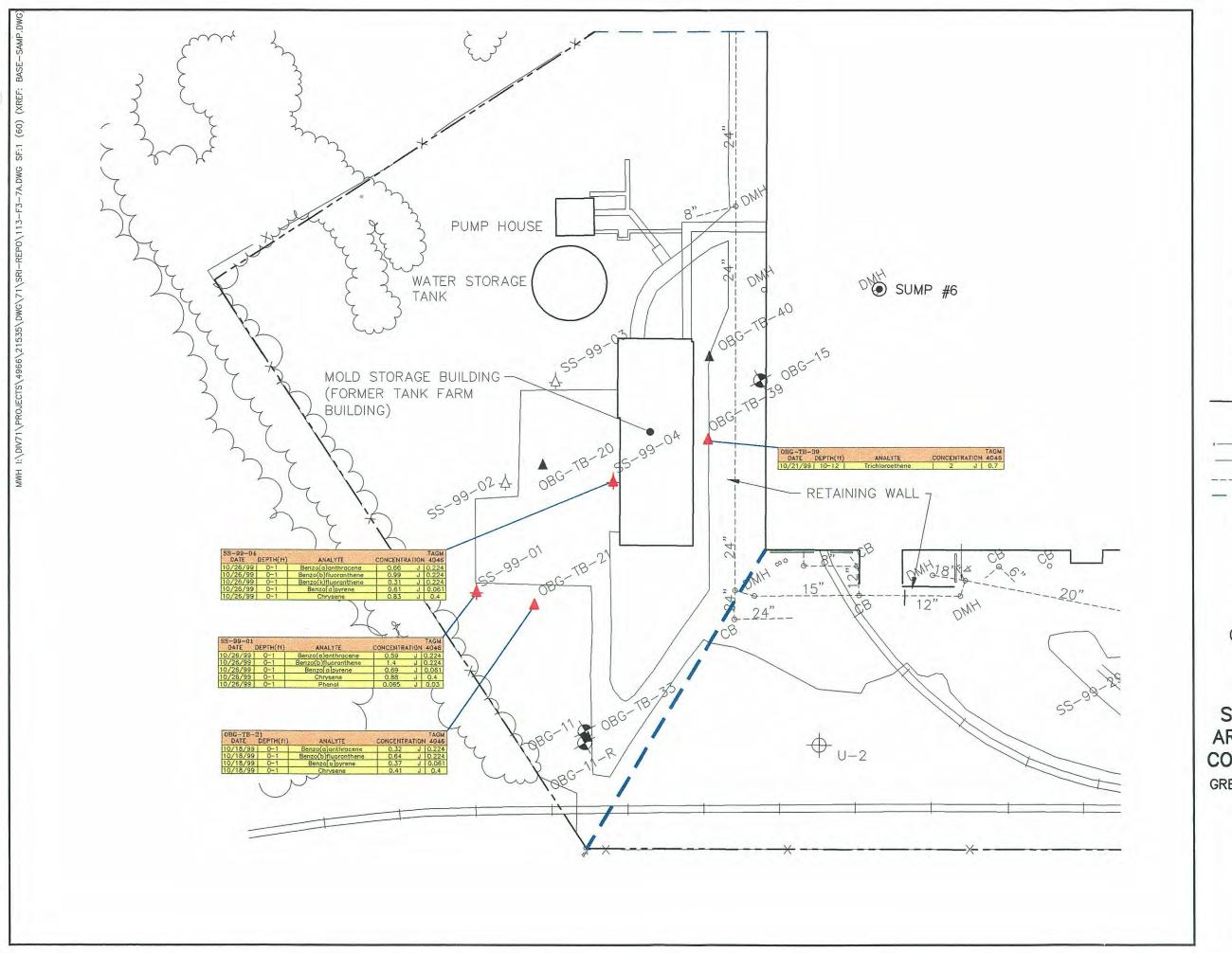


FIGURE 3-8A

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

--- PROPERTY LINE

TREE LINE

TREE LINE

FENCE

SANITARY SEWER

---- STORM SEWER

- - AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SOUTHWEST PROPERTY AREA - VOC AND SVOC CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

60 120 SCALE IN FEET

FILE NO. 4966.21535.113 DATE: APRIL 2000

OBRIENS GERE
ENGINEERS INC.
RACER0060782

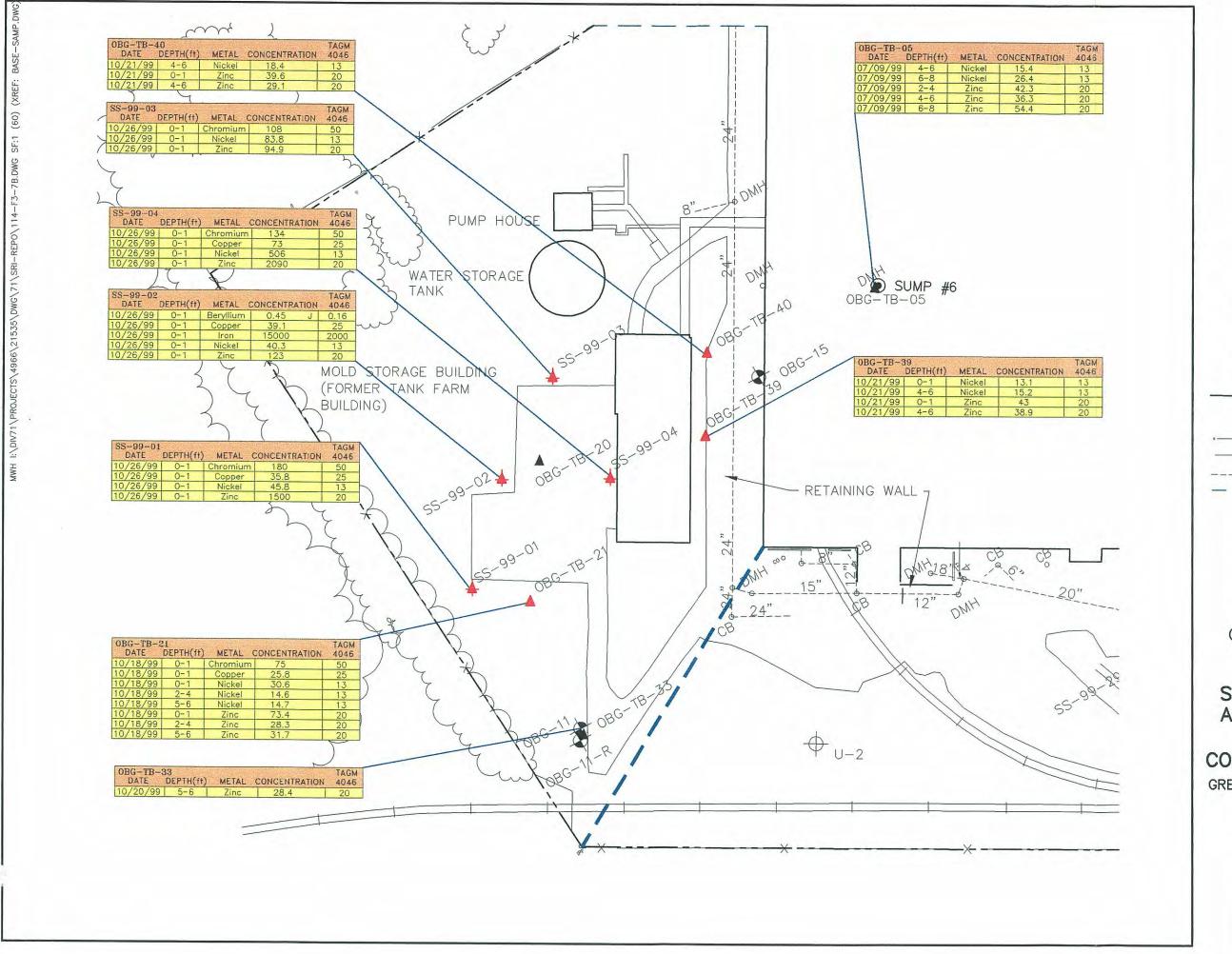


FIGURE 3-8B

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- ♦ MONITORING WELL NOT SAMPLED
- ↓ SURFACE SOIL SAMPLE
- SOIL BORING

PROPERTY LINE

____ * FENCE

SANITARY SEWER

---- STORM SEWER - --- → AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SOUTHWEST PROPERTY
AREA - SITE RELATED
METALS/CYANIDE
CONCENTRATIONS IN SOIL
GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.114 DATE: APRIL 2000

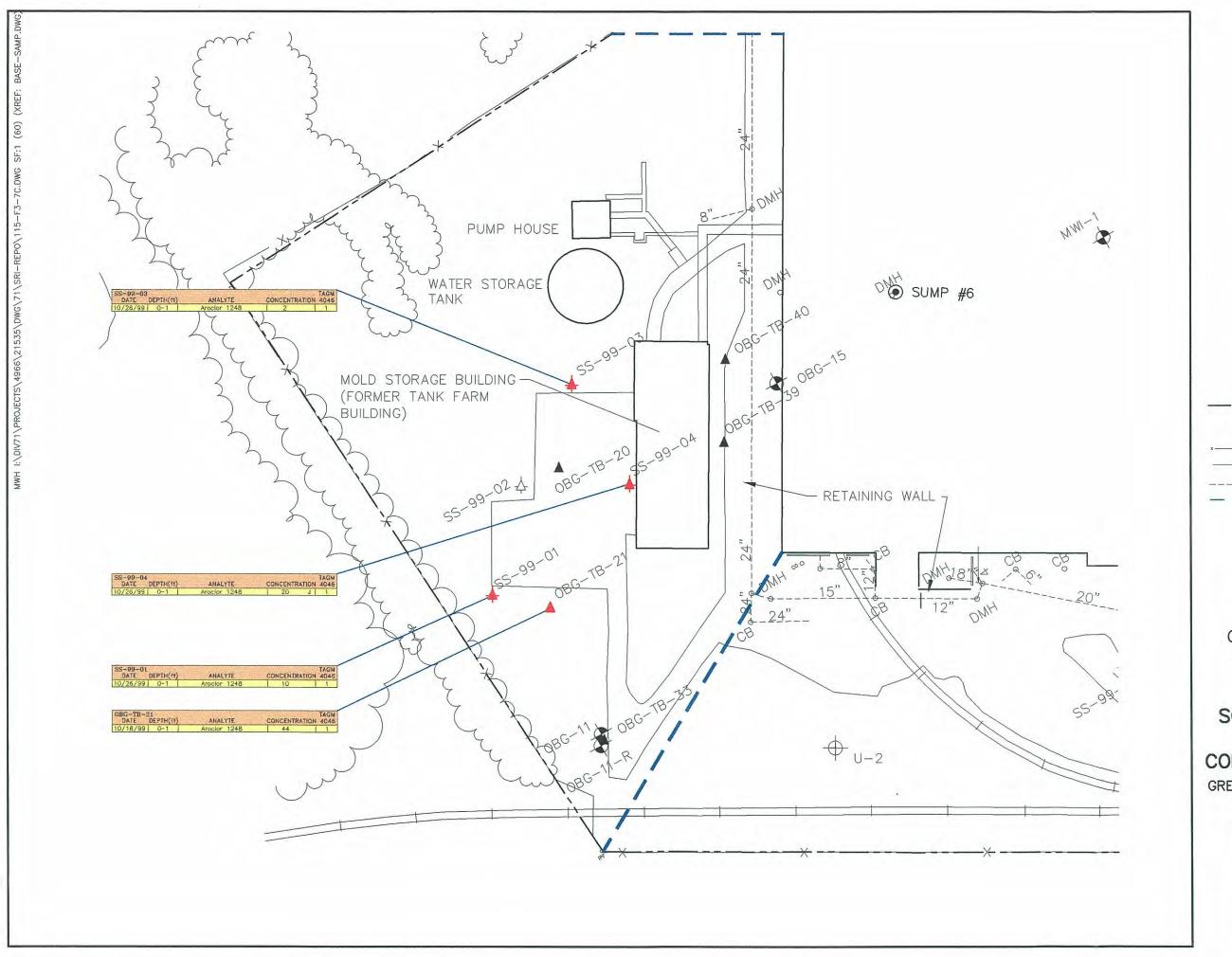


FIGURE 3-8C

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

TREE LINE

-- PROPERTY LINE

SANITARY SEWER

---- STORM SEWER

- AREA BOUNDARY LINE

NOTES: UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

SOUTHWEST PROPERTY AREA - PCB CONCENTRATIONS IN SOIL GREATER THAN SCREENING LEVELS

SCALE IN FEET

FILE NO. 4966.21535.115 DATE: APRIL 2000

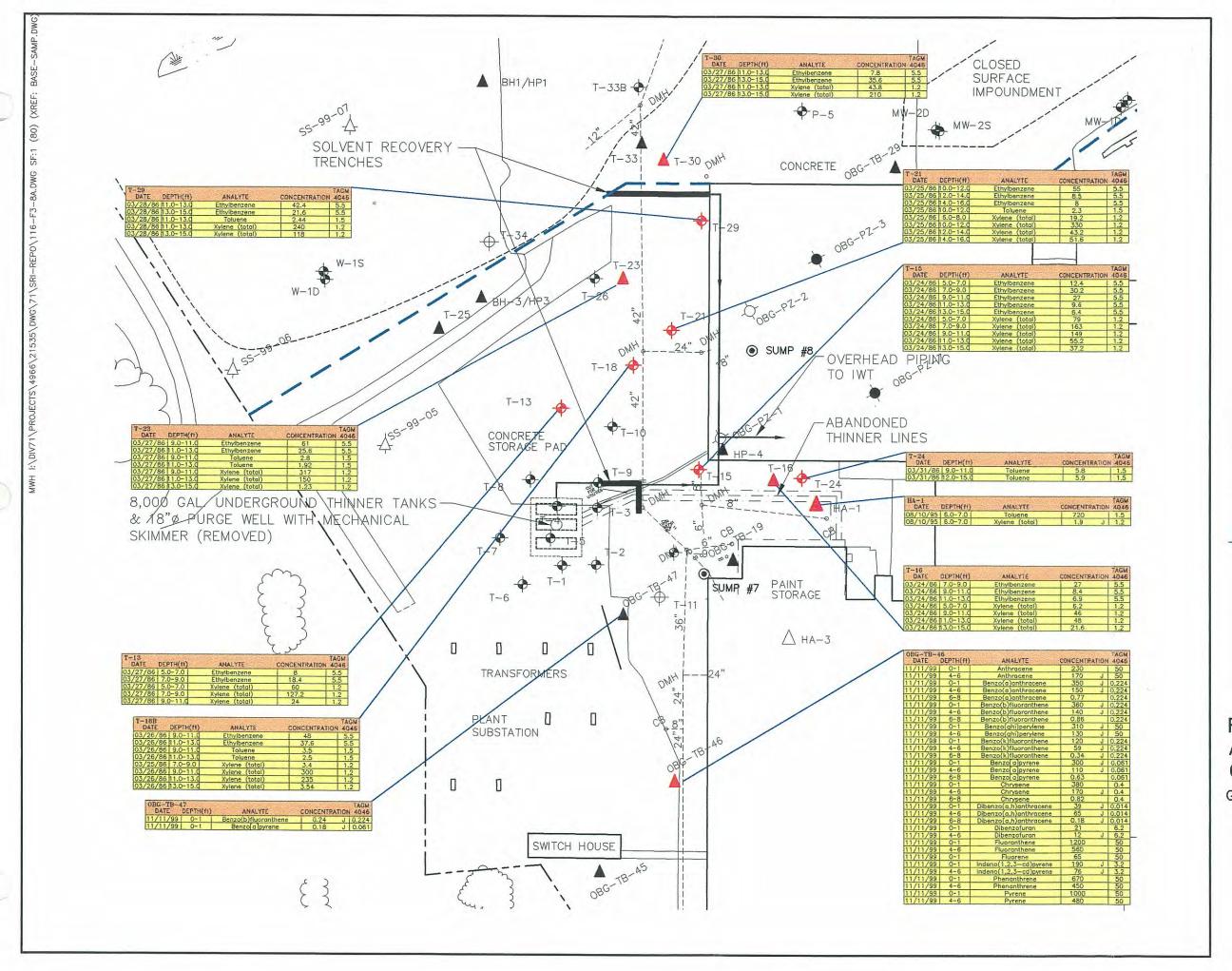


FIGURE 3-9A

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- → SURFACE SOIL SAMPLE
- ▲ SOIL BORING
- --- PROPERTY LINE
- SANITARY SEWER
- ---- STORM SEWER
- — ABANDON THINNER LINES
 — AREA BOUNDARY LINE

TREE LINE

NOTES: UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

FORMER THINNER TANKS AREA - VOC AND SVOC CONCENTRATION IN SOIL GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.116 DATE: APRIL 2000

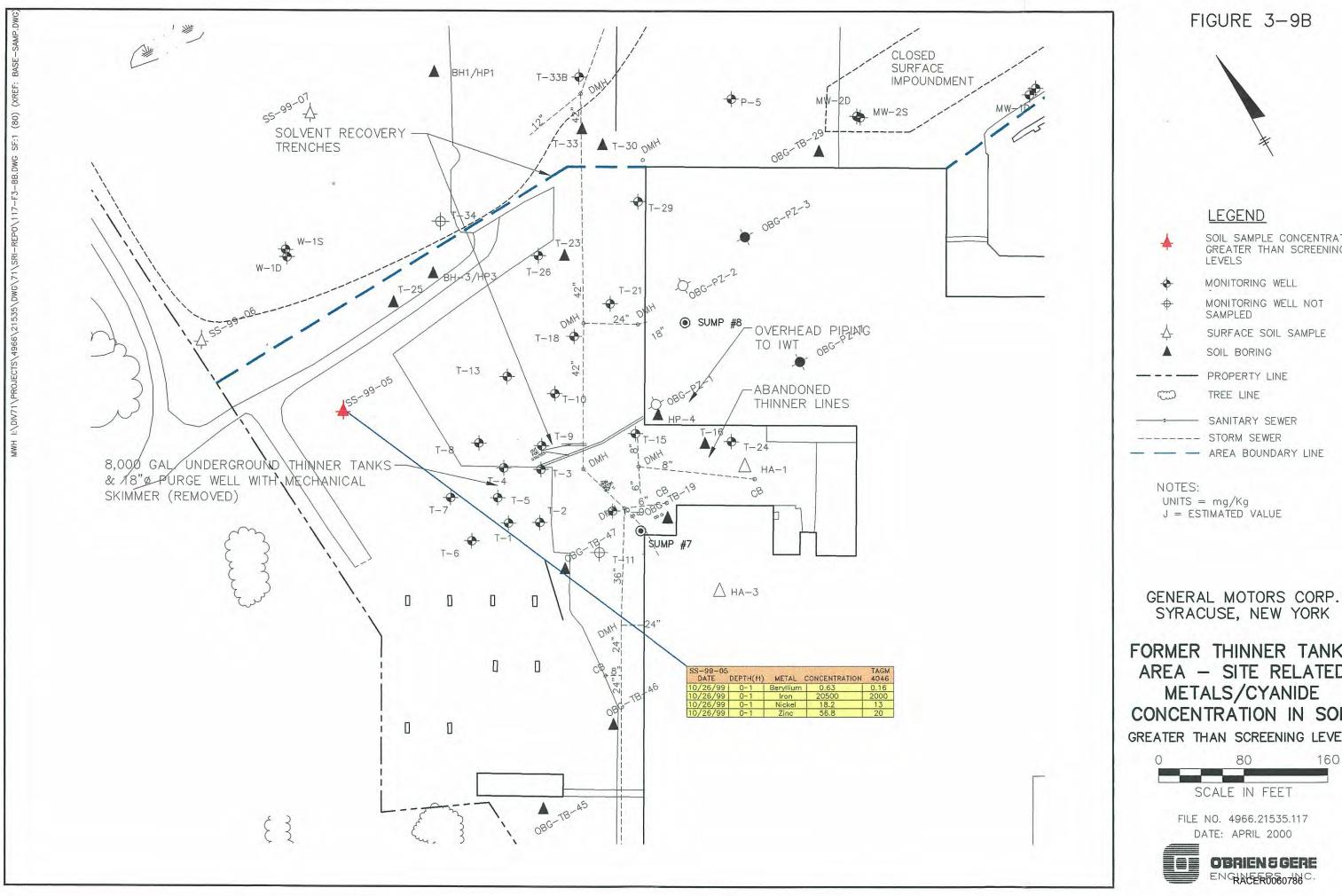


FIGURE 3-9B

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

- PROPERTY LINE

SANITARY SEWER

--- STORM SEWER

FORMER THINNER TANKS AREA - SITE RELATED METALS/CYANIDE CONCENTRATION IN SOIL

GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.117 DATE: APRIL 2000

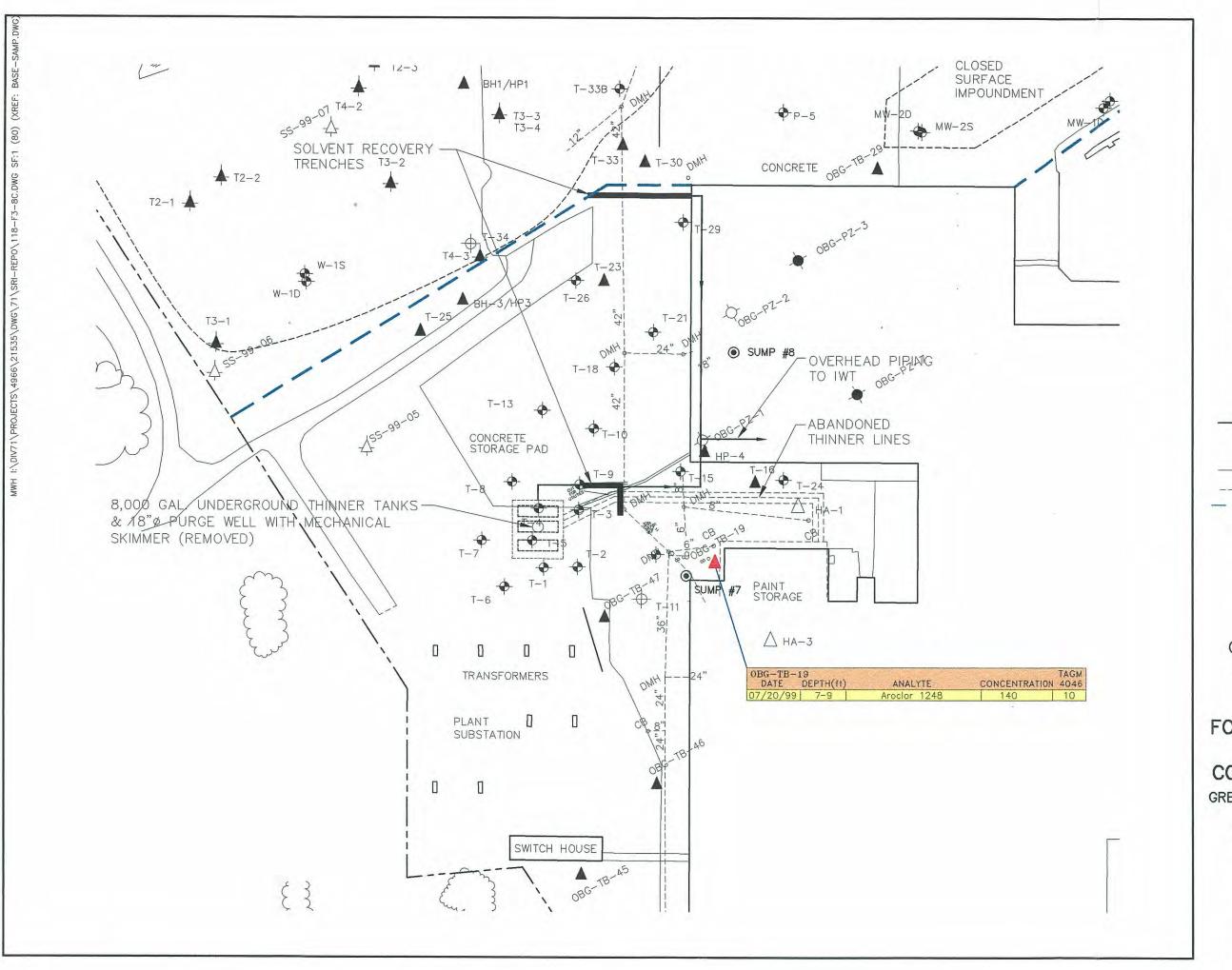


FIGURE 3-9C

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

↓ SURFACE SOIL SAMPLE

▲ SOIL BORING

PROPERTY LINE

SANITARY SEWER

----- STORM SEWER
- --- AREA BOUNDARY LINE

NOTES: UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

FORMER THINNER TANKS AREA - PCB CONCENTRATION IN SOIL GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.118 DATE: APRIL 2000

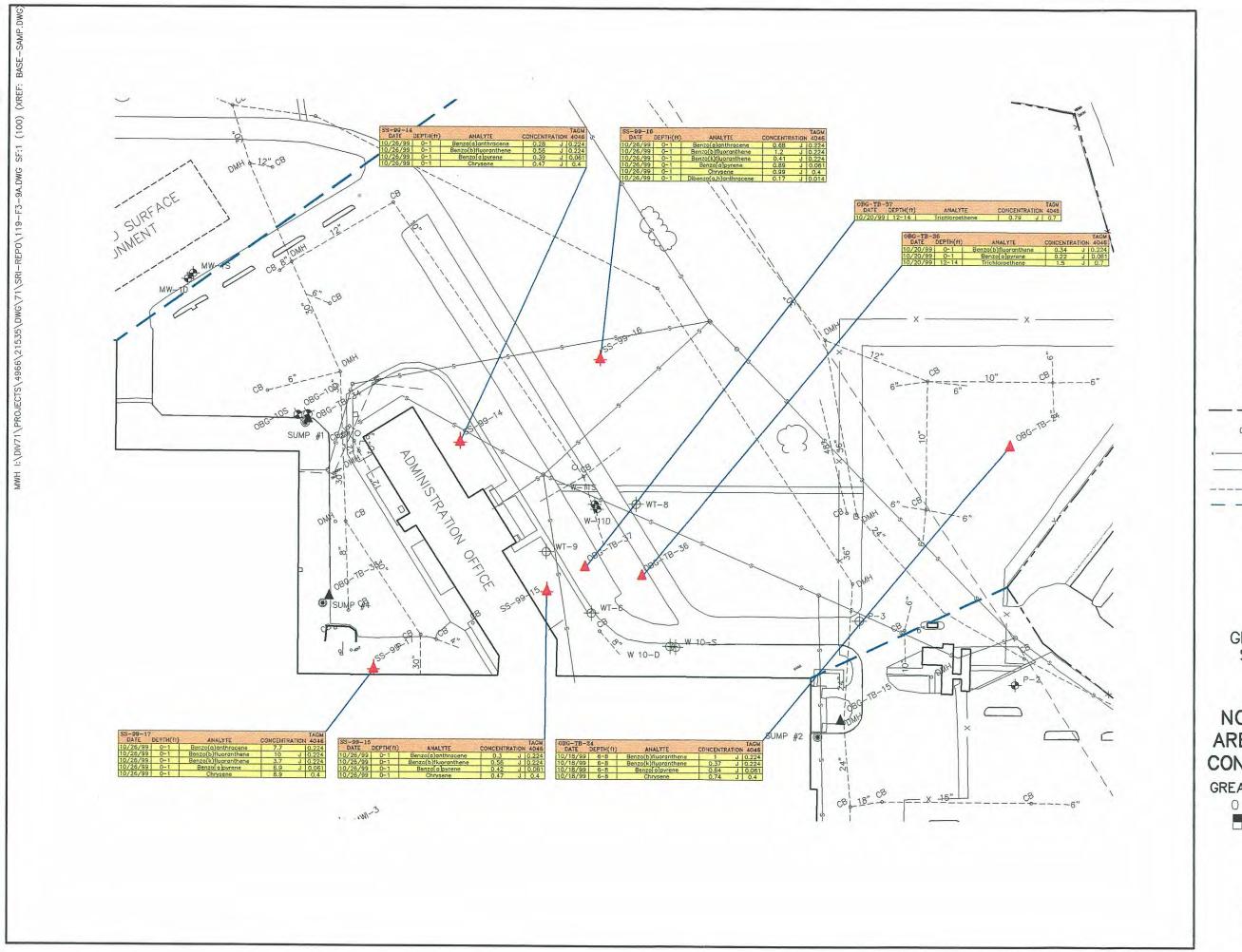


FIGURE 3-10A

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

↓ SURFACE SOIL SAMPLE

TREE LINE

▲ SOIL BORING

--- PROPERTY LINE

----× FENCE

SANITARY SEWER

---- STORM SEWER

- AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHEAST PROPERTY AREA - VOC AND SVOC CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.119 DATE: APRIL 2000

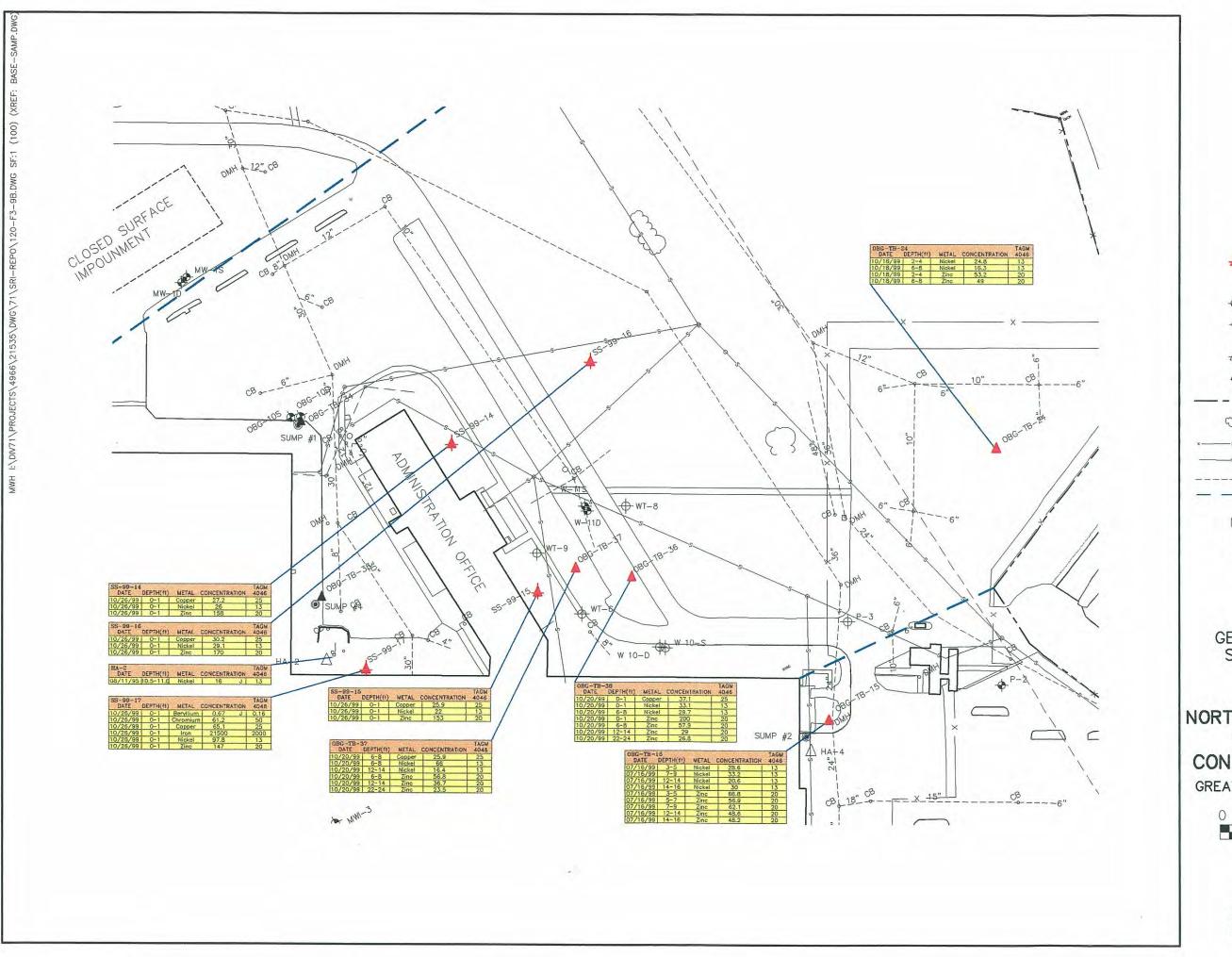


FIGURE 3-10B

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- SURFACE SOIL SAMPLE
- SOIL BORING
- --- PROPERTY LINE
- TREE LINE

 TREE LINE

 FENCE
- SANITARY SEWER
- ---- STORM SEWER
 --- AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHEAST PROPERTY AREA METALS/CYANIDE CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

SCALE IN FEET

FILE NO. 4966.21535.120 DATE: APRIL 2000

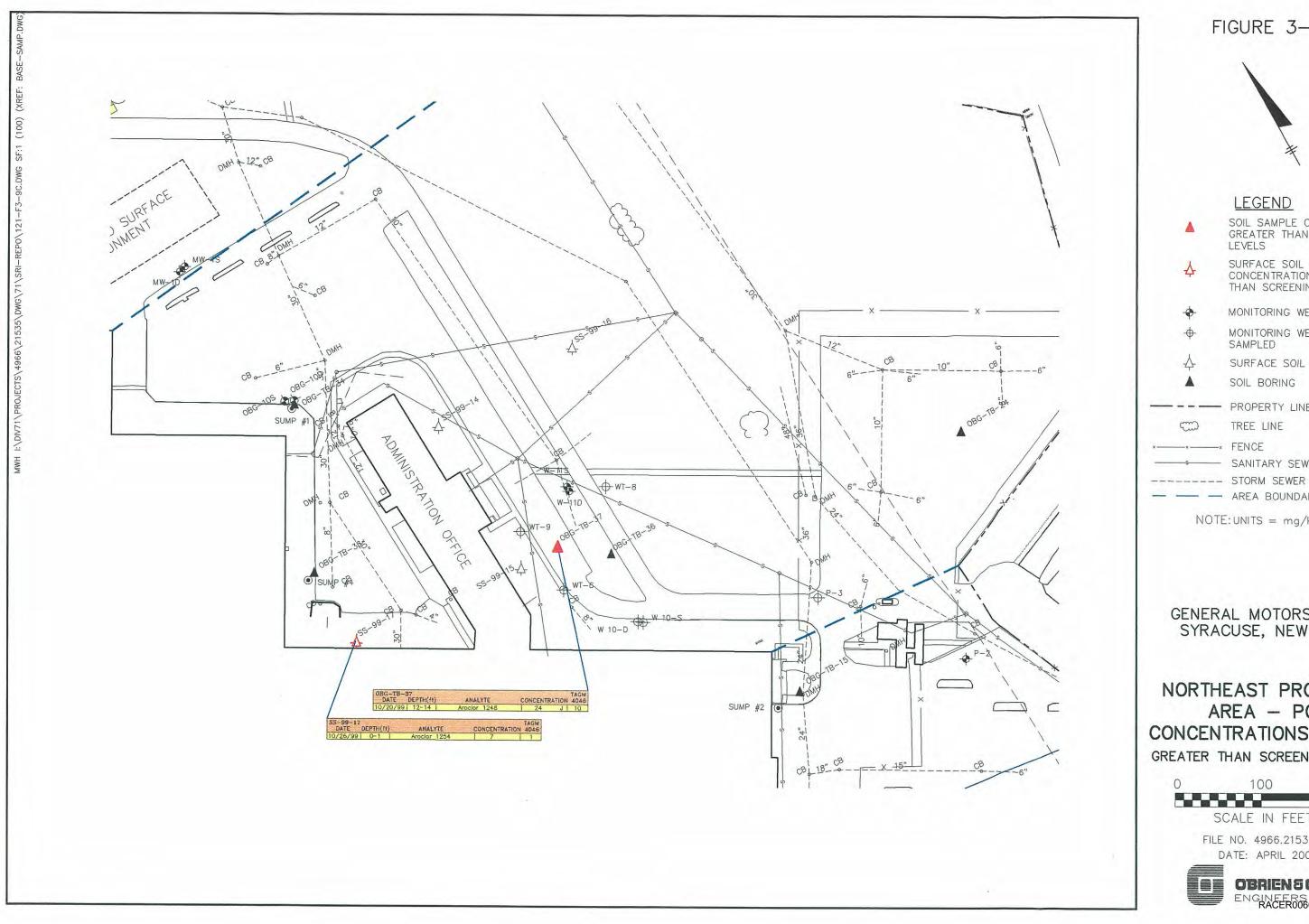


FIGURE 3-10C

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

SURFACE SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

- PROPERTY LINE TREE LINE

FENCE

SANITARY SEWER

- → AREA BOUNDARY LINE

NOTE: UNITS = mg/Kg

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHEAST PROPERTY AREA - PCB CONCENTRATIONS IN SOIL GREATER THAN SCREENING LEVELS

SCALE IN FEET

FILE NO. 4966.21535.121 DATE: APRIL 2000

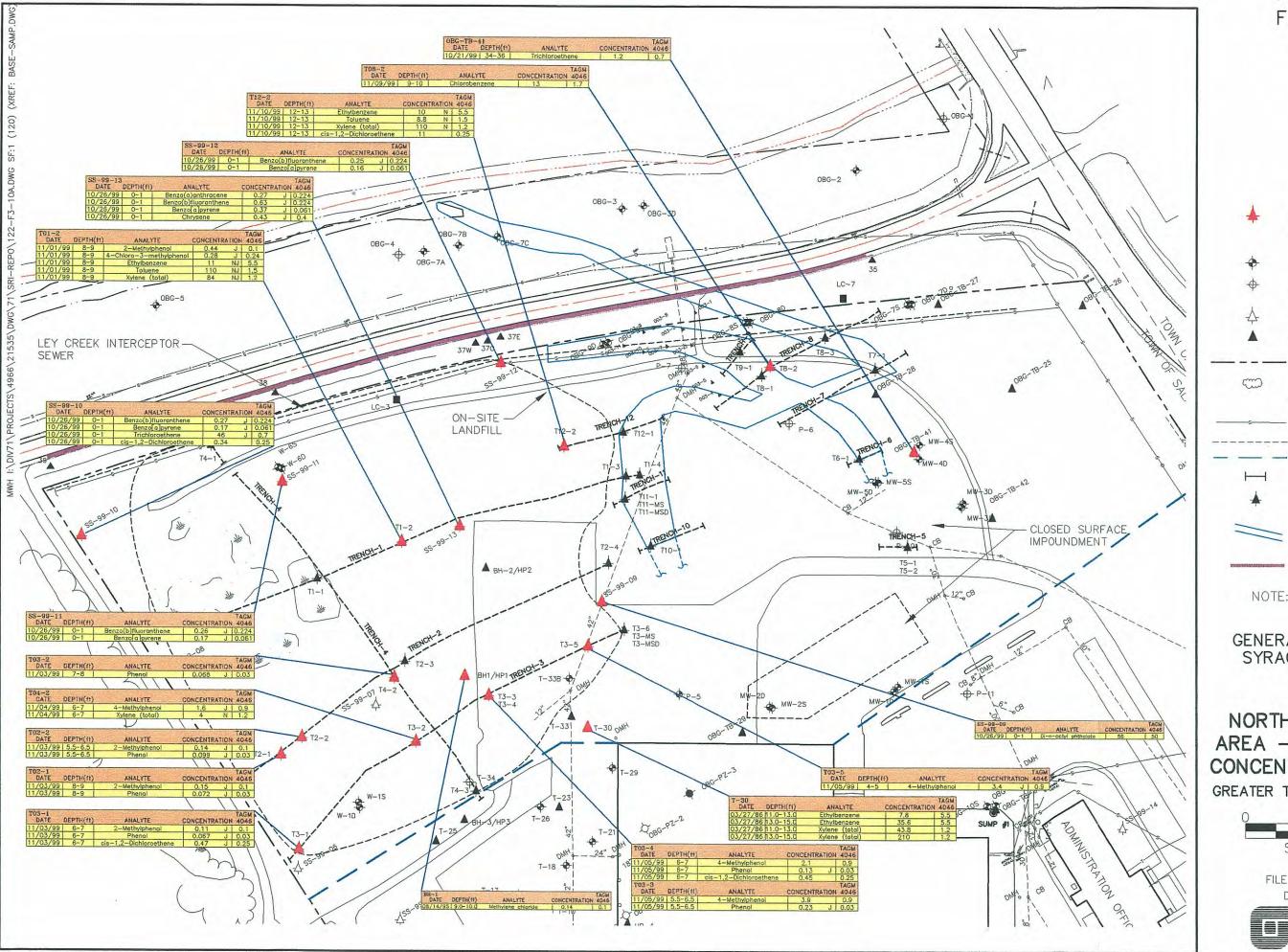


FIGURE 3-11A

LEGEND

- SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- ↓ SURFACE SOIL SAMPLE
- SOIL BORING
- PROPERTY LINE
- TREE LINE
 - FENCE
 - SANITARY SEWER
- ---- STORM SEWER
- AREA BOUNDARY LINE
- TEST TRENCH
- TEST TRENCH SAMPLE
- ESTIMATED HISTORICAL LOCATION OF FORMER DRAINAGE SWALE
 - APPROXIMATE EXTENT OF SEWER IRM

NOTE: UNITS = mg/Kg

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHERN PROPERTY AREA — VOC AND SVOC CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.122 DATE: APRIL 2000

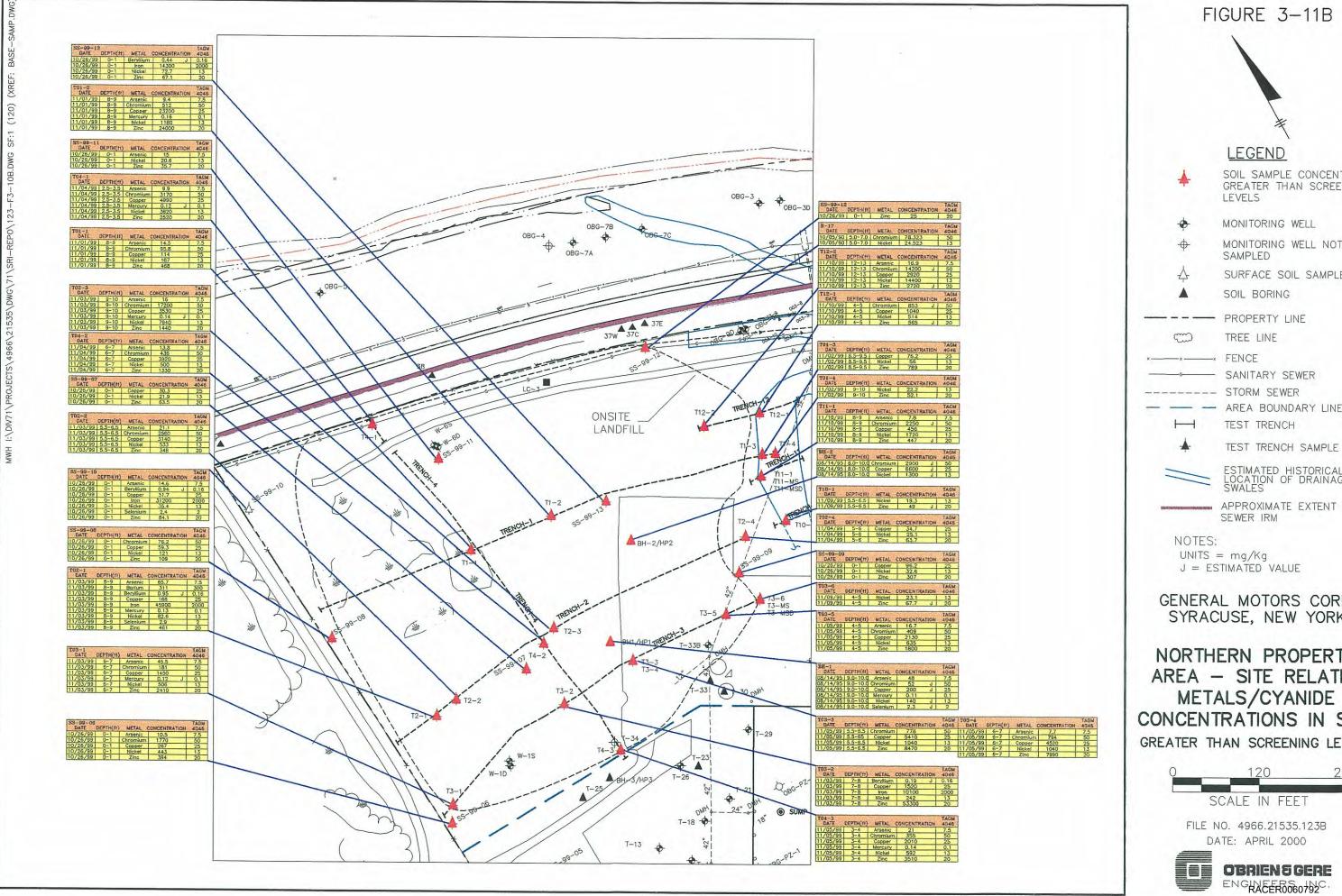


FIGURE 3-11B

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

- PROPERTY LINE

SANITARY SEWER

- AREA BOUNDARY LINE

ESTIMATED HISTORICAL LOCATION OF DRAINAGE SWALES

APPROXIMATE EXTENT OF

J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHERN PROPERTY AREA - SITE RELATED METALS/CYANIDE CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

FILE NO. 4966.21535.123B DATE: APRIL 2000

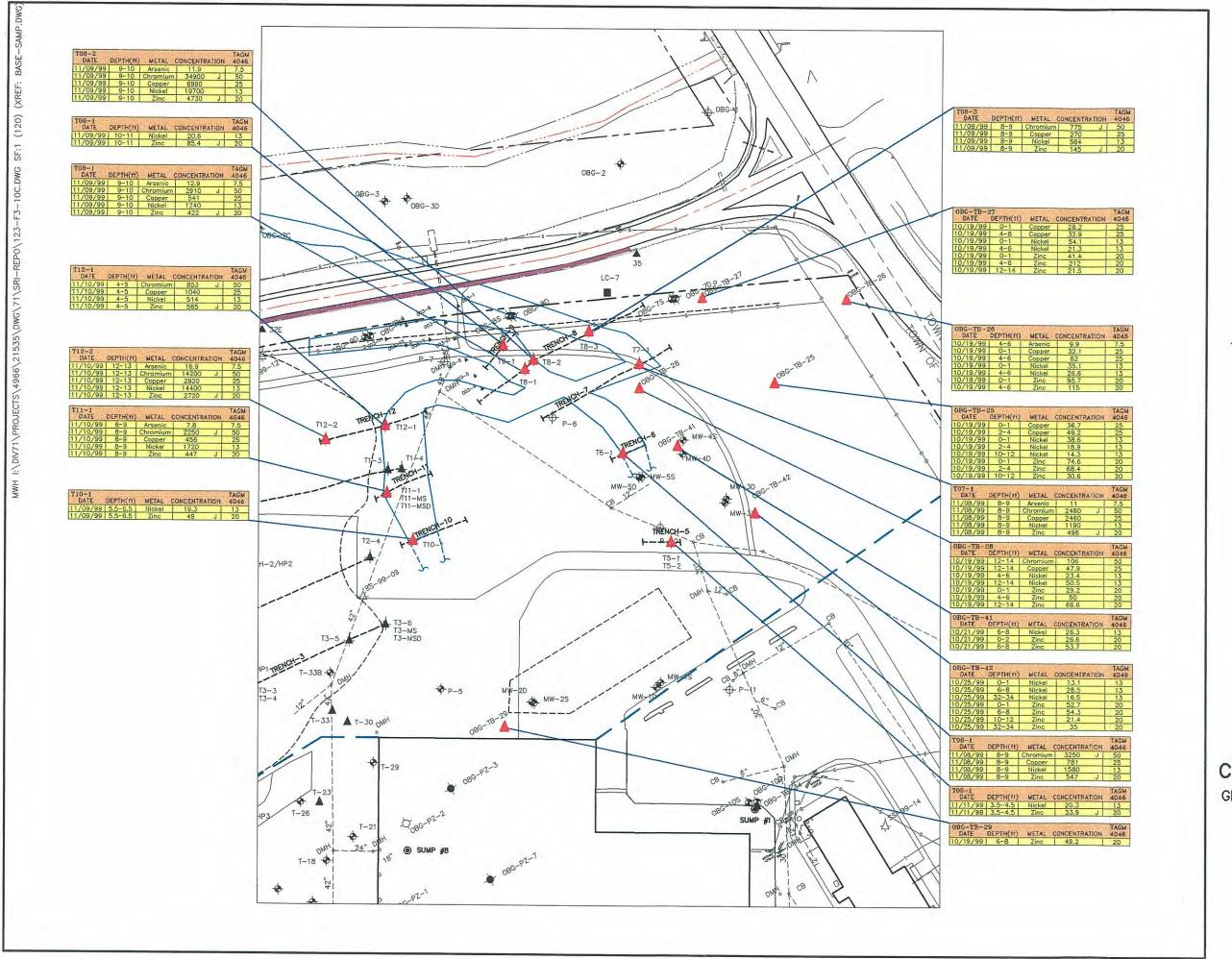


FIGURE 3-11C

LEGEND

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

- PROPERTY LINE

TREE LINE

FENCE

SANITARY SEWER

-- STORM SEWER

- AREA BOUNDARY LINE

TEST TRENCH

TEST TRENCH SAMPLE

ESTIMATED HISTORICAL LOCATION OF DRAINAGE SWALE

APPROXIMATE EXTENT OF SEWER IRM

NOTES:

UNITS = mg/KgJ = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHERN PROPERTY AREA - SITE RELATED METALS/CYANIDE CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

SCALE IN FEET

FILE NO. 4966.21535.123C DATE: APRIL 2000

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING

MONITORING WELL

MONITORING WELL NOT SAMPLED

SURFACE SOIL SAMPLE

SOIL BORING

--- PROPERTY LINE

---× FENCE

SANITARY SEWER

--- STORM SEWER

TREE LINE

- AREA BOUNDARY LINE

APPROXIMATE EXTENT OF SEWER IRM

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHERN PROPERTY AREA — PCB CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

DATE: APRIL 2000 FILE NO: 4966.21535.124

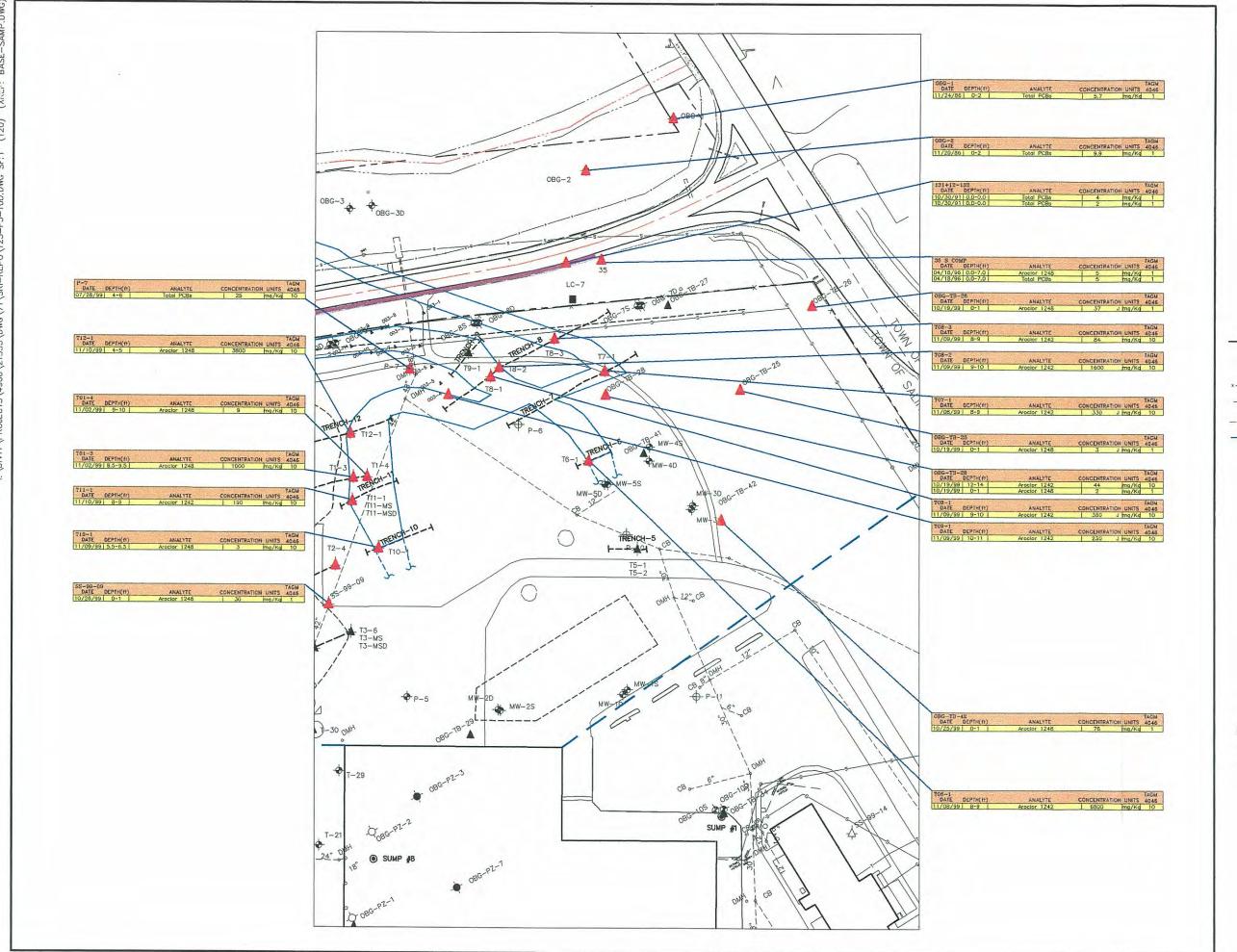


FIGURE 3-11E

SOIL SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS

MONITORING WELL

MONITORING WELL NOT SAMPLED

TREE LINE

SURFACE SOIL SAMPLE

SOIL BORING

- PROPERTY LINE

FENCE

SANITARY SEWER

--- STORM SEWER - AREA BOUNDARY LINE

APPROXIMATE EXTENT OF SEWER IRM

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

NORTHERN PROPERTY AREA - PCB CONCENTRATIONS IN SOIL

GREATER THAN SCREENING LEVELS

DATE: APRIL 2000 FILE NO: 4966.21535.125

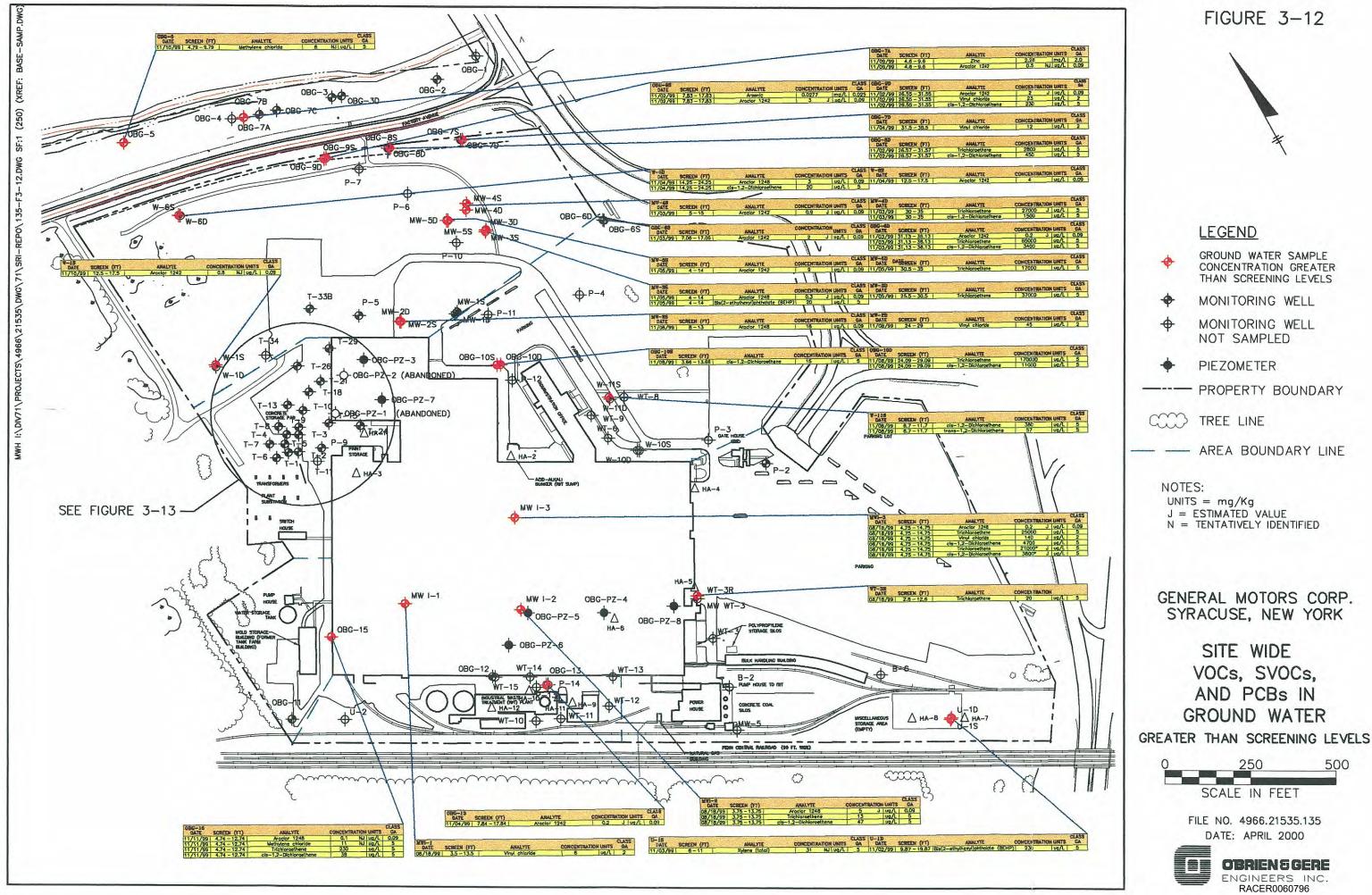


FIGURE 3-12

LEGEND

- GROUND WATER SAMPLE CONCENTRATION GREATER THAN SCREENING LEVELS
- MONITORING WELL
- MONITORING WELL NOT SAMPLED
- PIEZOMETER
- PROPERTY BOUNDARY

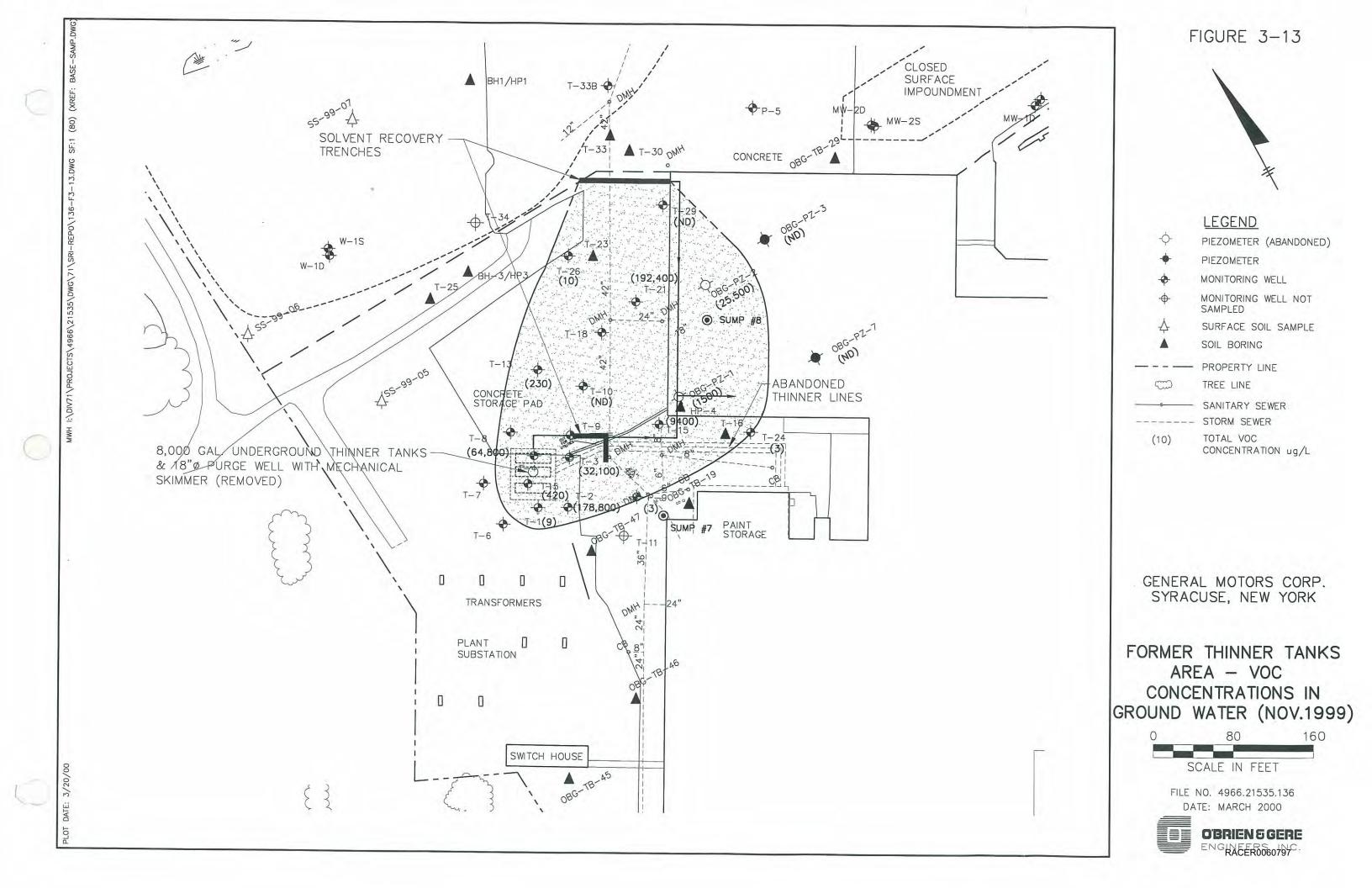
TREE LINE

AREA BOUNDARY LINE

NOTES:

UNITS = mg/Kg J = ESTIMATED VALUE N = TENTATIVELY IDENTIFIED

GENERAL MOTORS CORP. SYRACUSE, NEW YORK


SITE WIDE VOCs, SVOCs, AND PCBs IN GROUND WATER

500

SCALE IN FEET

FILE NO. 4966.21535.135 DATE: APRIL 2000

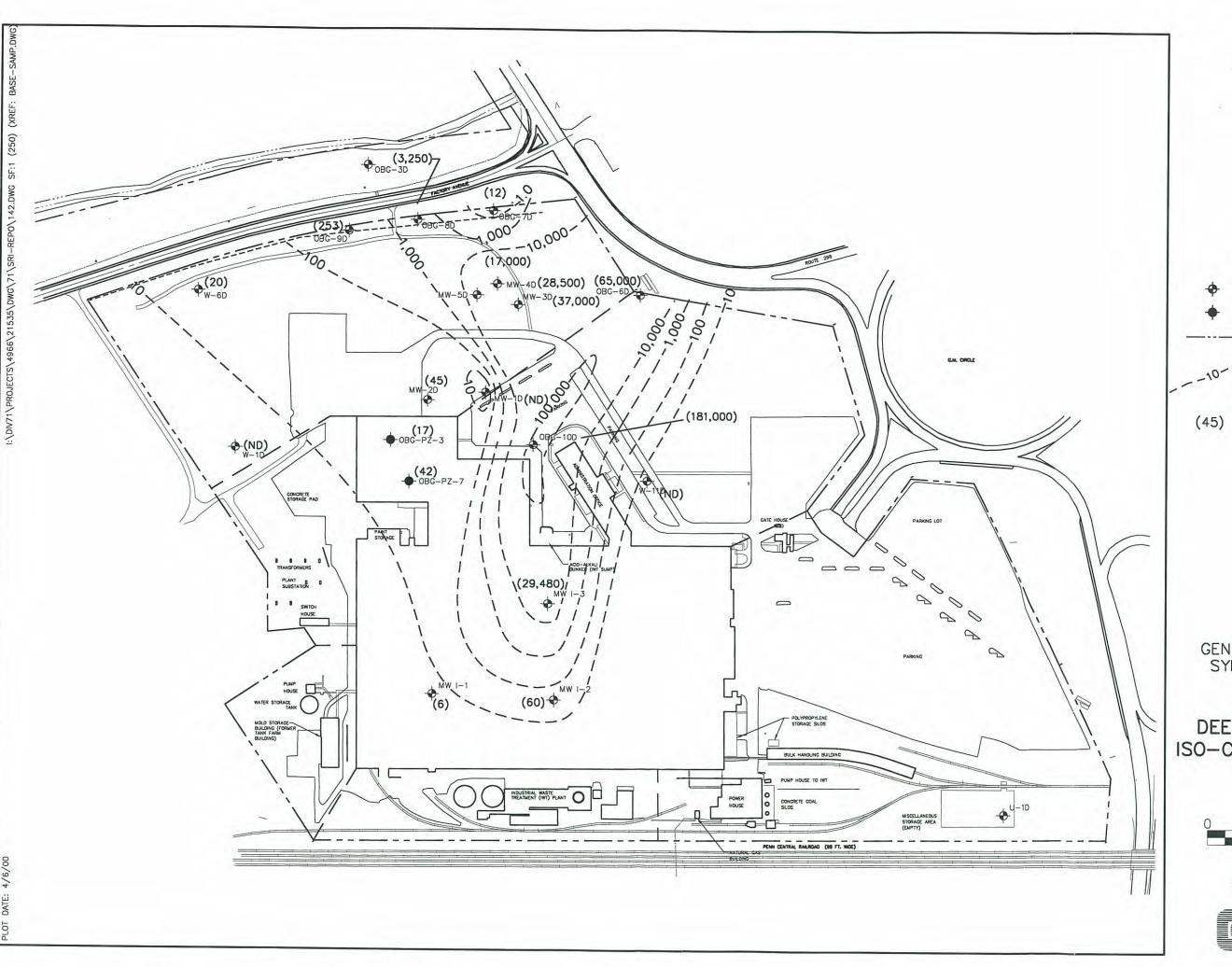


FIGURE 3-14

LEGEND

- MONITORING WELL
- PIEZOMETER
- --- PROPERTY BOUNDARY
- ____ISO CONCENTRATION LINE
- (45) TOTAL VOC CONCENTRATION (ug/L)

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

DEEP GROUND WATER ISO-CONCENTRATION MAP

FILE NO. 4966.21535.142 DATE: APRIL 2000

Figure 3-15
Outfall 003 - Trichloroethene

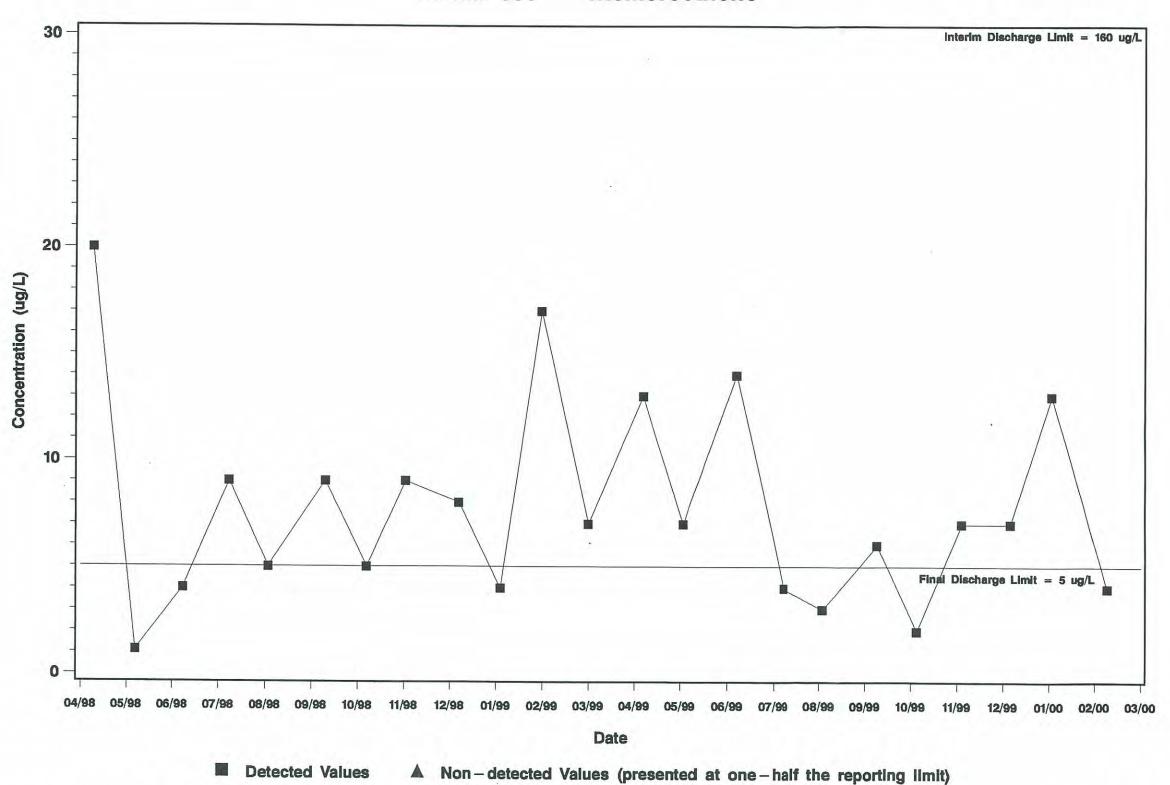
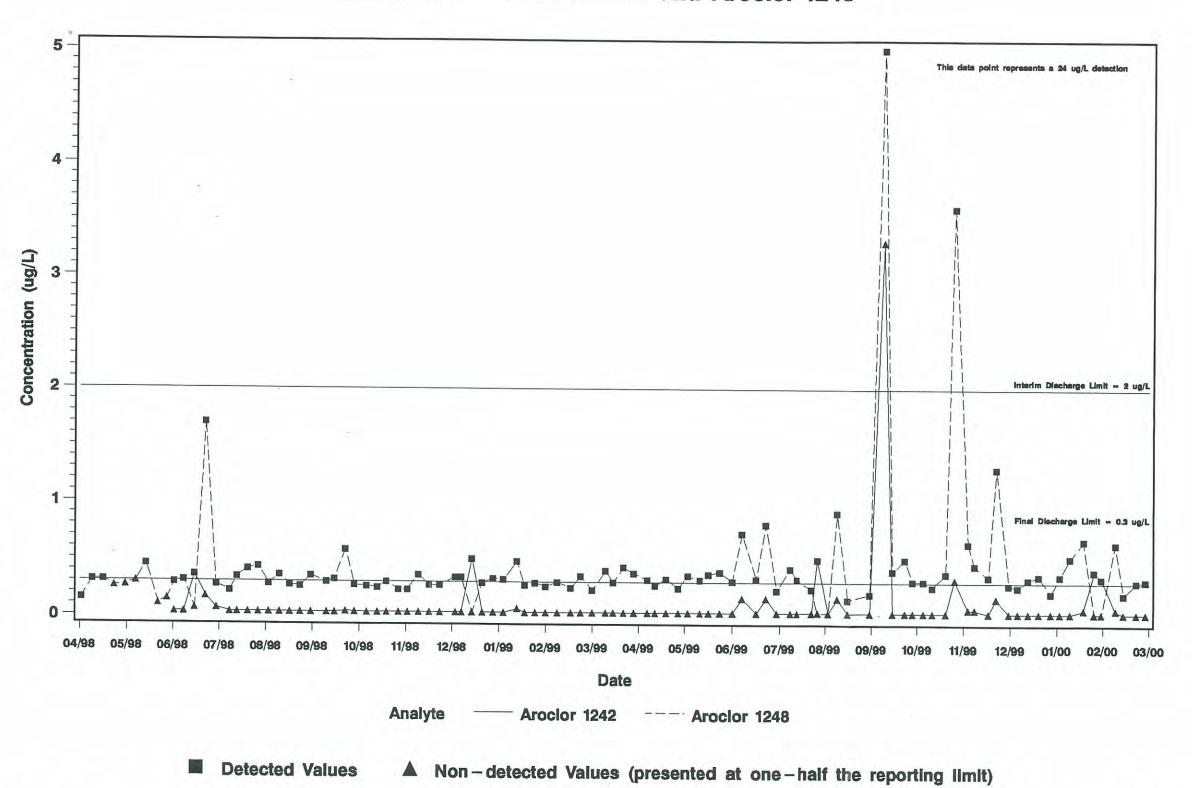



Figure 3-16
Outfall 003 - Aroclor 1242 and Aroclor 1248

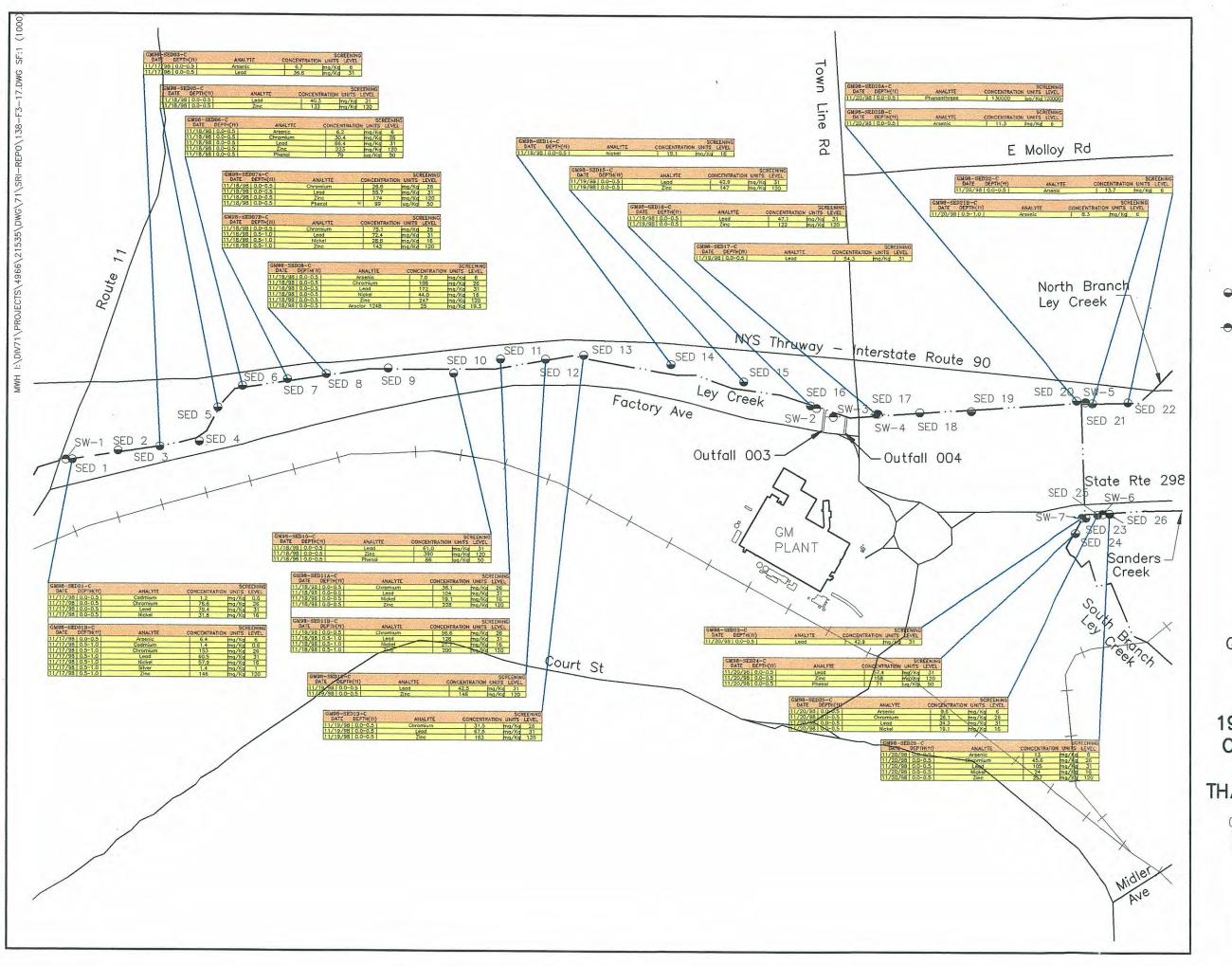


FIGURE 3-17

LEGEND

- SEDIMENT CORE SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

1998/1999 LEY CREEK CONCENTRATIONS IN SEDIMENT GREATER THAN SCREENING LEVELS

DATE: APRIL 2000

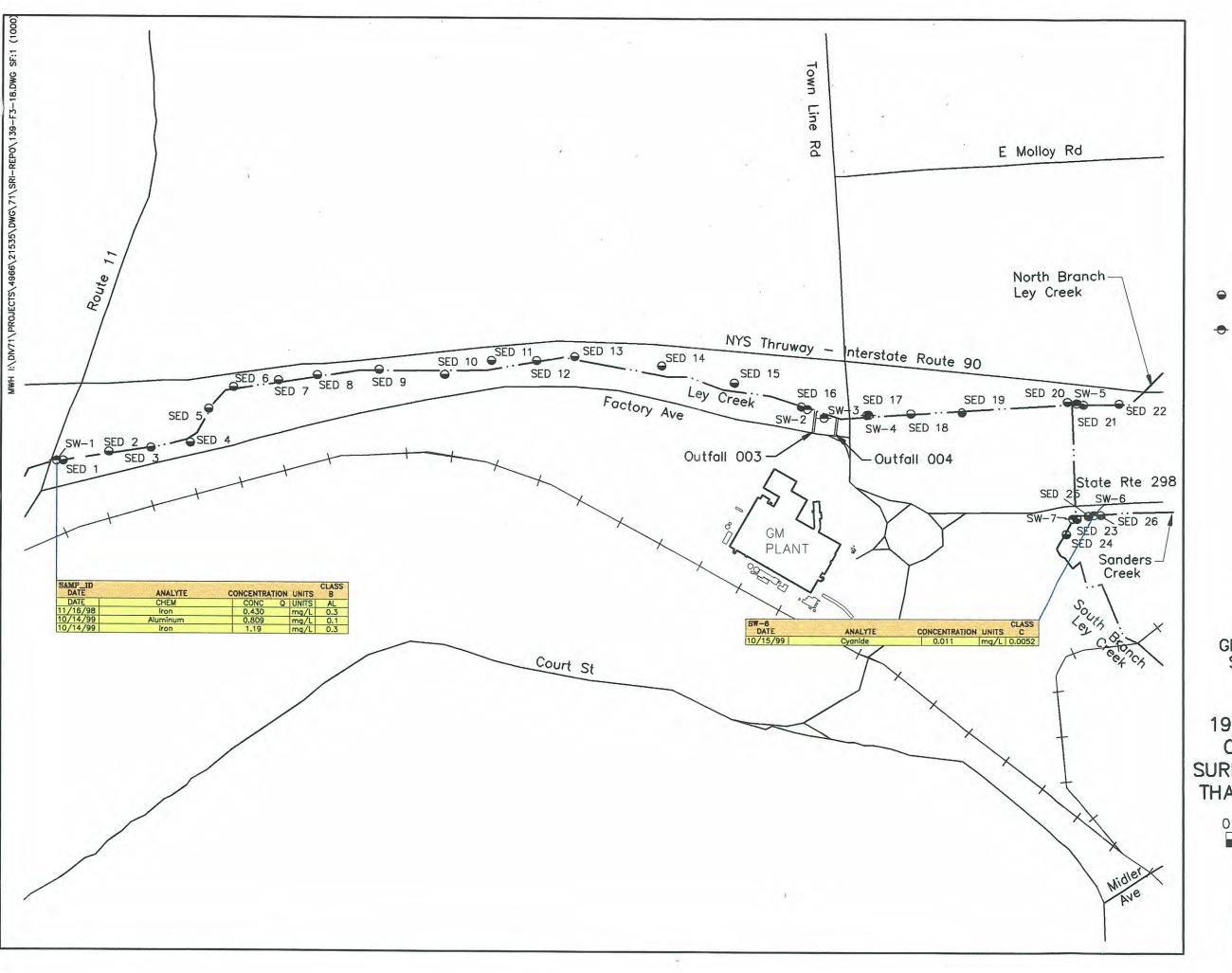
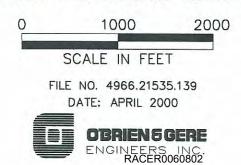


FIGURE 3-18



LEGEND

- SEDIMENT CORE SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION

GENERAL MOTORS CORP. SYRACUSE, NEW YORK

1998/1999 LEY CREEK CONCENTRATIONS IN SURFACE WATER GREATER THAN SCREENING LEVELS

APPENDIX A

Solid waste management unit (SWMU) and Area of Concern (AOC) Status

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
		RCRA or NYSDEC regulated units
1	Lagoon (NYSDEC)	Surface impoundment No. 1 was closed in 1989 in accordance with a RCRA closure plan. Impacted sediment was removed/disposed. Backfill included PCB-containing (< 40 mg/kg) soil from Meadowbrook/Hookway site. Cover consisted of clay, soil, and vegetation.
2	Holding Pond (NYSDEC)	Surface impoundment No. 2 was closed in 1989 in accordance with a RCRA closure plan. Impacted sediment was removed/disposed, and impoundment was backfilled with clean soil, regraded, and covered with soil and vegetation. The potential presence of solvent DNAPL in this area was investigated as part of the Supplemental RI.
E.	Drum Storage Area No. 1 (RCRA)	Closure plan proposed to NYSDEC and never finalized because of its planned inclusion in a multimedia site-wide program. Surface and subsurface soil sampling was conducted in this area (southwest property area) as part of the Supplemental RI.
4	Drum Storage Area No. 2 (RCRA)	Out of service. Surface and subsurface soil sampling was conducted in this area (IWTP area; TCE storage area) as part of the Supplemental RI.
\$	Hazardous Waste Accumulation Area (RCRA)	Currently operated as temporary (less than 90 days) hazardous waste storage area.
9	Kolene Unit (RCRA)	Kolene unit dismantled in 1988 and removed from facility. The kolene unit was aboveground and not expected to have been a source of subsurface contamination.

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draff Part 373 permit)	Status
		Powerhouse Units
7	Powerhouse Wastewater Sump	Item to be addressed during the facility cleaning program. The following activities will be conducted: the sump will be inspected; residuals will be removed; and the sump will be decontaminated.
&	Ash Silo	Out of service. The ash silo is an aboveground structure and is not likely a source of subsurface contamination. Item to be addressed during the facility cleaning program. The following activities will be conducted: the silo will be inspected; residuals will be removed; and the silo will be decontaminated.
6	Ash Scrubber (tumbler)	Out of service. The ash scrubber is an aboveground structure and not expected to have been a source of subsurface contamination. Item to be addressed with the ash silo during the facility cleaning program. The following activities will be conducted: the scrubber will be inspected; residuals will be removed; and the scrubber will be decontaminated.
10	Ash Baghouse	Item is unknown to GM.
11	Ash Pit	Item is unknown to GM.
12	Coal Elevator Sump	Out of service. Item cleaned during 1996 facility decommissioning activities.

O'Brien & Gere Engineers, Inc. INDIVATIVEROJECTS/496621535/5_RPTS/SRI_RPTS/SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Out of service. As part of a 1981 NYSDEC Consent Order, the underground oil reclamation sumps vere cleaned, coated with an expoxy material and filled with pourable concrete (closed in place) in approximately 1985. Substrates soil samples were collected in the fill material surrounding each oil reclamation sump in 1995-1996 as part of the Phase II ESA, as documented in the October 1997 Preliminary NFES Report. Extent of associated oil migration along abandoned storn sewer lines leading to oil/water collection sumps was investigated as part of the proposed work plan for the sewer cleaning and televising program that has been submitted to NYSDEC. GM is currently awaiting approval to proceed. Underground Oil Storage Tanks (five) Portable Pumping Units (five) Mobile units no longer exist. The mobile units were aboveground and are not expected to have been a source of subsurface contamination. Mobile units no longer exist. The mobile units were aboveground unit and was not likely a source of subsurface contamination. Out of service. As part of a 1981 NYSDEC Consent Order, the oil reclain sump was cleaned, coated with an epoxy material and filled with pourable concrete (closed in place) in approximately 1985. Subsurface soil samples were contentration of less than 10 ug/100 cm². Out of service. As part of a 1981 NYSDEC Consent Order, the oil reclaim sump was cleaned, coated with an epoxy material and filled with pourable concrete (closed in place) in approximately 1985. Subsurface soil samples were collected in the Old reclains at the October 1997 Preliminary coated with an epoxy material and filled with pourable concrete (closed in place) in approximately 1987. Subsurface soil samples were collected in the Old reclains sump in 1995-1996 as part of the Phase II ESA, as documented in the October 1997 Preliminary coated with an epoxy material and filled with pourable concrete (closed in place) in approximately 1987. Subsurface soil samples were centered to the Phase II ESA, as documented in the October 1997 Prelim
RI/FS Report. The molder associated with Sump 518 was aboveground and was not connected to subsurface materials.

O'Brien & Gere Engineers, Inc. INDIVATIVPROJECTS\496621535\5_RPTS\SRI_RPTS\SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NXSDEC Unit Name (listed in draft Part 373 permit)	Status
18	Oil Reclaim Sump 701 Molder	Out of service. As part of the 1981 NYSDEC Consent Order, the oil reclaim sump was cleaned, coated with an epoxy material and filled with pourable concrete (closed in place) in approximately 1985. Subsurface soil samples were collected in the fill material surrounding each oil reclamation sump in 1995-1996 as part of the Phase II ESA, as documented in the October 1997 Preliminary RI/FS Report. The molder associated with Sump 701 was aboveground and was not connected to subsurface materials.
19	Oil Collection Trenches	Out of service. The majority of oil collection trenches that surrounded the injection molders were filled with concrete as part of the 1994 manufacturing operations shutdown. The oil collection trenches were shallow (approximately 6 in deep), cut or formed into the reinforced concrete slab, and are not expected to have been a source of subsurface contamination. The remaining trenches that were not filled were addressed during the facility cleaning program. The following activities were conducted: the trenches were inspected; residuals were removed; and the trenches were decontaminated.
20	Oil Collection Pans	Removed in 1992 and 1993 after ceasing of manufacturing operations. The oil collection pans were aboveground and are not expected to have been in contact with subsurface materials.
21	Dirty Oil Tanks (two)	The Dirty Oil Tanks (5,000 gal) were part of injection molder hydraulic oil reclamation and recycling processes. These tanks are aboveground and are not expected to have been a source of subsurface contamination. Item to be addressed during the facility cleaning program. The following activities will be conducted: the tanks will be inspected; residuals will be removed; the tanks will be decontaminated and removed.
22	Industrial Waste Treatment Plant Sump	Item unknown to GM. Potentially could be active sumps (Unit Nos. 61 and 62) which collect water from tank containment area.

O'Brien & Gere Engineers, Inc. INDIVINPROJECTS/4966/21535/5_RPTS/SRI_RPTS/SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
23	Primary Dirty Oil Filter	The primary Dirty Oil Filter, Vacuum Distillation Units, and secondary Dirty Oil Filter were part of the injection molder hydraulic oil reclamation and recycling process. These units are aboveground
24	Vacuum Distillation Units (two)	and are not expected to have been a source of subsurface contamination. Items addressed during the facility cleaning program. The following activities were conducted: the units were inspected; residuals were removed; and the units were decontaminated and removed.
25	Secondary Dirty Oil Filter	
26	Dirty Oil Holding Tanks (two)	Items unknown to GM.
27	Kidney Filters (two)	Unit part of injection molder hydraulic oil reclamation and recycling process. These filters are aboveground units and are not expected to have been a source of subsurface contamination. Item addressed during the facility cleaning program. The following activities were conducted: the filters were inspected; residuals were removed; and the filters were decontaminated and removed.
28	Interceptor Trenches (two)	Currently in service to collect ground water as part of 1986 thinner consent order program. The interceptor trenches will be left in place until the final site remedy is implemented.
29	Contaminated Ground Water Tank	Currently in service to collect ground water as part of 1986 thinner consent order program.
30	Interceptor Sumps	Currently in service to collect oil/water from beneath manufacturing building and pump to the Industrial Waste Treatment (IWT) plant for treatment.
31	Paint Room Sump	Out of service. Paint room sump to be investigated during Supplemental RI. Item to be addressed during the facility cleaning program. The following activities will be conducted; the sump will be inspected; residuals will be removed; and the sump will be decontaminated and filled with inert material.

O'Brien & Gere Engineers, Inc.

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
32	Clarifier	Active part of IWT plant used for temporary storage of wastewater. The clarifier tank is aboveground and is not expected to have been a source of subsurface contamination.
33	Inactive Clarifier	Reserve clarifier is an active part of IWT plant. The clarifier tank is aboveground and is not expected to have been a source of subsurface contamination.
34	Sludge Sump	Active part of IWT plant.
35	Inactive Sludge Sump	Reserve sludge pump. Active part of IWT plant.
36	Sludge Thickener Tank	Active part of IWT plant. The tank is aboveground and is not expected to have been a source of subsurface contamination.
37	Inactive Sludge Thickener Tank	Reserve sludge thickener tank. Active part of IWT plant. The tank is aboveground and is not expected to have been a source of subsurface contamination.
38	Sludge Holding Tank	Primary paint sludge tank out of service. The tank is aboveground and is not likely a source of subsurface contamination.
39	Filter Press	The filter press was cleaned, tested, and removed in June 1998. The filter press was aboveground and is not expected to have been a source of subsurface contamination.
40	Holding Tanks (three)	Active part of IWT plant (final effluent holding tanks). The tanks are aboveground and are not expected to have been a source of subsurface contamination.
41	Industrial Waste Sump	Also referred to as acid/alkali bunker. Active sump located in front (north) of manufacturing building which collects water from oil/water collection sumps 1, 2, 4, and 5 and pumps to main equalization tank.

O'Brien & Gere Engineers, Inc. INDIVINPROJECTS/4966/21535/5_RPTS/SRI_RPTS/SWMU.WPD

9

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
42	Emergency Overflow Sump	Active part of IWT plant (related to gas engine).
43	Deionized Water Sump	Active part of IWT plant.
44	Equalization Tank 1	Active part of IWT plant. The tank is aboveground and is not expected to have been a source of subsurface contamination.
45	Equalization Tank 2	Active part of IWT plant. The tank is aboveground and is not expected to have been a source of subsurface contamination.
46	Equalization Tank 3	Active part of IWT plant. The tank is aboveground and is not expected to have been a source of subsurface contamination.
47	Coalescing Plate Separators (two)	Active part of IWT plant (oil/water treatment process). The tanks are aboveground and are not expected to have been a source of subsurface contamination.
48	Batch Tanks No. 1 and No. 2	
49	Flotation/Sedimentation Tank	
. 50	Wet Well	
51	Carbon Filtration Units (four)	Active part of IWT plant (oil/water treatment process). The units are aboveground and are not expected to have been a source of subsurface contamination.

O'Brien & Gere Engineers, Inc. INDIVINPROJECTS/496621535/5_RPTS/SRI_RPTS/SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
52	2,000-Gallon Waste Oil Tank	Out of service. Item to be addressed during the facility cleaning program. The tank is aboveground and is not expected to have been a source of subsurface contamination. The following activities will be conducted: the tank will be inspected; residuals will be removed; the tank will be decontaminated and removed.
53	5,000-Gallon Waste Oil Tank	Out of service. The tank is aboveground and is not expected to have been a source of subsurface contamination. Item to be addressed during the facility cleaning program. The following activities will be conducted: the tank will be inspected; residuals will be removed; the tank will be decontaminated removed.
54	Waste Oil Bunkers (two)	Out of service. Item to be addressed during the facility cleaning program. The following activities will be conducted: the bunkers will be inspected and decontaminated.
55	Inactive Waste Oil Bunkers (four)	Out of service. Item to be addressed with active portions of IWTP, if decommissioned.
56	Former Cyanide Tank No. 1	The Former Cyanide Tank No. 1 is now referred to as the Flotation/Sedimentation/Wet Well Tank. The tank is aboveground and is not expected to have been a source of subsurface contamination.
57	Former Sludge Holding Tanks (two)	Units dismantled and removed from facility. These units were aboveground and are not expected to have been a source of subsurface contamination.
58	Vacuum Filters (two)	
59	Sludge Conveyor	
09	Corrugated Plate Interceptor Unit	
		The state of the s

O'Brien & Gere Engineers, Inc. INDIVIIPROJECTS\496621535\5_RPTS\SRI_RPTS\SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
61	SO ₂ Scrubbers	The SO ₂ Scrubbers were an aboveground unit that were removed from the site. Subsurface soil samples were collected in the vicinity of the SO ₂ Scrubbers during the 1995-1996 Phase II ESA.
62	Acid Alkali Tanks (three)	Currently utilized for equalization overflow at IWTP. The tanks are aboveground and are not expected to have been a source of subsurface contamination.
63	Sludge Dumpster	Active part of IWT plant (oil/water treatment process). The dumpster is aboveground and is not expected to have been a source of subsurface contamination.
64	Filter Press Sump	Out of service. Item to be addressed with active portions of IWTP, if decommissioned.
3 3 3 3		Miscellaneous Units
65	Hoffman Filter Unit	Out of service. The filter unit was aboveground and was not expected to have been a source of subsurface contamination. Item was addressed during the facility cleaning program. The Hoffman Filter was inspected, decontaminated, dismantled, and scraped during the facility cleaning program.
99	Old Storm Sewer System for Outfall 1	Outfall 001 out of service. During the Supplemental RI, soil and ground water in the northern property area was investigated.
67	New Storm Sewer System for Outfall 3	In service to collect storm runoff from plant roof and grounds, and receive IWT plant treated effluent for discharge through Outfall 003. This sewer system will remain in place to convey storm water from the site. Outfall 003 will continue to be monitored under the NYSDEC SPDES permit. A proposed work plan for a sewer cleaning and televising program has been submitted to NYSDEC. We are currently awaiting approval to proceed.
68	Old Contaminated Rubbish Containers	Item unknown to GM.

O'Brien & Gere Engineers, Inc. INDIVATIVEROJECTS49662153515_RPTSISRI_RPTSISWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

Unit Number	NYSDEC Unit Name (listed in draft Part 373 permit)	Status
69	Past Landfill	Subsurface soil, fill, and ground water sampled as part of 1995-1996 Phase II ESA, as documented in the October 1997 Preliminary RI/FS report. Landfill materials and ground water in the vicinity was investigated during the Supplemental RI.
70	Flammable Storage Room Waste Accumulation Area	Presently IWT plant garage.
71	Emulsifier Bunkers (two)	Item unknown to GM. However, emulsion tanks in the IWT plant basement will be inspected, decontaminated and removed during the facility cleaning program.
72	Incinerator	Unit dismantled and removed from facility. The incinerator is an aboveground unit that is not expected to have been a source of subsurface soil contamination. Subsurface soil sampling activities were conducted in the vicinity of the incinerator during the 1995-1996 Phase II ESA. Surface soil in this area was investigated during the Supplemental RI.
73	Process Sewers Handling Hazardous Constituents	Out of service. However, ground water is potentially infiltrating the process sewers leading to the acid/alkali sump. Based on visual observations of the acid/alkali sump, there was no free product. Thus, additional investigation of the process sewers was not proposed for the Supplemental RI.
74	Storm Sewers System for Outfail 4	In service to collect storm runoff from upstream off-site areas and plant parking lots (leading to Outfall 004). This storm sewer system will remain in place to convey storm water from the site as well as areas south of the site. Outfall 004 will continue to be monitored under the NYSDEC SPDES permit.

O'Brien & Gere Engineers, Inc. I:DIV711PROJECTSM9662153515_RPTS\SRI_RPTS\SWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

AOC Number	AOC Name (listed in draft Part 373 permit)	Status
K	Thinner Tanks/Xylene Spill	Tanks removed in 1986 under SPDES consent order; soil and ground water in this area investigated during 1985 Phase II Hydrogeologic Investigation; thinner area ground water collection and treatment system in service. Routine quarterly ground water monitoring conducted in this area.
В	Oil Stains Near the Industrial Waste Sump	As part of the 1981 NYSDEC Consent Order, preventive measures were implemented to minimize overflow from industrial waste sump. These measures include a secondary containment bunker and sump. Subsurface soil samples collected in vicinity of oil stains near the industrial waste sump during the 1995-1996 Phase II ESA. Surface soil sampling and downgradient ground water sampling in this area was included in Supplemental RI.
C	Oil Stains Near the Wet Well	Surface soil sampling in unpaved areas surrounding the IWT Plant was conducted during the Supplemental RI.
Ω	PCB Contamination Near Northern Fence Line - Off-Site	Onondaga County surface soil analytical data is available for this area. Some impacted soils removed during 1991 Interim Remedial Measure (IRM) program. This area will be addressed during the Supplemental FS.
ĬΊ	PCB Contamination Near Northern Fence Line - On-Site	Various northern property area soil sampling activities/data presented in October 1997 Preliminary RI/FS Report. Additional soil/ground water sampling was conducted as part of Supplemental RI.
Ľι	PCB and Xylene Spill Area Under Plant Building	Investigation of the xylene spill under the main plant building is not proposed as discussed in Section 4 of the Work Plan. The potential for PCB NAPL under the main plan building was investigated during the Supplemental RI.
Ð	Ley Creek Sediments - Off-Site	Ley Creek dredged sediment evaluated as part of Ley Creek PCB Dredgings site RI/FS and NYSDEC March 1997 ROD. Ley Creek sediment evaluated as part of Ley Creek PCB Dredgings site RI/FS, and deferred by NYSDEC to this RI/FS. The Ley Creek sediment was investigated during the Supplemental RI.

O'Brien & Gere Engineers, Inc. INDIVAINPROJECTS849662153585, RPTSSRI_RPTSSWMU.WPD

Solid Waste Management Unit (SWMU) and Area of Concern (AOC) Status

	[o. 1	covered by the 1975 building addition was removed. This area was investigated during the Supplemental RI.
	겉	l du
	ige i	atec
	P	itigi
	፬	Ives
	ij	is ir
	0 0	ı wa
	朣	are
	8	his
	# <u></u>	T.
		ved
SI	ot f	OU.
Status	l e	s re
"	sedi	wa
	Plant records do not indicate whether sediment from the portion of Impoundment No.	ion
	neth	dd:
	M	g g
	cate	ig.
	ipqi	ind .
	10t	ξ. <u>Σ</u> .
	do 1	e 19 ntal
	.ds	/th
	[SC]	함
	ot re	Sup
	Pla	covered by the 1975 the Supplemental RI.
8000000000		
	ler	
ii.	ent 1 Under	
eru	=	
3.0		
ше 37	臣	
Na.	nod	
AOC Name isted in draft Part 37.	Former Extension of Impoundm	
A eff	١of	
.	sion	
ted	ten	
(Iis	·Ex	<u>න</u>
	mer	Suilding
	Fon	Bui
je		
1555 Biological Co.		
Numt	Н	
OC Numb	H	

April 16, 2000

O'Brien & Gere Engineers, Inc. INDIV71/PROJECTS/4966/21535/5_RPTS/SRI_RPTS/SWMU.WPD

APPENDIX B

1999 Ground water sampling field logs

O'Brien &	Gere Enginee	rs, Inc.	·	Low F	Low Flow Ground Water Sampling Log					
Date	11/ // /99	Person	nnel		Rob, CPO					
Site Name	GM - Former IFG Faci	— ility Evacu	ation Method	,	,	- Well#	J-1			
	Syracuse, NY		ling Method		penstaltic pump Project # 21535					
Well informati	on:					:	:			
Depth of Well *	<u>- 10</u>	<u>7/7</u> ft.		* Measure	ements taken fr	om				
Depth to Water	·* <u> </u>	<u>フ/</u> ft.			Х	Top of Well Ca	ising _.			
Length of Wate	er Column /,	<u>36 </u>				Top of Protect	-			
						(Other, Specify	/)			
Water parame	Position pump	sible pump slowly to in center of screer gs at every three m	ned interval &	maximum pum	ping rate of 0.5					
	Depth	•			Oxidation	. Dissolved				
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
0(1230)	8.71		-			(g.,	, ,,,,	100		
		12 7 7 .	7.09	0.977	6.2	7 91	57.0	100		
- 5	9.19	13.23	7.09	0,17.4	6.7	2.96		1 (
<u>6 ₹</u>	9 70	DRY -	<u> </u>					100		
<u> </u>			<u> </u>				<u> </u>	<u> </u>		
						<u> </u>				
	· .									
0905-11/12	9.34	8.26	7.04	0. 959	-56	7.35	65.6	100		
'										
			 		:-					
·	 	-	+					- 		
		+	+					-		
		•					<u> </u>	- -		
	<u> </u>	_			ļ		<u> </u>	ļ		
						, , , , , , , , , , , , , , , , , , ,				
<u> </u>		·								
						1	•			
							•			
		•								
	-		,			1 .				
	 	- 	1	 	 	1	 			
	-			-	-	+ .		 		
Water sample	0710 111	2/39	<u> </u>	Total volume	of purged water	r removed:	400 m	<u> </u>		
Physical appea	arance at start Color <u> </u>	,		,	Physical appe	earance at samp Colo	~//			
Sheen/Free Pi	Odor <u>k</u> O roduct <u>kO</u>				Sheen/l	Odo Free Product	NO NO	_ 		
Samples colle										
Container Size	e Contai	ner Type	# Collected			Preservative		iner pH		
40ML VOA-VIAL 3					NO	No	1	/		
10			 					<u> </u>		
<u>, </u>		•	+							
		1	1				<u></u>			
Notes: 🗡	Will Ban.	1:	,.							

RACER0060817

O'Brien &	Gere Engineers	Low F	Low Flow Ground Water Sampling Log					
	11/ / /99	Persor	nnel		PGB	· · · · · · · · · · · · · · · · · · ·	Sunny	
Site Name	GM - Former IFG Facilit	-	ation Method	peristaltic	/	- .	7-2.	,,,,,,
·	Syracuse, NY	•	ing Method	peristaltic		Project #		
	-			poriotatio	panp			
Well information	on: <i>Q L</i>	10				•		
Depth of Well * Depth to Water	·	7 <i>U</i> ft.		* Measure	ements taken fr	7		
Length of Water		<i>∕</i> ft. ft.			X	Top of Well Ca	_	
dog 0. 11210.		<u>./.</u>	•			(Other, Specify	_	
Water paramet	Position pump i	ible pump slowly to n center of screen s at every three mi	ed intervai &	maximum pum		liters/minute		
Elapsed Time	Depth Jev To Oversion Water Lagin	4 Temperature	pH	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0/1044)	7.36							240
5	7.36	13.78	6 89	0.847	-73	1.77	30.3	240
10	736	15.98	6.90	0.846	-81	1.20	26.6	240
. 15	7.36	14.11	7.01	0.838	-95	0.91	21.9	240
3.0	1 %	14.20	7.03	10.823	-102	0.25	17.2	240
2.5	7.36	14.33	1.08	0.768	-106	0.72	10.4	2'40
30	7.16	14.42	7,10	0.742	-109	0.69	10.4.	240
35	7,36	14.46	7.11	0.744	-110	0.66	8.6	240
40	7,36	14.46	7.12	1,729	-111	0.64	6.4	240
45	7.36	14.47	7.13	0.713	-1/3	0.53	4.6	240
70	7.36	14.50	7.13	0.706	-113	0.53	. 4.5	240
,								
							•	
	-							
						,	· · ·	
Water sample: Time collected: Physical appea	1145		•	Total volume	of purged wate	earance at same	~ 2500	ית
' ''	Color C/PGV				. ,,	Colo	close	
Sheen/Free Pro		eum_			Sheen/	Odo: Free Product	petrole 1	eum —
Samples colle								
Container Size			# Collected	Field Filt	ered	Preservative		ainer pH
40 jn	VOK	-VIKE	3		,	100	· E. -	21.0
		· .	 					
			<u> </u>					
Notes:	M5/M50	20/2/T					RACER00	60818

<u> </u>	Brien & Gere Engineers, Inc.				Low Flow Ground Water Sampling Log					
Date	11/ // /99	Persor	nnei	Kub, F	GB, CPO	Weather	Sunny	300		
Site Name	GM - Former IFG Facility	/ Evacu	ation Method	peristaltic	pump	Well #	Well # <u>7-3</u>			
Location	Syracuse, NY	Sampl	ing Method	peristaltic	peristaltic pump		21535	· .		
Well information		~~	''				•			
Depth of Well *		<u>59 </u>		* Measure	ements taken f	rom				
Depth to Water					X	Top of Well Ca	• •			
Length of Wate	r Column	ft.				Top of Protect (Other, Specify	_			
Water parame	Position pump in Collect readings	ole pump slowly to center of screen at every three mi	ed interval &	maximum pum _l	ping rate of 0.5					
E1i	Depth				Oxidation	Dissolved	T	F1		
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min		
0 (0940)	5.84	, opo.u.u.u		Community		(9/	(11.5)	130		
<u> </u>	6.15	11.51	6.62	1.16.	-27	2.92	9.4	130		
<u></u>	631	11.93	6.73	1.17	-38	2.00	8-6	130		
15	645	12.60	680	1.17	-48	1.63	7.6	130		
70	6.65	12.91	6.86	1.17	-5-3	1.47	7.3	130		
25	6.81	13.14	6.87	1.18	-57	1.30	7.5	130		
30	7.03	15.58	7.88		-65	1,29	63	130		
35	7.25	13.50	6.90	1.19	-73	1.77	5-3	130		
40	7.46	19.71	6.29	1.20	-79	1,30	4.9	1.30		
215	1 76	1382	4 85	1.20	-82	1.19	4.9	150		
-/X	3 4 5				- 0 -	1.7.7	, , ,	1		
			-							
		<u> </u>		,			-			
1520	6.40	11.62	6.74	0.4	-30	10.6	33.2	100		
			1			,,,,		· · · · · · · · · · · · · · · · · · ·		
		•					,			
***		<u> </u>								
	·				,					
Water sample: Time collected:	・イスク			Total volume	of purged wate	r removed:	~1400) ri L		
Physical appea	rance at start Color <u>C/56 V</u> Odor <u>1,'0</u>				Physical app	earance at samp Color Odo	Colorist	·		
Sheen/Free Pr					Sheen/	Free Product	10			
Samples colle			T							
Container Size ム(か _	container Size Container Type		# Collected	Field Filt		Preservative 1		ainer pH ~ 7. 0		
4(11)-		- y 1017.	1 2		v o	100		- 1. 0		
→ 										
			1							

0'В	Brien &	Gere Engine	ers, Inc.		Low F	low Grou	nd Water	Sampling	Log
Date		11/11/99	Perso	nnel		B/cro.		~40 so	
Site N	•	GM - Former IFG F	acility Evacu	ation Method	peristaltic			T- 4	
Site I	-	Syracuse, NY		ling Method	peristaltic		_	21535	 (
Well	informatio	n:							
Dept	h of Well *	<u> </u>	40 ft.		* Measure	ements taken f	rom		
	h to Water '		ft.			X	Top of Well Ca	- •	
Lengt	th of Water	Column/	<i>.86</i> ft.		•		Top of Protect	•	
						<u>. </u>	Other, Specif	y) 	
Wate	er paramete	Position pur	nersible pump slowly t mp in center of screer lings at every three m	ned interval &	maximum pumj		i liters/minute		
		Depth			s/M	Oxidation	Dissolved		
	lapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/m
	ريز) ه	6.54					(g/	()	1,422 (11,31)
	5	6.86	Chamber (;	Nias				<u></u>	.~100
	10	7.07	13.05	6.32	0.13	64	2.3	22.4	100.
	15	7. 3 _c	13.88	6.40	c; 3	~75	1,1	21.5	/>>
	20	7.55	14.11	6.39	0.13	-30	1.1	21.6	17c
		2.04	14.61	6.39	0,13	-85	1.1	187	170
-	<u>২১</u> ১৪	D		Visi	,		• -		
	~ _								
<u> </u>			· -	 	 				1
ەن ام	01.0	200	:0 1:4	(., .,	1		2 (/	72.4	100
0	340	7,45	10,74	6.37	1.16 m 5km	-43	3,//	83./	100 (
<u> </u>					,			<u> </u>	
ļ					•				
ļ <u>.</u>					<u> </u>				
						1			
<u> </u>	• • • • • • • • • • • • • • • • • • • •			† 					
					 	ļ.		 	
Wate	er sample:	-/- /	1-2	r,					
Time	e collected:	<u>0950 -</u> 11/	12/99		Total volume	of purged water	r removed:	1/50	ML.
_ I		rance at start			•	Physical app	earance at samp	oling /	
		ColorSlight	ly Cloud x				Colo	1 C/347 de	
			Paint thinn	er ime "	•		Odo	1 <u>ye</u> ,	
Shee	en/Free Pro	duct ——				Sheen	Free Product		
Sam	ples collec	cted:			<u> </u>	, <u>-</u>			
	tainer Size	Cont	ainer Type	# Collected	Field Filt	ered	Preservative	-	ainer pH
	40 m	- VOK	1-VIAL	13	ν	9	None		17,0
-				-			-		· (
	<u>.</u>								
1				1			į		

RACER0060820

Brien & C	ere Engineers	s, Inc.		Low Flow Ground Water Sampling Log						
	1/1 /99	Personn	el	P6 B1	KB	-	~ 40 s			
_	M - Former IFG Facili	- _{lv} Evacuat	ion Method	peristaltic	oump	. Well#	<u>T-5</u>	<u> </u>		
e Name <u>G</u> e Location <u>S</u>			g Method	peristaltic	pump	Project #				
1		<u>.</u>								
ell information	i:	1 Oft.		* Measure	ments taken fr	om				
epth of Well * epth to Water *		.96 ft.			X	Top of Well Ca				
eptn to vvaler ength of Water (, 1 <u>4 </u>				Top of Protecti				
stigut of TTELO						Other, Specify	') 			
/ater paramete	Position numb	sible pump slowly th in center of screene	ed interval &	waximmu baruf	n ping rate of 0.5	liters/minute				
	Collect reading	s at every three mi	nute intervais		Oxidation	Dissolved		F1		
Flancod	Depth To	1		5/M	Reduction	Oxygen	Turbidity (NTU)	Flow Rate (mi/min		
Elapsed Time	Water	Temperature	pH_	Conductivity	Potential	(mg/l)	(1410)	-150		
O 10:55	396			·			 	- 15 c		
.5	7.35	Filling	Cham	ber.		 	40.5	·~ 150		
10	9,44	14.51	6.43	13	-43	2.6	31.5	75		
15	9,50	14.32	6,43	13	-46	1.8	21.6	75		
20	9.55	14.16	6.46	-13	- 59	1.7				
25	9.65	14.18	6.47	.13	-66	1.7	16.6	120		
28	Dev-				<u> </u>	_	 			
					<u> </u>			<u> </u>		
	Sungle 9.3	5	 	·	<u> </u>					
12:40	-ample 1.3									
<u> </u>					 					
	<u> </u>		 							
			+	-			·			
<u> </u>		- 	-							
										
			-	- 						
<u></u>		_ 			,					
							. 00	OO ML		
Water sampl Time collecte				Total volun	ne of purged w			ML		
	earance at start			•	Physical a	ppearance at sa	impling			
Physical appr	Color Clear_						olor Cleny Door Phint			
		throney			She	en/Free Product				
Sheen/Free i	Product <u>non</u>	<u>~·</u>								
Samples co	liected:			1=		Preservat	ive IC	ontainer pH		
Container Si	ze Con	tainer Type	# Collect	ted Field	Filtered 0	N'67		27,7		
40	ml 1/0	A- VIAL	- - - - - - - - - - 							
· ·			_		· ·					
	•									

O'Brien &	Gere Engineer	rs, Inc.		Low F	Low Flow Ground Water Sampling Log					
Date	11/ /6 /99	Perso	nnel		B, PGB CA		Cloudy			
Site Name	GM - Former IFG Faci	— lity Evacu	ation Method	peristaltic	 	- Well#	3.1			
Site Location	Syracuse, NY	Samp	ling Method		peristaltic pump		21535			
Well information	on:									
Depth of Well *	7.	70 ft.		* Measure	ements taken fr	om	•			
Depth to Water	* 3,	/ <i>()</i> ft.			Х	Top of Well Ca	sing			
Length of Wate	r Column <u>4, 4</u>	6 <u>0</u> ft.				Top of Protecti (Other, Specify	ive Casing			
Water paramet	Position pump	sible pump slowly t in center of screer as at every three m	ned interval &	maximum pum		liters/minute				
	Depth	33 at every timee in	inde nitervals		Oxidation	Dissolved				
Elapsed Time	To Water	Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
0(1440)	3,10							, , ,		
5	3.61	15.37	6.91	1.04.	-2	1.00	36.8	700		
10	3.95	15 32	1,90	1.04	- 13	0.78	30.6	100		
15	4.47	15/32	6.87.	1.04.	-47	0.65	12.9	200		
20	4,88	10.38	6.84	1,05	_44	0.60	12.7	100		
25	5.04	15.35	6.84	1.05	- 44	0.74	9.0	100		
30	5.29	15.49	6.85	1.05	-53	0.76	7.5	100		
35	5.82	15:66	6.83	1.05	-65	0.52	5.0	300		
40 X	6.30									
							-			
						<u> </u>				
11/12/12/43)	5.73	11.03	6,94	0.377	55	7.51	13.3	100		
11/12(0) 19)	7.77	11.00	0,7	V; 3/ /		1,11	19,7	1700		
				<u> </u>			,			
		 	<u> </u>							
			<u> </u>							
	<u>-</u>	- 								
					1.					
Water sample: Time collected: Physical appea	0945-////2 irance at start	2/39		Total volume	of purged water Physical appe	arance at samp	ling / /	ML		
Sheen/Free Pro	Color Color, Odor Noh oduct No	<u>(</u>			Sheen/F		None No	<u>-</u>		
Samples colle	cted:		-							
Container Size	Contain	er Type	# Collected	Field Filte		Preservative	Contai	ner pH		
40 m	11. VOA	- VIAL	:3	No		None	_ ~	7.0		
Notes: ×	Well prime	in the same	<u> </u>							
Notes:	~ // W									

RACER0060822

O'Brien &	Gere Enginee	rs, Inc.	· ·	Low Flow Ground Water Sampling Log					
	11/ ′Ø /99	Persor	nnel	Kirt.	PUB	Weather	lain 50)°	
	GM - Former IFG Fac	-	ation Method	peristaltic		Well#	T'13		
_	Syracuse, NY		ing Method	peristaltic		Project # 21535			
		-					·		
Well informatio		7.70 ft.		* Moseum	ments taken fr	mm			
Depth of Well *		<u>, 70 </u>		Wicasuie	X	Top of Well Ca	sing		
Depth to Water * Length of Water		7 7 ft.	•			Top of Protecti			
Length of water						Other, Specify			
Water paramete	Position pump	rsible pump slowly to in center of screer	ned interval &	maximum pumi	in oing rate of 0.5	liters/minute			
	Collect readin	gs at every three m	inute intervals	, 	Oxidation	Dissolved			
Elapsed Time	To Water	Temperature	Hq	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)	
0 (1550)	4.13								
5	4.93	16 46	604	0.93	-82	1.07	186.0	1-0	
	7.13		6.68	0.93	-83	152	186.0	0	
10 15		16.48		0,925		0.26	186.0	140	
	52	16,41	362	J	1 · · · · ·	+	 	250	
20 7	6,92	<u> </u>			 				
	<u> </u>		-	<u> </u>		<u> </u>	<u> </u>		
-			<u> </u>				3 0 6 0	150	
11/11/99 0910	6.67	12.40	6.92	0.9/0	-89	11,25	399.0	130	
				, . <u></u>	· ·	<u> </u>		<u> </u>	
				·	<u> </u>	<u>.</u>	<u> </u>	- 	
1			1				<u> </u>		
					<u></u>				
		- 							
		_							
			_			1			
			-		- 				
		_	-		. 				
	 			<u>·</u>					
					 				
					<u></u>		71		
Water sample	1: 11/11/99 59/0			Total volume	of purged wat	er removed:	190	Unil	
	arance at start			•		pearance at sam	pling		
Physical appe	Color	i gr Pail			·		or <u>Color/es</u>	<u>;<</u>	
	Odor // O)				Ode			
Sheen/Free P	roduct //	<u> </u>			Sheer	n/Free Product	<u> </u>		
Samples coll				. 12	14	Denne	Cont	ainer pH	
Container Size	e Cont	ainer Type	# Collecte	d Field Fi		Preservative		-7.7	
1 40h	40A1 VOA-VIAL 3		7/	<u> </u>	10070				
		· · · · · · · · · · · · · · · · · · ·							
T									
X	Will Non	132 h 1/2	·	·					
Notes:	- 50 - (1 // 0 h	1 2 - 6 10					RACER006	0823	

O'Brien &	Gere Engineer	s, Inc.	<u> </u>	Low F	Low Flow Ground Water Sampling Log					
Date	11/ /6 /99	Persor	nnel		168,40		Clader, 6			
Site Name	GM - Former IFG Facili	- ty Evacua	ation Method	peristaltic	,	_	T \$15			
Site Location	Syracuse, NY	-	ing Method		peristaltic pump Project # 21535					
Well information	on:									
Depth of Well *	_	<i>21</i> ft.		* Measure	ements taken fr	om				
Depth to Water	. 6.	49 ft.			, X	Top of Well Ca	sing .			
Length of Wate	r Column Q,	7 2 ft.				Top of Protecti	ve Casing			
						(Other, Specify	")			
Water paramet	Position pump	ible pump slowly to in center of screen s at every three mi	ed interval &	maximum pumi		liters/minute				
	Depth		THE STREET VALS		Oxidation	Dissolved				
Elapsed	· To	T	_,,		Reduction	Oxygen	Turbidity	Flow		
0(1155)	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
0(1155)	6.49	// 9./	1 0 =		107	2.20	1006 0	100		
<u> </u>	6.90	/6.74	10.83	1.46	-107		106,0	100		
10	7.05	14.93	6.32	1. 47	-106	1.52	97.6			
15	 	16.95	6.82	1,48.	-103	1.64	89,3 73.7	/00		
<u>20</u> 30 ¥	7.37	16.89	6.81	1	-102	1,36	4,7	100		
35	7.80	 ' .	6-80	1.46	-98	2.30	1	100		
40	8.15	/6.90	6.81	1.46	-100	0.89	3,4			
-	8.70	16.90	1		-104			/00		
50	8.44	16.90	6.85	1.47	-106	0.83	3.6	100		
55.	8.57	16.90	6.88	1.47	-104	1.00	7.7	-		
60 🛠		76.12	<i>w</i> . 0 v	/ 7 0	- / - /	1 7 5 5	7.7	/ 10		
80 1/4	-						 -			
11/11/19 0839	7-09	10.13	6.29	1.71	5.0	10,27	19.2	1000		
1000		1 /3 / 3	10.21	1.27	3,0	7-70 7	, ,	3.0.75.0		
	<u> </u>	<u> </u>								
			<u> </u>					-		
				_						
Water sample: Time collected:	100 -07	0	•	Total volume	of purged water	removed:	. ~/200	M1 L		
Physical appea	Color C/OUG	y-graV			Physical appe	arance at samp Color Odor	Colorle	<u> </u>		
Sheen/Free Pro	oduct /: /				Sheen/F	ree Product	15 3			
Samples colle		er Type	# Collected	Field Filt	ered	Preservative	Conta	iner pH		
	UOML VOID-VINI			₩ O		NonE		7.0		
								· · · · · · · · · · · · · · · · · · ·		
		• ;				 				
Notes: X	Flushed flow	, through	Le call				RACER000	50824		
jam:ers/div76/admin	Mad Purneys /4_notes/micrlog3	Il thing					. 0 (021(000	April 25.		

O'Brien &	Gere Enginee	rs, Inc.		Low F	Low Flow Ground Water Sampling Log					
Date	11/ // /99	Perso	nnel	JuB.	1676,4	() Weather	Sunny T-18	,400		
•	GM - Former IFG Fac	— cility Evacu	ation Method	peristaltic	pump	Well#	1-18	<u> </u>		
	Syracuse, NY	 ·	ling Method	peristaltic		Project #				
Nell informatio					· · · · · · · · · · · · · · · · · · ·					
Depth of Well *	····	8.06 ft.		* Measure	ements taken fr	om		•		
Depth to Water '	•	<i>8.06</i> ft.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X Top of Well Casing					
Length of Water		0.07 ft.			Top of Protective Casing					
						(Other, Specify	<i>)</i>			
Water paramete	Position pum	ersible pump slowly p in center of scree ags at every three m	ned interval &:	maximum pum	nn ping rate of 0.5	liters/minute				
	Depth		,		Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow		
Elapsed Time	To Water	Temperature	pH	Conductivity	Potential	(mg/i)	(NTU)	Rate (ml/min		
	7,99	DRY						 		
0		15121	-					 		
			<u> </u>	<u> </u>				 		
	···						<u> </u>	 		
							<u> </u>			
			•							
	<u>-</u>	 		-		 				
						 	 -			
					ļ			 		
~		1								
\										
								1		
		* -					<u> </u>	ĺ		
			-			+				
•				·	<u> </u>	<u> </u>				
<u>. </u>						<u> </u>				
	<u></u>									
· ·						1	1			
<u>.</u>		 	+	 		1		1		
,	-		 		<u> </u>					
			<u> </u>	<u> </u>	<u> </u>	<u> </u>				
Water sample: Time collected:				Total volume	of purged water	r removed:		<u> </u>		
Physical appea	rance at start			•	Physical app	earance at sam				
,	Color DC^2				•	Colo		_		
	Odor					Odo	r			
Sheen/Free Pro	oduct				Sheen/	Free Product		<u> </u>		
Samples colle	cted:									
Container Size			# Collected	Field Fil	tered	Preservative	Conta	iner pH		
							· -			
·						- 		• •		
, 										
,		- 1 ·		1.5		l				
Notes: Vo	t worch	in a straight in) Lam	with			RACER006	0825		

D-4-	441 /25	/ ij /99 Personnel 70			Low Flow Ground Water Sampling ه ۱ الجه الدي الدي الدي الدي الدي الدي الدي الدي			
Date	11/ ii /99	-						<u> </u>
Site Name	GM - Former IFG Facil	ty Evac	uation Method	peristaltic	pump	_ Well #	T-21	
Site Location	Syracuse, NY	_ Sam	Sampling Method peristaltic p		pump	_ Project #	21535	
Well information				· · · · · · · · · · · · · · · · · · ·				
Depth of Well *	<u> 13 . c</u>			* Measure	ements taken f	- ,		
Depth to Water				•	X	Top of Well Ca	- •	
Length of Water	r Column3	. <u>. ი</u> ft.				Top of Protecti	=	
					<u> </u>	(Other, Specify		•
Water paramet	Position pump	ible pump slowly in center of scree s at every three r	ned interval &	maximum pum		liters/minute		
	Depth				Oxidation	Dissolved		<u> </u>
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
0 (1:20	9,40			·				100
5	9.60	-,	1					175
10	10.03							
15	10.25							200
Z:0								<u> </u>
	10.45	 				 		200
<u> よ5</u>	11.01	•	 			-		200
3 3	11:30	<u> </u>				- -		200
B5"	11.77	•	·					200
40	12,05					:		260
45	12,70	, ,		•	•	·		260 (
50	12.67							
55	12.80							
60	Dry.						, <u>-</u> -	
				•			<u></u>	1
						<u> </u>		-
					-			<u></u>
								<u> </u>
		<u> </u>	_ .					
		 		· · · · · · · · · · · · · · · · · · ·				
		<u> </u>						
		<u> </u>	<u> </u>		:	<u>· </u>		
Water sample: Time collected:	44.7		•	Total volume	of purged wate	r removed:	12,0	00 ML
Physical appea			,		Physical appe	earance at sampl		
	Color Slightly					Color	Cloudy	<u>, </u>
Sheen/Free Pro	Odor <u>Paint</u> oduct <u>Clabules</u>	<u> </u>	rong edo w	1	Sheen/	Odor Free Product	105 - 91	obules
Camples!	-4-d\			·			, ,	
Samples colle Container Size	cted: Containe	er Type	# Collected	Field Filte	ered	Preservative	Conta	iner pH
40m			3	1.0.01.11		NONE	00.112	-7.0
					,	1		
			1					

		Low Flow Ground Water Sampling Log								
Date _	11/ /0/99	Persor	nnel	King	Kirb, PGB, CPO Weather Cloudy 550					
Site Name	GM - Former IFG Fac	ility Evacu	ation Method	peristaltic	pump	Well#	Well#			
`e Location	Syracuse, NY	Sampi	ing Method	peristaltic pump Project # 21535						
Well informatio							,	·		
Depth of Well *	/	10,3/ 11. ft. 18/ ft.		* Measure	ments taken fr	om				
Depth to Water *	6	<u>, 50</u> ft.			Х	Top of Well Ca	sing			
Length of Water	Column <u>3</u>	<u>,8 / ft.</u>	•			Top of Protecti				
• •						(Other, Specify	/) 			
Water paramete	Position pump	rsible pump slowly to in center of screen gs at every three m	ed interval &	maximum pumj		liters/minute				
	Depth			M s/cm	Oxidation	Dissolved				
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)		
0(1315)	6.50				- <u>-</u>	<u> </u>				
5	696	18.39	674	1,10	-69	1.24	45.9	100		
/0	7. 27	18.41	6.73	1,11	-64	6.95	39,2	100		
. 15	7.53	18-39	6.74	1.11	-68	0.81	32-2	100		
a()	7.75	18.44	6.73	101	-69	0.76	35.3	100		
25	7,97	18-44	6.73	1.11	-68	0,71	33.3	100		
30	8,13	18.46	6,73	1,10	-70	0.66	24.6	/00		
3.5	8.35	18:49	6.74	1.07	-74	0.64	18.8	100		
# ₀	8,57	18.48	6.73	1.04	-75	0.66	14.8	.106		
45	8.72	18.49	6.75	1.03	-79	0.67	13.7	1.00		
50	8.99	18.51	6.76	1.04	-83	0.67	13.3	100		
55	9.25	18.51	6,75	1.04	-84	. 72	11, 8	100		
60.	9.44	18.46	6.76	1.05	-85	,74	13.7	100		
\overline{X}		·			<u> </u>					
							,	`		
11/11/99 084	5 6.66	11.82	6.86	0.94	-34	9.98	16.2	100		
· -		<u> </u>								
			1		<u> </u>	<u>.</u>				
							,			
			<u> </u>							
Water sample:	1 1 1011		•				~1450	ML		
Time collected:				l otal volume	of purged wate			IN U		
Physical appear	Color <u>Cok</u>	Lu			Physical app	earance at samp Colo	r Colorlo	55		
	Odor No	 				Odo				
Sheen/Free Pro	duct / Aug				Sheen/	Free Product	<u>NO</u>			
Samples colle	cted:			<u></u>				<u>,</u> _		
Container Size	Container Size Container Type			Field Filt		Preservative		iner pH		
40m2	HOME NOW-NIGH		3	N)	NON F	- 1	7.0		
' '			1	<u> </u>	•	<u>_</u>		<u> </u>		
<u> </u>		•	+		•	+		<u> </u>		
\ <u>\</u>	1	10 1				<u>l</u>				
Notes:	rungled we	u ary	·				RACER006	0007		

April 25, 1997

O'Brien &	Gere Engineer	s, Inc.	·	Low F	low Grou	nd Water s	Sampling L	.og
Date	<u>11</u> / // /99	Perso	nnel	Kul	S PC-DCP	Weather	sunny :	3500
Site Name	GM - Former IFG Facili	- ty , Evac∟	ation Method	peristaltic	7		T-36	· · · · · · · · · · · · · · · · · · ·
Site Location	Syracuse, NY	_	ling Method	peristaltic		- Project #		
Well information	on:		·- ·		·			
Depth of Well *	. 10.2 . 8.00	CO ft.		Measure	ements taken fr	om		
Depth to Water	· <i>&, O</i>	ft.			_ x	Top of Well Ca	ising .	
Length of Water	Column 2./4	ft.				Top of Protecti	ive Casing	
						(Other, Specify		
Water paramet	Position pump	ible pump slowly in center of screer s at every three m	ned interval &	maximum pum		liters/minute		
	Depth				Oxidation	Dissolved	<u> </u>	
Elapsed Time	To W ater	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
-/	B.69 x.26	11/10	191	1.51	-100	1///	154	Nate (minim).
0(1320)		1, 9, 4, 5	6.7	1,26	103	1.82	13/	190
	8,99	16.64	3.92	176	-107	/.5/	141	ļ
/0	9.48	16.25	693	1.78	-96	1.18	60.8	190
15-X	·							
0 خ			_					
25								-
				-				
	, .							,
11/2/1000)	958	12.31	6.99	1.61	-/07	10.69	36,3	100
hiterians		10,07	(C) . 1		101	7 0.0	36,0	1000
\ <u></u>	· · · · · · · · · · · · · · · · · · ·	 	 					
			 	·				
			ļ					
L				<u> </u>				
							•	
<u> </u>								
		,						
}			 					
		 	 	· .				
		<u> </u>			<u> </u>		 	
		<u> </u>	<u> </u>		<u> </u> :	<u> </u>	ļ	<u> </u>
Water sample: Time collected:	1 (10/)		•	T-4-1			1.650 MI	
				i otal volume (of purged water			
Physical appear	rance at start Color SIGN	r			Physical appe	arance at samp	Colories	
	Odor None					Odor		_
Sheen/Free Pro					Sheen/f	Free Product	1/3	- -
Samples collec	cted:							
Container Size	Containe	r Type	# Collected	Field Filt	ered	Preservative	Contai	ner pH
40ML VOR-VIAL			3	N	0	None	1	7.0
			<u> </u>		· · · · · · · · · · · · · · · · · · ·	ļ		·
· .		 		. [
			<u></u>	<u> </u>	Dir. 1	/) //	<u> </u>	
Notes: 🗶	Will Pums	ed Dry	<u>.</u> C	ollect ,	Blind.	Vin #	う RACER006	n 828

O'Brien &	Gere Engineer	s, Inc.		Low F	low Grou		Sampling L	
Date	11/ // /99 Personnel			LUB PGB CPO Weather Suprise 40°				
Site Name	GM - Former IFG Facili	ty Evacua	ation Method	peristaltic	pump	Well# <u>T-29</u>		
e Location	Syracuse, NY	Sampli	ng Method	peristaltic	pump	Project #	21535	· · ·
Well information		2.5			· · · · · · · · · · · · · · · · · · ·			
Depth of Well *	10.			* Measure	ments taken fr	om		
Depth to Water		' -1			. Х	Top of Well Ca	=	
Length of Water	r Column <u> 4, 0</u>	1 ft.				Top of Protecti (Other, Specify	_	
Water paramet	Position pump	ible pump slowly to in center of screen s at every three mi	ed interval &	maximum pump		liters/minute		
	Depth				Oxidation	Dissolved	- 11 24	
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0 (1350)	5.41	14.73	7.66	0.88	-/3	3,27	134	125
5	5.52	14.73	7.64	0.88	-13	258	176	225
10	5.52	14,54	7.65	0.963	-9	2.37	98.1	200
15	5,52	14.46	7.64	0.32	- Z	3.04	66,5	200
20	5.52	14.42	7.62	0833	4	4.53	46.7	200
25	5.53	14-21	7.57	2.819	13.	5.57	34.9	200
30	5.53	14.09	7.58	0807	19	5.80	26.1	200
35	5.53	14:08	7.57	0.805	24	6.03	25.1	200
40	5.53	14.05	7.57	0.800	28	6.17	22-2	200
45	5.53	14.03	7.5%	0.796	31	6.24	21,1	200
1			7.25	, <u>, , , , , , , , , , , , , , , , , , </u>				
				-				
	·							
								<u>'</u>
	·				:			
Water sample Time collected	: <u>1440</u>		•	Total volume	of purged wate	r removed:	n 2200	MU
Physical appea	Color Clear	2			Physical appe	50.0		
Sheen/Free Pr	Odor // // // Oduct // // // // // // // // // // // // //				Sheen/l	Odo Free Product	10	
Samples colle						Preservative		
Container Size	Contain		# Collected		Field Filtered			ner pH
40 m	1L 1/0K	<u>- V/KL</u>	3_	N.	<u>. </u>	NONF	- 1 -	17. U
		·· <u>=.</u>	<u> </u>		,			
Notes:								

O'Brien & Gere Engineers, Inc. Low F						low Ground Water Sampling Log				
Date	11/ // /99	Persor			B, PGB Weather SUNN 4 410					
Site Name	GM - Former IFG Facility		Evacuation Method peristaltic		,	- Well#	T.33B'			
Site Location	•		Sampling Method peristaltic		·	- Project #				
Well information		-				· ·				
Depth of Well *	on: 1 <i>(</i>	7,08 ft.		* Manager	ements taken fr					
Depth to Water		7.40 ft.		Measure	X	om Top of Well Ca	eina			
Length of Water	r Column	7,08 ft. 7,00 ft. 1,18 ft.			Top of Protective Casing					
•						(Other, Specify	_			
Water paramet	Position pump	ible pump slowly t in center of screen s at every three mi	ed interval & i	maximum pumj		liters/minute				
Elapsed Time	Depth To Water	Temperature	рН	_	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
0	9,90	DRY -								
		;	· · · · · ·		<u>. —</u>					
			-	·				-		
· ·			<u> </u>	•						
· · · · · · · · · · · · · · · · · · ·										
			<u> </u>					 		
•	<u> </u>									
· -	<u> </u>		<u> </u>							
								<u> </u>		
							<u> </u>	1		
					<u> </u>					
<u> </u>		 		· .						
		· .								
		·								
		· · · · · ·	<u> </u>		·					
						,				
			<u> </u>			·				
Water sample: Time collected: Physical appea	rance at start Color Dn Y	· .		Total volume of	of purged water Physical appe	arance at samp Color	DRY			
Sheen/Free Pro	Odor				Sheen/F	Odor ree Product		<u> </u>		
Samples colle		- T	L# 0-#- · ·	P1 1 1 P1		In	T-			
Container Size	Contains ——	r Type	# Collected	Field Filte	ered	Preservative	Conta	iner pH		
<u></u>										
4/		<u>.</u>	<u> </u>	1 *		<u></u>				
Notes: /Va	1 Europe	weti-	h se	ufli			RACER00	60830		

	& Gere Enginee		Sampling					
Date	<u>11/<i>05</i>/99</u>	nnei	PGB/C	<u> Po</u>		r 60 synny		
Site Name	GM - Former IFG Fac	<u>ilit</u> y Evacu	ation Method	tion Method <u>peristaltic pump</u>		Weil#	<u> </u>	
3 Location	Syracuse, NY	Sampl	ing Method	peristaltic	pump	_ Project #	21535	
Well informa	ation:		t·					
Depth of We		4./7 n.		* Measure	ements taken f	тот		
Depth to Wat	ter *			Х	Top of Well Ca	sing .		
Length of Wa	pepth of Weil * /4,/7 ft. pepth to Water * 6,00 ft. pength of Water Column ft.					Top of Protecti	-	
	•	•				Other, Specify	")	
Water paran	Position pump Collect readin	rsible pump slowly to in center of screer gs at every three m	ned interval &	maximum pumj	oing rate of 0.5			
- 1	Depth		<u> </u>	ms/m	Oxidation Reduction	Dissolved	Turbidity	Flow
Elapsed Time	To Water	Temperature	Ha	Conductivity		Oxygen (mg/l)	(NTU)	Rate (mi
7	6,89	F =						
10	7.38	16.14	7.21	83	8.2	5.4	4.7	751
15	7.14 7.40	16.09	7,13	83	13	5.0	2.7	17
20	7.44	16, 12.	7,11	83	-24	4.9	0.1	18
25	7.45	16.16	7,09	83	-38	1,5	4,9	135
30	7.48 MAG	15.98	7.03	83	-47	1,1	O.i	185
35	7,42	16,03	7,18	64	154	0.9	0,/	150
40	7.41	16:36	7.05	84	-63	0.3	0.,	150
45	7.43	16,52	7.05	84	-66	0.8	0.1	.150
50	7,45	16,48	7.06	84	-4	0.8	0.1	150
55	7.45	16.49	7.05	84	- 68	0.8	0.1	150
60	7.45	16.55	7.05	84	-70	0.0	0.1	150
65	7,45	16.50	7.05	84	- 71	0.4	0.1	150
63			1.03		1	1 0	1	<u> </u>
			 -		<u> </u>			
			 					
			-		ļ <u></u>		<u> </u>	
<u>.</u>				,		<u> </u>		
			1		 	<u> </u>	 	
-		 			 		1	_
Water sam	ne:		<u> </u>				<u> </u>	<u></u>
Time collect				Total volume	of purged water	er removed:	2,0	108 ML
	pearance at start			•		earance at samp	oling Color/	
	Color Clear				,	Colo		911
G	Odor Nano				Char-	Odo /Free Product	1/0	
Sheen/Free	Product				Sneen	riee Pioduci	~ ~ 0	
Samples co								
Container S		ner Type	# Collected	Field Fill	tered	Preservative	Cont	tainer pH
40 h		C ines	3 2	 	<u>-</u>	-		<u> </u>
	ter Poly	:	1	-	~	Nitr.	ic Acid	<u> 2</u> 2
		-					/ **//	-

O'Brien &	Gere Enginee	Low Flow Ground Water Sampling Log							
Date	11/ 0 5/99	Person	nnel	CPO/P	GB/KWB	Weather ~60°F, Rartly Sun			
Site Name	GM - Former IFG Facility Evacuation Method		peristaltic pump		Well# WW-/L		<u> </u>		
Site Location	Syracuse, NY	Sampl	ling Method	peristaltic	pump	Project #	21535		
Well information	on:		<u>-</u>						
Depth of Well *		9,83 ft.		* Measure	ements taken f	rom			
Depth to Water		<u> 8,77</u> ft. 、			X	Top of Well Ca	sing		
Length of Wate	r Column Z	0.66 ft.				Top of Protecti	ve Casing		
						(Other, Specify	<i>)</i>		
Water parame	Position pump	rsible pump slowly to in center of screen gs at every three m	ned interval &	maximum pum		liters/minute		·	
Elapsed Time	Depth To Water	Temperature	pH	Conductivity	Oxidation Reduction	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (mi/i	
0	8.17	Temperature		Conductivity	Cicina	(inga)	(1110)	150	
10	9.05	15.56	7.53	1.06	-48	2.94	11.6	150	
·	 		7.54			2.00	11.6	175	
15_	9.11	15,31	1 -	,999	-76	1.01	 		
20	F	15.28	7.44	1.07	-90		13.6	175	
<u> 25</u>	9,15	15.19	7.47	0,90		.47	12.9	150	
30	9.16	14.95	7.5%	0.895	- 86	-56	29.3	150	
35	9.85	14,95	7,52	0.896	-86	1.02	24,3	140	
40	9.04	15:27	7,51	0,896	- 86	1.15	25.4	140	
45	9.05	15.43	7.41	1.09	-84	0162	14.6	140	
50	9.05	15,41	7.46	.899	-67	0.52	11:1	140	
55-	9.05	15.31	7.46	1899	187	0.92	8.3	140	
6c	9.05	15.31	7.54	1910	* 87	0.91	8.2	140	
65.	9,05	15.30	7,44	1900	-88	0.58	5.9	140	
						1	<u> </u>	<u> </u>	
				<u> </u>					
									
*****	<u> </u>				-				
		.						-	
						,			
					·		1		
Water sample Time collected Physical appea Sheen/Free Pr	arance at start Cv/δ Odor V	eless	٠	Total volume	•	er removed: earance at samp Color Odo: /Free Product		BOML ess	
Samples coile	ected:								
Container Size	Contai	пег Туре	# Collected	Field Filt	ered	Preservative		ainer pH	
40 m		11-VIAL	3	N		NONE		7	
1616		ber glass	7	NO		None	No. 1	/`	
1611	-c, Po/	<i>y.</i>	1 /) ·	Nitv.c			
500M	/ · Ρυ/			11	7		, , , ,		

O'Brien &	Gere Engineer	rs, Inc.		Low F	Low Flow Ground Water Sampling Log						
Date	11/ 🛭 /99	Person	inel	WB.	180,861						
Site Name	GM - Former IFG Fac	 lity Evacua	ation Method			Well #	1 - WIN	5			
L.	Syracuse, NY		ing Method	peristaltic		Project #					
Well informati											
Depth of Well	,	.62 ft.		* Measure	ements taken fro	Om					
Depth to Water		<i>DR</i> π.			Х	Top of Well Ca	sing /	PGB			
Length of Wate	· · · · · · · · · · · · · · · · · · ·	54 ft.				Top of Protecti					
						(Other, Specify	")				
Water parame	Position pump	rsible pump slowly to in center of screen gs at every three mi	ed interval &	maximum pumj		liters/minute					
	Depth				Oxidation	Dissolved					
Elapsed	· To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow. Rate (ml/min).			
Time	8.08	Temperature	- 	Conductivity	Contian	<u> </u>					
0(1010)	8.24	12.28	7.28	65	241	8.8	0.1	150			
/0	 		7.26	65	2 46	8.8	0.1	150			
15	8.26	12.37	7.26	6-	247	8.6	0.1	150			
20	8.26	13.19	2 2 7	65	245	34	0.1	12.5			
25	8.25	13,52	7.26	45	.242	8.2	0.1	12:			
30	8.25	13.61	7.25	5	740	3.	0.1	175			
35	3.25	13.45	7.7.	7.5	250	8,0	<i>C.</i>	175			
2)	J J _	. / 2 2 2	7,2.17	-			<u>. </u>				
								· · · · ·			
	 				-						
		-		-	 						
				-	· -	 	· · · · ·	- 1			
				, ,							
				 							
		· ·									
		-		<u> </u>	-						
<u>-</u> ,				, , ,	<u>-</u>	<u> </u>					
	-										
Water sample	e:	•	•				. /				
Time collected	d: <i>]/_CO</i>	٠.		Total volume	of purged wate		1-1.00	<u></u>			
Physical appe	earance at start Color <u>C D/or</u>				Physical app	earance at sam _l Colo	r <u>Cu'si</u> -	<u>42 </u>			
Sheen/Free F	Odor <u>Ve s</u> Product <u>Street</u>				Sheen/	Odo Free Product	1 100 				
Samples col											
Container Siz	e Conta	ner Type	# Collected			Preservative		ntainer pH 7			
		-> Kil	3		v O	/ nc		7.			
\	21 Pal	h ₂	/		(12,- :	Acia L	27			
.500		•	!	7.	ť.	1 1000	5 >	7/			
Notes:	•										

O'Brien &	Gere Engineers	s, Inc.		Low F	Low Flow Ground Water Sampling Log						
Date	11/ 8 /99				KuB, cPO, PGB Weather cloudy, 350						
Site Name	GM - Former IFG Facili	G Facility Evacuation Method			pump		MW-ZD				
	•	-	ng Method	peristaltic		Project #					
Site Location	Syracuse, NY	_ Sampii	ng Method	penstatic	punip	- Project #	21000				
Well information		. –			•	•	•				
Depth of Well *	<u> 30.</u>	<u>63</u> ft.		* Measure	ements taken fr	1					
Depth to Water					X	Top of Well Ca	•	CP0			
Length of Water	r Column <u>dO y</u>	<u>48 </u>				Top of Protecti	ve Casing	·			
					<u> </u>	Other, Specify					
Water paramet	Position pump	ible pump slowly the center of screen at every three mi	ed interval &	maximum pumj		liters/minute					
<u>.</u>	Depth	T at every timee im	indic intervals		Oxidation	Dissolved					
Elapsed Time	To Water	Temperature	pН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).			
0(0,0)	10.15			,							
5	16.89	11.76	7,35	1,44	-3	5.16	30,5	125			
10	10.96	1182	7.34	1-44	-4	4.33	3/./	125			
15	101	12.22	7.31	1.44	-21	2.18	23.8	125			
			7.31	1.44		2.55	24.7	100			
20	10.98	12.48		1	-26		1				
25	15.76	12.72	7 31	1.45	- : 2	2.5-3-	22.4	100			
30	10.96	12.81	7,30	1.44	-41	2.40	21, 1	100			
35	10.9%	12:90	7.29	1.45	-44	2.50	20.8	100			
40	10,96	12.93	7,20	1.45	-45.	2.47	19.9	100			
								1 (
	<u> </u>		<u> </u>					,			
		1									
		·	<u> </u>				<u> </u>				
<u> </u>		+ .	 	<u> </u>							
		,	-	 		. 	 				
ļ			ļ		<u> </u>		<u> </u>				
				<u> </u>							
•											
						-					
·- <u>-</u> .	•		1								
Water sample	<u> </u>	<u>'</u>		<u></u>			1171	· ·			
Time collected	: <u>///5</u>			Total volume	of purged wate	r removed:	~900	ML			
Physical appea	arance at start				Physical app	earance at samp	oling o				
	Color Veas					Colo					
Sheen/Free Pr	Odor <u>No</u>				Sheen/	Odo Free Product	NOTE.	<u></u>			
											
Samples colle Container Size		er Type	# Collected	Field Fill	tered	Preservative	Cont	ainer pH			
40 M		- VIA 1	3		<u>/</u> 0	None		17			
14,70		er along	2	N		Nope		<u>-7.</u>			
14,60	ρ_{cl}	<i>'</i> -,			/u·	Nikic		<u> </u>			
500 h	Po!	· · ·		1.	/ ₍)	1.10 0%		2/2			
Notes:						- ;	RACER00	060834			

O'Brien &	Gere Engineers	, Inc.		Low Flow Ground Water Sampling Log						
Date	11/ 99</th <th>Person</th> <th>nel</th> <th>Luis,</th> <th>८<i>९०, ९५८</i> pump</th> <th>Weather</th> <th>sunny</th> <th>-, 53.0</th>	Person	nel	Luis,	८ <i>९०, ९५८</i> pump	Weather	sunny	-, 53.0		
Site Name	GM - Former IFG Facility	y Evacua	ition Method	peristaltic	pump	Well#	MWE	<u>خ د</u>		
e Location	Syracuse, NY	Sampli	ng Method	peristaltic pump Project # 21535						
Well information		77 -7	· · · · · ·	,						
Depth of Well *	_/5.	87 ft.		* Measure	ements taken fro	pm				
Depth to Water					X	Top of Well Ca				
Length of Water	r Column <u>8.</u>	<u> 28</u> ft.				Top of Protecti (Other, Specify	_			
Water paramet	Position pump in	ble pump slowly the center of screen at every three mi	ed interval &	maximum pumj		liters/minute				
	Depth	<u> </u>			Oxidation	. Dissolved				
Elapsed	To	Tomporatura	pH	Conductivity	Reduction	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)		
Time σ(0955)	Water	Temperature	pn	Conductivity	Potential	(mgn)	(N10)	Rate (minim)		
5		15.06	6.86	89	153	4.6	4,4	175		
	8.91		6.74	19	54	1.5		125		
15 .	9.05	14,82	6.74	88	7	1.2	<u> ラユ</u> ノ. こ	17-		
10	9.21 9.29	15.20	6.74	88	-/3	1.1	0.6	200		
		15.34	1	·	-22	1.3	0-1	150		
25 30	9,31	15,27	6.74	89	 	0.2	0.1	150		
	<u> </u>			38	-29		0.1	150		
35		15.05	6.76	87	-32.	0.7	 			
40	9,28	15.15	6.77	07	-35	0.8	0./	150		
ن ز	<u> </u>					·				
	-	·			<u> </u>					
-							+			
· ·							 	·		
	_			<u> </u>	<u></u>					
		1					1.			
		, ,		<u> </u>	 			·		
	-	<u> </u>								
<u> </u>				<u>'</u>			 			
	<u> </u>		<u> </u>		 					
Water sample	:			<u> </u>	<u> </u>	<u> </u>	1			
Time collected:	1-/3			Total volume	of purged water	removed:	1400	ME		
Physical appea	arance at start			·	sical appe	earance at sam		P		
	Color Co or			بلغ ا	, ******	Colo Odo		<u> </u>		
Sheen/Free Pr	Odor // C roduct // C				Sheen/I	Free Product	1/3 - 1/3			
Samples colle										
Container Size		r Type	# Collected	I Field Fill	Preservative		ontainer pH			
121 Report Min				1/1		1.7: 7.				
12,7		1	100		Nichal King 46		<u> </u>			
500 1				1/1		1100	7 <i>1</i> /	2/7		
Notes:	ollingted Bli	nd Our) /.							

RACER0060835

O'Brien &	Gere Engine	ers, Inc.		Low F	low Groui	nd Water S	Sampling	Log
Date	11/ 5/99	Persor	inel	_ Kirl	LPO, PG,	∠ Weather	50 M N 4	.55°
Site Name	GM - Former IFG F	acility Evacu	ation Method	peristaltic	,		MW-35	
Site Location	Syracuse, NY	Sampi	ing Method	peristaltic	pump	Project #	,	
Well information	on:						:	
Depth of Well *	3	7, 3 \(\) 8, \(7 \) 11.		* Measure	ements taken fro	om		
Depth to Water	*	6,7/ ft.			Х	Top of Well Ca	sing _.	
Length of Water	Column 28	<i>3 <u>, 6</u> 4</i> n	į			Top of Protecti	_	
			•			(Other, Specify	')	
Water paramet	Position pu	mersible pump slowly t imp in center of screen dings at every three m	ed interval &	maximum pum		liters/minute		
	Depth	lange at over, and an			Oxidation	. Dissolved	′	
Elapsed	· To	Temperature) pH	Conductivity	Reduction · Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
Time	Water	remperature	рп	Conductivity	Potential	(mg/l)	(1410)	Rate (monin).
0(0945)	T		-1/	0 = 7.		1 11	730	
<u> </u>	10.21	13.45	7.44	0.97	-28	0.95	<i>530</i>	200
/0	10-34		7.43	0.18	1	0.87	39/	200
. 15 ** 20	10.36	·	7.42	0.98	- 38		400 3p	-
	10.15	.`		1.00	-48 -59	1.38		200
30	10.19	13.50	7.42	1.00		0.90	421 397	200
	10.18	13.31	742	1.00	-65	0.76	388	150
35	9,91		7.43	1.00	-74		4/0	150
40	9.86	13.69	7.50	1.02	- 83	182	299	150 .
50	. 7.86	14.17	7.51	1.02	-85	0.74	247	iso
5 5	9.76	14.55	7.51	1.02	-68	8.7Z	/73	150
60	9.79	14.76	7,52	1.02	-89	0.74	128	150
704	9.75	14.77	7.54	1.01	-84	2.64	74.6	150
80*	9.73	14.66.	7.55	1.01	-83	1,89	38.z	150
85	9.74	14.62	7.46	1.02	-85	, 8/	34.5	150
90	9.73	14.35	7.44	1.02	-85	. 7۲.	29.8	150
					<u> </u>	<u> </u>		
Water sample:	1010		•				~ 290	אווי סס
Time collected:				i otal volume	of purged water			30 /1/C
Physical appea	Color Court	y white			Physical appe	earance at samp Color	- A /	م مراجع مارع
	Odor no	Хe				Odo	. =	
Sheen/Free Pro	oduct	-			Sheen/	Free Product	1.0	<u> </u>
Samples colle								
Container Size		ntainer Type	# Collected			Preservative	Con	tainer pH
40 M		OR-VIRL	3	10		Nople		~ /
		Moer glass	2	<u> </u>		111/1		()
500n	<u>C1</u>	Poly	 	100		Na O		7/2
	/-		1 / 10		<u> </u>	1 NA G	/ ¥ ~	
Notes: 🗡 /	Tuge, d /	my the creat	ill.				RACER00	060836

Brien &	Gere Engine	ers, Inc.		<u> </u>			nd Water S	ampling L	.ug		
te	11/3/99		Personn	iel	KNB.	CPO, PLAK		Cloude -			
•	Former IFG Facility	· - · ·	Evacuat	tion Method	Perisi	to the pun		NOBG 4	<u> </u>		
e Name	Syracuse, NY		- Sampli⊓	g Method	Per 54	Peristotale Project #					
e n	Sylacuse, III		- 	<u> </u>							
ell informatio	n: .	1/	13		* Moorum	ments taken fro	nm				
pth of Well *		<u></u>	.63 ft.		Measure	X	Top of Well Cas	sing .	PGB		
pth to Water		<u> </u>	1 1/ ft.				Top of Protectiv		195		
ngth of Water	Column	<u></u>	<u>- / </u>				Other, Specify) 			
ater paramet	ers:	Position numn i	ible pump slowly thr n center of screene s at every three min	d interval & m	nt water column aximum pumpi						
Elapsed Time		Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/i)	Turbidity (NTU)	Flow Rate (ml/min)		
	15)	10 49				<u></u>		·	<u> </u>		
5	10	10:91	13.98	6.67	1.04	- 78	3.3	z5.3	250		
) 10 .	 	11.15	14.36	2,70	1.06	- 87	2.3	15.7	250		
15		11.25	13,96	6.69	1.06	-87	2-4	5.6	250		
20	 	11.34	13.75	6.69	0.99	-89	0.7	3.8	2 50		
	 	11.38	17.74	1, 19	1.05	-9!	0.7	4.5	210		
25	 -	14:11	13.42	1 20	1,011	-94	0.6	5.7	2/0		
30	*49**···	11.42	13 34	1.23	1.04	-03	0.6	5.5	190		
_3<	7H ²			6.76	1.04	- 108	0.6	1.0	190		
40	42.	<u>11,43</u>	13.60	6. 19	04	-110	0.6	1.0	172		
<u>45</u>		11.43	13.85	6.80	. 06	-110	1.6.	6.0	190		
()		1.46	3.7.5	5.81	1.06	- 111	0.6	1.0	190		
<u> </u>		1145		6.03	1.05	-//2	0.6	1.0	190		
1,0	<u> </u>	11,45	13.75	6-11-0	1,00		10, 2				
					 	 					
		<u> </u>	- 		 	 					
			 						-		
	_		<u> </u>		·						
			<u> </u>								
			 				-				
					<u> </u>			17/7	7 ,,,		
Water sample					Total volum	e of purged wat	er removed:	17600	1112		
Time collecte	u				:		pearance at sam		_`		
rnysical appi	earance at start	Color Lond	ly .				Co				
Sheen/Free I	Product	Odor <u>1/0//</u>				Shee	n/Free Product	1			
				·							
Samples co Container Size		Conta	iner Type	# Collecte	ed Field F	iltered	Preservative	<u>Cor</u>	tainer pH		
	NE		0K- 2/30	1 3		·			<u></u> L -/		
14-1			100 - 102			· · · · · · · · · · · · · · · · · · ·	1 272		<u> 27</u>		
12	100 m	·	1	+ /		· · · · · · · · · · · · · · · · · · ·	1/2 11/2		7/2		
٠											

O'Brien &	Gere	Engineers	s, Inc.		Low F	Low Flow Ground Water Sampling Log						
Date	11/3	/99	Person	nel	KWB	Peristaltic pump Well # Pais-40						
Site Name	GM - Fo	mer IFG Facilit	y Evacua	ition Method	peristaltic	pump	Well#	076 - 4D				
Site Location	Syracus	se, NY	Sampli	ng Method	peristaltic		Project #					
Well information	on:		. 1				,					
Depth of Well *		37,1	<i>/ <u>//</u></i>		* Measure	ments taken fro	om					
Depth to Water	*					X	Top of Well Ca	sing	20			
Length of Water	r Column	26.	<u>∱ 6</u> ft.				Top of Protecti	ive Casing	70			
						<u> </u>	(Other, Specify	/) 				
Water paramet		Position pump in	ble pump slowly the center of screen at every three mi	ed interval &	maximum pumj		liters/minute	No.				
Elapsed Time		Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).			
	45)	10.68		<u> </u>			(3.17	(3.0)	325			
5	172./	10.79	12.30	11.53	0.12	-104	1,4	118	325			
		10.82	12.20	7	0.12	-164		77.6	375			
15				11.65		-190	0.3	† 				
		10.83	12.3	11.59	0.11	 	0.8	65.0	375			
20		10.84	12-1	10.98	81	-162	0.8	126	200			
25		10.77	11.8	9,06	71	-/3/	0.8	65.2	200			
<u>. n</u>		16.77	11.8	8.67		- 155	0.8	55.3	200			
35	<u></u>	10.81 11:7 8			83	-162	0.8	47.1	300			
-2/0		10.82	11.7	7.83	88	-154	0.8	117	300			
45		10.82	11.8	1.65	89	-145	0.8	92.9	300			
¥ 50		10.82	11.8	2.46	0.1	-119	1.5	11.0	300			
55		10 82	.//.8	2.43	0.1	-121	0.8	2.1	300			
60		10-83	1/.9	7.41	0.1	-/23	0.6	6.8	300			
65		10.83	12.0	7.41	0.1	-/23	0.6	6.9	300			
70		10.83	12.2	2,39	0.1	-125	2.6	6.1	500			
				, , , ,								
	-	а							-			
· · · -	-			<u> </u>								
<u> </u>			<u> </u>	 	<u> </u>		 		-			
			<u> </u>		<u> </u>							
Water sample:	_	15		<u> </u>	Total volume	of purged water	removed:	~ 440	C _{MU}			
Physical appea	arance at Color Odor	cloudy	· · · · · · · · · · · · · · · · · · ·			Physical appe	earance at sam _l Colo Odo	r <u>clear</u>	<u>. </u>			
Sheen/Free Pro		No				Sheen/l	Free Product	<u></u>	<u> </u>			
Samples colle Container Size		Containe	r Type	# Collected	Field Filt	ered	Preservative	Conta	iner pH			
Somanier Size	·	Somanie		., Julicolea	. 10.0 1 11							
		0 0	3. 0	/								
Notes: X	Flu	shed cui	linder w	1 DI	Water,	rer O	EC W	RACEROOF	50838			

O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sample								Sampling L	og
Date	11/ 5/19		Person	nel	KWB	LPO	Weather	cloudy 5	ກ •
Site Name		mer IFG Facilit	y Evacua	tion Method	peristaltic			11W-55	
Location	-		•	ng Method	peristaltic		Project #		
Well information	on:								
Depth of Well *		184	<u>//</u> ft.		* Measure	ements taken fro	om		
Depth to Water	•	G. 7	7 <i>0</i> ft.			X	Top of Well Ca	_	_ 00_
Length of Wate	r Column	9.7	<u>/ /</u> ft.				Top of Protecti	ve Casing	- / 0
						L	Other, Specify		•
Water paramet	F	Position pump i	ble pump slowly the n center of screene at every three min	ed interval &	maximum pumj		liters/minute		
	[Depth	<u> </u>	1		Oxidation	. Dissolved		
Elapsed Time		Γο <i>N</i> ater	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0(080			remperature	pn	Conductivity	Potential	(1119/1)	(1410)	200
0000	γ	8,70	10.1	1-12	0/		- ,,	237	200
5	<u> </u>		13.13	6.78	1,01	/2	3.12	· 	
10		8.72	13,21	6.86	6.98	0	2,33	203	200
15	ļ	9.71	13.26	1.88	0.97	-7	2.03	170	200
20		8.72	1333	1.89	0.97	-/2	1.65	162	200
25 🛠		8.72	12.96	6.96	0.92	-35	5.41	5./	200
70	`	8.72	13.39	6.77	0.91	-38	146	5.4	200
35		8.72.	13:56	6.92	0.91	-42.	0.9	28.7	200
40		8.72	13.65	6.98	0.92	-44	6.21	29.5	200
45		8.72	13,69	6.96	681	-47	0.69	27,2	200
50		8,72	13,64	6.95	0.91	-48	0,88	26.3	200
			13.58.	6.96	0.91	-52	0.69	25.9	200
	' -		7 3 7 3 .	3773		<u> </u>		1	
							<u> </u>		
	<u> </u>				<u> </u>	<u> </u>	<u> </u>		+
	 						<u> </u>		
					<u></u> -			<u></u>	
	<u> </u>	·			<u> </u>			<u> </u>	
					<u> </u>	·	,	1	<u> </u>
		· 		ļ,	-	<u> </u>			-
	<u> </u>					:	<u>'</u>	<u> </u>	<u> </u>
Water sample Time collected		2.A	,	•	Total volume	of purged wate	r removed:	- 250	ÓML
Physical appea	-				TOTAL FOLDING		earance at samp		
Priysical appea	Color	slight be	rown cloudy			1 11/3/Car app	Color		
	Odor						Odo		
Sheen/Free Pr	roduct	· NO	<u> </u>			Sheen/	Free Product	10	_
Samples colle	ected:			.					
Container Size		Containe		# Collected	Field Fill	tered	Preservative		ner pH
Hom	-		-61A1	1 3	N		1/100		<u>- 7</u> 7
16,0		1.10	2E 1114	1		<u>د ،</u>	Nila		
Spoml Sou					1		1/0 /4		12
Notes: X	Flusher	\overline{n}	rovah cell						
Notes: 🗥 _	, ,0)	They	round cell	/					

O'Brien &	Gere Engineers	s. Inc.		Low F	Low Flow Ground Water Sampling Log						
Date Date	11/5 /99	Person	nei		cpo		cloudy 5				
	GM - Former IFG Facili	•	ation Method	peristaltic	/		MW-5				
Site Name		=	ng Method	peristaltic		Project #					
	Syracuse, NY	_ Sampli	ing Metrica	penstatic	pump						
Well information		<u></u>				•	· ·				
Depth of Well *		52 ft.		* Measure	ments taken fr	7	-1	Kus			
Depth to Water	10	<u>,3/</u> ft. ,2/ft.			X	Top of Well Ca	•	,			
Length of Wate	r Column	π.				(Other, Specify					
								<u>,</u>			
Water paramet	Position pump	ible pump slowly to in center of screen s at every three mi	ed interval &	maximum pum _l		liters/minute					
· ·	Depth				Oxidation	Dissolved					
Elapsed Time	· To Water	Temperature	Hq	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).			
0 (0800						<u> </u>		150			
5	8.32	12.13	6.79	orll.	278	4.6	145.0	150			
10	8.52	12.11	6,90	0.11	254	3,6	124.0	150			
. 15	8.53 <u>-</u>	11.96	6.99	0:11	208	2.2	84.6	150			
20	8.33	11.96	7.02	0.12	166	1.9	30.0	150			
25	8,33	12.01	7.04	0.12	128	1.4	26.8	150			
354	2.33	1	2.07	0.13	80	3. 2	2,2	150			
	Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti T	12.19	7.08				0.5	150			
40	9.33	+	 	0.13	25	1.5		150			
45	8,33	12.43	7,08	0.13			0,5	150			
50	8.33	12,45	7.07	6.13	14	1.3	0.5	150			
55	8.33	12 45.	7.67	0.13	-3	1.1	0.5	1,30			
		<u> </u>	ļ		-	<u> </u>	<u> </u>	 			
		<u> </u>	<u> </u>			-		 			
-			<u> </u>		-			<u> </u>			
		-	<u> </u>		ļ.	_		-			
			<u> </u>		-		<u> </u> -	<u> </u>			
			<u> </u>	ļ		_	-				
			ļ			,	ļ	ļ			
ļ											
			<u> </u>		:			<u> </u>			
Water sample	40.4.0	•	•	- / 1			.21650	1 /			
Time collected		•		Total volume	of purged water			ML			
Physical appe	Color Slight	brown clo	udy		Physical app	pearance at samp Colo Odo	r_1/221	_			
Sheen/Free P	roduct // 0				Sheen	/Free Product	Ws	 · .			
Samples coll	ected:										
Container Size		er Type	# Collected	Field Fil	tered	Preservative		iner pH			
401	nz Via	-//// 2 - //2 - //2 - /	+ 3		<u>ر ن</u> ر	NOV.	1				
1/2,		201 300 ag 19 - 1	1	1	υ·	Nir.c		2 (
50c	Pol-			1.	`\	1/00		17			
	elucked 2'en	Brook 2	ell, Ton	oh time	to ret	ill					
Notes: X	AND THE STATE OF T	-11 //	, /90	,,, - 	/	· - •	RACER006	0840			

Date	Gere Engineer 11/ <i>08/</i> 99 GM - Former IFG Facili	Person		100	0.4.				
Site Name (nnel	CPO	PGB KW	Weather <u>OV ENCAST 245 %</u> Well # P-2			
Location	GIAL - I OLLINGI II G I SCIII	- ity Evacu	ation Method	peristaltic	/	Well # <u> \(\mathcal{P} - \tau \) \\ \end{array}</u>			
	Syracuse, NY	_	ling Method	peristaltic		- Project #			
well intormatioi						-			
D46 -618/40 *	n: 10 .	02 ft.		* Moneurs	ements taken fr	rom			
Depth of Well * Depth to Water *	70.0	7 ft.		Micasuit	X	Top of Well Ca	asino		
Length of Water	-//	ft.			<u>~</u>	Top of Protect	•		
zengur or vvator			*			Other, Specif			
Water paramete	Position pump	sible pump slowly to	ned interval &	maximum pum		liters/minute	,		
	Depth	s at every three m	inute intervais	<u> </u>	Oxidation	. Dissolved		-	
Elapsed	To		·		Reduction	Oxygen	Turbidity	Flow	
Time	Water.	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
0 /420hry		15,62	7,39	0,27	-164	2.2	108	100	
5	4.92	15.97	7,27	0,27	-156	1.5	65,8	100	
10	4.98	16,23	7.18	0.28	-149	1.4	59,1	100	
15	495	16,36	714	0.28	-144	1/3	523	100	
70	4.90	16.36	7.09	0,29	-139	12	49.2	100	
		1	18 5			112	(101)	100	
25	4,39	16.30	7.06	0.29	-134	1,2	48,0	100	
30	4.92	16,31	1,0-	0,29	709	11/2	46.3	100	
35	4.96	16,22	7.00	Ode	-//9	1,2	19.	100	
40,	4.99	16.20	7,00	0.29	1121	1.5	35.5	125	
44	5,06	16,20	7,00	0.29	-/21	1.6	37,9	125	
50	3,00	16,19	7.00	0.29	-171	1/7	40,2	125	
55	4 99	16.12	6,99	0,29	-119	1.4	40.1	125	
٠-٠-	7,11	16116	01//	0/0/	7///	+	1011	773	
		 	 	<u> </u>	 				
<u>-</u> -			ļ			<u> </u>			
			* ,						
						<u> </u>	•		
				,			÷		
· · ·									
					 				
18/					<u> </u>	<u> </u>		<u></u>	
Water sample: Time collected:	. 1 (1)		•	Total volume	of purged water	er removed:	1325	ML	
				, com relation	•	earance at sam			
Physical appear	Color 910				i iliyalodi apt	Cold	· - / · /	1855	
	Odor Sulfun					Odd	or <u>56/f</u> 0	<u> </u>	
Sheen/Free Pro	oduct VO				Sheen	/Free Product	NO		
								<u> </u>	
	mples collected:		# 0-9	i lesas en	torad	Preservative	les	ntainer pH	
Container Size				Field Filtered NO			ntainer pH てブ		
11/10			N	,	None	<u> </u>	<u> </u>		
Theren	Amb	er glass	7_	N		No	· /	~~ ~7	
77-77	500 ML Poly 1 NO Na 0/N 7/2				7/2				

O'Brien &	Gere	Engineers	, inc.		Low F	Low Flow Ground Water Sampling Log						
Date	11/3/		Perso	onnel	KWB, PGB, CPO Weather Cloudy 400							
Site Name	-	rmer IFG Facilit	v Evac	uation Method	peristaltic	,	Weli#	P.5-0				
	Syracus		•	oling Method	peristaltic		Project #					
Well information		10	69									
Depth of Well *		10,	<u>(0 / </u>		* Measure	ements taken fo	1					
Depth to Water			7 / *			X	Top of Weil Ca	= •	•			
Length of Wate	o Column	/ ა.	11.				(Other, Specify					
Water parame	ters:	Position pump i	ble pump slowly n center of scree at every three r	ened interval &	maximum pum _l		liters/minute					
Elapsed Time		Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).			
0/13	355)	9.47							75			
<u> </u>		· / /										
	+ -											
· <u>-</u>		<u> </u>				 		 	- 			
	 			-	 	 	 		+			
	-					1	 		 -			
	∔						 	1	·			
	-	····					<u> </u>		 -			
		<u>. </u>	·	1			<u> </u>	<u> </u>	·			
								<u> </u>				
							<u> </u>					
							<u> </u>					
			1									
	+											
-			 				ļ · - · ·					
	-	··-··-					 .					
	-		 				1					
		· · · · · · · · · · · · · · · · · · ·	1			1	 		 			
Physical appe	d: <u>//</u> earance a Color Odor	t start r <u>BLA</u> r <u>Yes-</u>	CLE Coll Cll Pet,	ected,	Total volume		earance at sam Cold) <u> </u>	OML			
Sheen/Free P		<u> </u>	- Steen			Sheen.	/Free Product					
Samples coll Container Siz		Contain	er Type	# Collected	d Field Fi	Itered	Preservative	Conf	tainer pH			
									· ·			
-			•			·						
1	لمرا	100 A 200	ml of C	1 1 1 .	1.1	Ped al.	1 6060	e west s	dry.			
Notes:	pu a	. W6U7 30C	mi of D	10ck 119	10 W	101 000	, v , v e , -u - '	RACER00	60842			

O'Brien &	Gere Eng	ineers	, Inc.		Low F	low Grou	nd Water S	Sampling	Log	
Date	11/ / 3 /99		Person	ne!		PGB	·- -	cloudy		
Site Name	GM - Former II	FG Facilit	y Evacua	ation Method	peristaltic	pump	Well#	P-9"		
Location	Syracuse, NY		Sampli	ing Method	peristaltic pump Project # 21535					
Well information	on:	10	10	•						
Depth of Well *	_	10	. 08 ft.		* Measure	ements taken f	7			
Depth to Water	_	-2	7 (7) ft.		•	X	Top of Well Ca	- •		
Length of Wate	r Column _		<u>, S()</u> tt.				Top of Protecti (Other, Specify	=		
Water parame	Positio	n pump it	ble pump slowly the center of screen at every three mi	ed interval &	maximum pum		liters/minute	· · · · · · · · · · · · · · · · · · ·		
	Depth		at every times in	rute intervais	<u> </u>	Oxidation	Dissolved	T		
Elapsed Time	To Water		Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).	
0(1030)	6.7								100	
5	7.0	١2	/².52 ·	7,59	01656	:6	5,39	260.0	100	
10	762	/	17.35	8.10	0.655	43	3.2/	161.0	100	
15	8. 3	2/	17.06	7.99	0.686	59	3.65	143.0	100	
20	8, 9	50	16.99	7.96	0.698	65	3.58	139.0	150	
15	8.8	70 ·	16.94	7.96	0.699	71	3,34	136.0	100	
<i>50</i>	9.0	15	16.93	7.97	0.696	73	3.16	132.0	100	
35	9.	29	16.91	7 99	0.691	75	3.03	141.0	100	
40		7	16.96	794	0.685	79.	3.20	122.0	100	
45	9,6	•	16.89	7.97	0.689	85	3.15	146 0	100	
70×	- //-	,		 	J					
- /										
	6.6	7	11.85	5,71	50 msm	232	7,21	43.1	100	
		<u>'</u>							•	
	-									
	<u> </u>									
	-		, , , , , , , , , , , , , , , , , , , ,		· ·	· · -				
										
	,				`.					
					 	1.		 		
Water sample Time collected Physical appea	: <u>0 9/5 -</u> arance at start	11/11, Eacz	/91		Total volume	of purged wate	earance at sam Colo	oling r <u>()/01/e</u> 5	ML	
Sheen/Free Pi	Odor	Vore				Sheen	Odo /Free Product	1 1/3 a/ond		
Samples colle		Containe	r Type	# Collected	Field Filt	ered	Preservative	Cont	ainer pH	
La Container Size	n L	JUA-	VIAL	3	rieid Fili		None			
16,7	e	Amb	eiglass	2	N		None	7	7	
1211	e	Po	(y/	/	NO	>	1 1 1	Acid 2	<u>-2 </u>	
5001	mL	Pol	G :	/	N	<u> </u>	No01	<u>۷ ></u>	12	
Notes: X	Well pun	hara de	dry				··········			
	- 7	I	U					RACER00	060843	

April 25, 1997

Gere Engineers ///02/99 Former IFG Facility Syracuse, NY :			ion Method	Penalat Penalat Perasat	WB/PGB	Weather Well # Project #		<u>;w.ndy</u> ;250	
Syracuse, NY :		Samplin		Periodol Periodol	tic Pung				
Syracuse, NY :		Samplin		Perstal	tic Pund	7 Parison #	21575		
:		20		·x	Sampling Method Perstaltic Pung				
·	<u> . 0</u> 5.	<u>19</u>							
Column	<u> </u>	<u>/</u> 9ft.		* Moneyer	ments taken from	ń	,		
Column		<i>28</i> ft.		Measure		 Top of Well Cas	sing		
Column		20 n.				Top of Protective			
		<u>7_/</u> "				(Other, Specify))		
rs:	Position numb it	ple pump slowly the center of screene at every three min	d interval & m	nt water column aximum pumpi	ng rate of 0.5 lite				
	Depth	at every three sum.			Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow	
	To Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
5,28					100		100	300	
6,57		17,71					70,5	300	
6.74		17,70			1/58			250	
7.01		17,71	 		-/46	7		150	
7, 25		17,74	 	 	-144	 	1	150	
7.40		17.76	<u> </u>	.69/	1/95	17/1-	13:/	150	
7,54	·	17.79		.649	1-179	1,0	77	100	
7.68		17.81	1 1 1	100	1/3/	1,0	1 7 7	100	
7,77		17,75	1 1	1688	1/7/	1./		700	
7.85		17,72	1.1/		1-1-1	 / / 		100	
7,92		17.69	1 /	7/2	154	1-/-		100	
7.97		- - - - - - - - - - 		11/2	107	1/,/	1/40	100	
			1,75	771		1//	107	75	
		17.69	7,99	773		1//	103	75	
		17,66	1.17	777		1/0	1/1/	75	
		11.6/	1/3/	750		10	20:4	75	
				/		1//		75	
			1/1-5/	7/5	-147	09		75	
				773	-143		25,8	7.5	
		17.00	1,25	1.773			770.	7 14 1	
-6161	1//3/99			Total volum	e of purged wate	r removed:	~ 3/00	/W/L	
		1	-	:	Physical app			Dias 2	
Co		iles .					<u> </u>	<u> </u>	
		0		•	Sheen	/Free Product			
									
	Contai	ner Type	# Collecte	ed Field I	Filtered	Preservative	e Con	tainer pH	
De Por	ya a		 						
	<u>'</u>	_							
						H	1/0/	<u> [</u>	
	6,57 6,74 7,01 7,25 7,40 7,54 7,68 7,77 7,95 7,97 8,01 8,01 8,10 8,31 8,31 8,37 8,31 8,37 8,44 9,54 coduct	### 5,28 6,57 6,74 7,01 7,25 7,40 7,54 7,68 7,77 7,85 7,92 7,97 8,01 8,31 8,31 8,31 8,31 8,31 8,31 8,31 8,37 8,44 3,54 Earance at start Color Odor Aroduct Aroduct Color Odor Aroduct Aroduct	Water Temperature	Water Temperature pH	Water Temperature pH Conductivity	S	### Temperature pH Conductivity Potential (iiiiiiii) 6.57	Water Temperature pH Conductivity Potential (iiiiiii) (iiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiiii) (iiiiiiiii) (iiiiiiiii) (iiiiiiiiii	

IDnian 0	Gere Engineers, Ir	nc		Low Flow Ground Water Sampling Log						
	11/02/99		Personnel CPO/KuB/PGB Weather Parfry Charles 4							
ite ,			wation Method	Recental	tic Punil	Well #	1-15			
e Mare	Former IFG Facility		pling Method	Peistal	ter Pund.	Project#	21533	<u> </u>		
deon	Syracuse, NY		· · · · · · · · · · · · · · · · · · ·							
ell informatio	on:	1109 .		* Measure	ments taken from	ח				
epth of Well *		11,09 ft. 5,28 ft.				Top of Well Ca				
epth to Water		5.8/ft.				Top of Protection				
ength of Water	Column					(Other, Specify	')	- <u>-</u> -		
/ater paramet	Po	wer submersible pump slowly sition pump in center of scree slect readings at every three	ened interval & ir	nt water column naximum pumpi	ng rate of 0.5 lite					
		epth			Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow		
Elapsed	To	ater Temperature	pH	Conductivity		(mg/l)	(NTU)	Rate (ml/min)		
100	8,65	17,56	7.34	0.785	140	0.9	28.8	75		
	3.74	1754	7, 33	0.198	-137	1,0	32,/	175		
105	8,80	17.54	1,32	.808	-134	1,0	28,3	75		
<u>//0</u>	8,88	17.56	7.31	.3//	-131	7.0	25,3	75		
<u> 115</u>	9.91	1757	7.30	.810	-/30	1,/	26.2	75		
120		17.58	732	* 316	-128	1.0	27.3	75		
125	8.99	17.60	733	18/8	126	1.0	28.9	75		
130	9.03	17//	719	825	1124	1.0	31.5	75		
155 <u> </u>	9,10	17.61	110	.83/	-122	1.0	36.3	75		
<u> 140 _</u>	9.11	11,66	7.28	1, 33/	-122	1.0	35,6	75		
195	9.27	17.65	7.29	330	-123	1.0	36.2	75		
7	9,30	17.65		1,832	_ 	0.9	2/088	400		
\ <u>~5"_</u>	10,06	17.95	7.29	, 002	7,40	<u> </u>				
160	DRY_			<u>- </u>			_			
						+				
, ,	· · _	7 27	1	1001	07	7.1	1.8	150		
11/3/99	03/5/m - 5.0	11 13.8	7,57	1.896	82	- -/') -	1.0			
/ - / -	•									
						- 				
		·								
Water samp	le: 00,5/ ///	(z/pa)		Total volum	e of purged water	er removed:	~370	OML		
Time collecte		1911	1			pearance at sar	npling /			
Physical app	earance at start Color	See Page 1	<i>l</i> .			Co	olor Colory	<u>2</u>		
	Odor						dor //0_	•		
Sheen/Free	Product			•	Shee	/Free Product	700			
				<u>*</u>				ntainer pH		
Samples co Container S		Container Type	# Collect	ed Field	Filtered VO	Preservativ		าเลเกษา pri 		
	40 ML	VOA-VIKE	3		NO	1/0	re .	27		
	Lifes	Nuber Kass	- 		NO	Witri	e Heid	<u> 22 </u>		
	1 / 0 .	1 1/1/1/	1 ·					フ/マ		
	500 ML	PolV			NO	Na	<u>V/Y</u>			

Personnel)'Brien 8	Gere Engineers,	inc.	<u> </u>	Low Flow Ground Water Sampling Log						
Recording Brillian Syncises, NY Sampling Method Syncises, NY Sampling Method Syncises, NY Sampling Method Ser. Statistics Sumpling Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Sumplies Ser. Statistics Ser. Statistics Ser. Statistics Ser. Statistics Ser. Statistics Ser. Statistics Ser. Statistics Ser. Statis				Personn	el				71.71		
Water parameters: 19,97				Evacuat	ion Method	Per, st	affic Pury	Weil #	4-12		
Water parameters: 19,97				Samplin	a Method	~	/ 1 //	Project#	21535		
Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance Container Physical Appearance at start Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical App	ite Location	Syracuse, N1			<u> </u>						
Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Color Container Physical appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance at start Container Physical Appearance Container Physical Appearance at start Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical Appearance Container Physical App	Veil informat	ion:	10	97		* * * *					
All All	Depth of Well '	•	17,0			- Measun			sina		
Coher space Coher	Depth to Wate	Γ*					- 4				
Position pump in center of scanner disperse in the intervals Resolver of the property of t	ength of Wate	er Column	1d. E	<u>₹6</u> ft.							
Position pump in center of scanner disperse in the intervals Resolver of the property of t	•••		Lower submersit	ole pump slowly thr	ough stagnar	it water column	1				
Elapsed Time	water parame		Position pump in	center of screened	d interval & m	aximum pump	ing rate of 0.5 lite	ers/minute			
Conductivity Potential (mg/l) (NTI) Rate (mmm) (NTI) Rate (mmm) (NTI)				at every uncomme		115/0-			Turbidity	Flow	
Total volume of purged water removed:				Temperature	на					Rate (ml/min).	
Sample:			water	remperature	. pi.	2				225	
10 8 28 16 53 7 25 7 76 - 96 0 1 3 7 3 1 1 5 1 3 3 1 1 5 1 5 1 7 7 5 1 7 7 7 7 7 7 7 7 7	010945	<u> </u>		11/0	700	0.75	-67	0	9.3	225	
N	5			16.60	1,09	0,10	101		1/15	100	
15 3.32 16.45 7.37 2.770 9.3	10	B. 28		16.53	1.15	1.161	1-86 2-	12	+	100	
20	7,5			16-45	7.3/	0.770	1-43	14	100		
15	72			16,38	7.32	0.779	1-97		110/	170	
Total volume of purged water removed:	<u> </u>	RUA			732	0,186	1-98	0	148		
35 345 75 750	<u> 75 </u>			7-7	727	11.703	2/1	0	1.2	200	
10				11: 71	750	201	1-90	0		180	
Water sample: 1045	<u> 35</u>	8.45			·/·	0.00	1 10	 × -			
Water sample: 10 45	40	3,57		16.23		0,810	1-19/	 	1 / -7		
Water sample: 1045 16/5 178 0.835 -95 0 1.2 130 16/2 17.2		8.32	·	16/9	7.31	0.817	798				
Sample: 1045 16.12 7.29 0.833 -94 0 1.2 130		8.21		16.15	7,28	0.825	-95		110	750	
Water sample: Time collected: Physical appearance at start Color Odor VO Sheen/Free Product Container Type # Collected Field Filtered Preservative Container pH # OML UON-VIAL 3 1/0 VONE 4 0 M VONE 1 1/2 1 1/6 1 M MAD Note 1 2 1/80 Note No	22			16.15	7.28	0.83	7 -95				
Water sample: Time collected: Physical appearance at start Color Odor Vo Sheen/Free Product Container Type # Collected Field Filtered Field Filtered Freservative Container pH # OM L	77			11/2		0.833	5-94	T 0	1,0	7 150	
Time collected:	60	<u> </u>		1000-	1721 1	7					
Time collected:				 	 	 -		 			
Time collected:		<u> </u>		<u> </u>	ļ			 			
Time collected:											
Time collected:					<u> </u>				<u> </u>		
Time collected:									·		
Time collected:	<u> </u>								· İ		
Time collected:					<u> </u>						
Time collected:	Watersamr	Na:		_ <u></u>		- '	<u> </u>		73	00 m/	
Physical appearance at start Color Odor UO Sheen/Free Product Container Type H Collected Field Filtered Preservative Container pH HOML VON-VIAL 3 N/O NOW NOW NOW NOW NOW NOW NOW NOW NOW NO		1/147				Total volum	e of purged water	er removed:	22	-	
Sheen/Free Product Color VO Sheen/Free Product Samples collected: Container Size Container Type Container Type Container Type # Collected Field Filtered Preservative Container pH $VON - VINL$ VON				_		:	Physical app			1.	
Sheen/Free Product $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Physical app		7 1-1	ess						uess .	
Sheen/Free Product Samples collected: Container Size Container Type $VOR - VIRL$		Odo	·						dor	· ·	
Container Size Container Type #Collected #Collected None $Anne $ An	Sheen/Free	Product	N	<u> </u>		•	Sheer	VFree Product		<u></u>	
Container Size Container Type #Collected #Collected None $Anne $ An	S	- It					<u></u>				
40 m L			Contair								
			VON								
16, ten 1017 100 NaOH >12	12	ifer	AMB	ER-GLAS	<u> </u>						
503 m L PSIV	14,7cm Poly			/	/- -						
Notes:	5	00 m L	PUL	<u>, </u>			<u> </u>		-,,,		
[110]63.	Notes:					<u>-</u>					

O'Brien &	Gere	Engineers	, Inc.		Low F	Low Flow Ground Water Sampling Log					
Date	11/ /0/	99	Person	inel		POPPERK	Weather	Wercast	f, ~ 55°E		
Site Name		mer IFG Facility	y Evacua	ation Method		T	-	W-1	<u>'S</u>		
- Location	Syracus		'	ng Method		peristaltic pump Project # 21535					
vveil information	on:					 					
Depth of Well *		20.	53 ft.		• Measure	ements taken fr	om				
Depth to Water	*	13,0	<i>08</i> € ft.			Х	Top of Well Ca	sing			
Length of Wate	r Column	7.	4 5 ft .	. •			Top of Protect	=			
	-						Other, Specify	/)			
Water paramet	1	Position pump in	ble pump slowly to center of screen at every three mi	ed interval &	maximum pum		liters/minute		***		
		Depth	at every timee iii	nute intervals		Oxidation	. Dissolved				
Elapsed		То	<u>.</u> ·		m 5/m	Reduction	Oxygen	Turbidity	Flow		
Time		Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
0 (1215)	16	.26	1391	1.08	01/	-/30	\(\lambda \) \	6010	`		
5	14	.59	13.81_	7.10	0,11	1/34	<i>\\\\</i>	61.6	100		
10	14.	,92	13.66	7.//	0.11	1/34	1.4	61.5	130		
15	15	19	F	LUSA	CVL	WOER			/30		
20	15	.37	13-51	7.08	97,15	-129	1.8	1,2	130		
25	15	54	1347	7.10	97	-/30	1.3	3.4	1/30		
30	15	Zd	13 39	709	a1	-/30	1/1	10.7	/30		
	100	20	12.21	13/14	00	120	0.6	01	130		
35	1/5/3	72	13.36	7.00	70	129	277	0/	100		
40	15.5	<u> </u>	13.49	1,01	99	-126	0,/	0,/	<u> / 30</u>		
45	15.8	33	13.23	7.04	0.1/5/m	1/23	0.6	101	1,50		
150	15.8	33	13.18.	7.02	0.11	1/19	0.1	0,/	<u> </u>		
55	15.8	<u>35 </u>	13.19	7.01	0.//	7/17	0.6	0,1	130		
				_		·					
									·		
				1					• .		
			 	<u> </u>				· ·			
	+						 	 			
			,,_,,						·		
	 			 			1				
	 			 	1	<u> </u>		1			
19/24				<u> </u>		1	·	<u> </u>			
Water sample Time collected	142	D		,	Total volume	of purged wate	r removed:	115	00 MC		
Physical appea							earance at sam		2 1		
Trysical appea	Color	1t. 91	an			· //Joiour upp	Colc	- <i>/</i> 1 //	rdest		
	Odor	No	0				Odo		<i>d</i>		
Sheen/Free Pr	roduct	No				Sheen/	Free Product	N)		
Samples colle	neted:						<u> </u>				
Container Size		Containe	г Туре	# Collected	Field Fil	tered	Preservative	C	ontainer pH		
	16	VOA	-UIAL	3	1	/ O	None		n7		
16:16	21	Amil	er glass	2	ν		None		~7		
	21	PolV	<u>/</u>	1 1		/O ·	Nifrio Na 0		22 712		
500	m L	1 DD	4 MM - 1	<u> </u>		1 /22	7	// //	7-2		
Notes:		Lollert	115/	M 5D	med	156 In	1D Vhy	sleca	le 2		
			/					RACER	R0060847		

O'Brien &	Gere Engineers	s, inc.	<u> </u>	Low F	low Groui	nd Water S	Sampling L	.og	
Date	11/9 /99	Persor	ınel				cloudy		
Site Name	GM - Former IFG Facili	ty Evacu:	ation Method	peristaltic		_	W-101		
Site Location	Syracuse, NY	Sampl	ing Method	peristaltic	pump	Project #			
Well information	on:		 ,				-		
Depth of Well *		. 10 ft.		* Measure	ements taken fro	om			
Depth to Water		. €8 ft.			X	Top of Well Ca	sing		
Length of Water	Column 19	,62 ft.	r.			Top of Protecti	= '		
	•	•				(Other, Specify	<i>'</i>)		
Water paramete	Position pump i	ible pump slowly to n center of screen s at every three mi	ed interval &	maximum pumį		liters/minute			
	Depth				Oxidation	- Dissolved	- · · · · ·		
Elapsed Time	To Water	Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).	
0(1450)	1308							150	
5	3,30	13.64	6.68	0.13.	-73	1.2	153.0	150	
10	13.30	13:39	6.68	0,10	-76	0,6	132.0	150	
15	13,30	13.32.	6.69	0.12.	-80	0.5	84.2	150	
<i>ъ</i> X	15,30	13.31	6,70	0.12	-82	0,5	70.4	150	
30	13.30	13.35	6.74	0.12	-77	2.4	15.1	150	
35	13 50	13.39	6-74	0.12	- 79	0,7	4,8	150	
НО	/3,30	13.36	6. 24	0.12	-80	0.7	4.3	150	
45	13.30	13.1 4	6.74	0.11	-83	0.7	1.0	0.57	
							<u> </u>		
•		<u> </u>							
••		<u>'</u>						1	
				,		,			
	•					• '		-	
Water sample:	1016		•				- 15/1	ett (
Time collected:	rance at start	,		Total volume	of purged water Physical appe	removed: arance at samp		ML	
	Odor K	or or				Color Odor		-	
Sheen/Free Pro)			Sheen/F	ree Product	1/0		
Samples collec	cted:								
Container Size	Containe		# Collected	Field Filte		Preservative		ner pH	
4011	L VON	-VIII	1 3	1		1./00		-/	
16,60	Kill De	1- grass	1	1.	<i>;</i>	K/O7	134 4		
500 h	1 L Port		1	1	<u> </u>	Mark	7,27 -		
Notes: *	Turned Man	Human	- R To	with Toron	((n)	1.01	· ·		
,10,00. /	ARTON DESCRIPTION					, m	RACER00	60848	

O'Brien &	Gere Engineers	s, Inc.		Low F	low Groun	d Water S	Sampling L	_og		
 Date	11/ <i>H</i> /99	Persor	nnel	KuB.	c10,16B	Weather	Houly 4	p°		
Site Name	GM - Former IFG Facili	ty Evacua	ation Method	peristaltic	/		W-65			
Location	Syracuse, NY	Sampli	ing Method	peristaltic	peristaltic pump Project # 21535					
Well information		10					<u> </u>			
Depth of Well *	_//.	<u>6/</u> ft.		* Measure	ments taken fro	m				
Depth to Water		2 <u>9</u> ft.			X	Top of Well Ca	sing	01. 2		
Length of Wate	r Column <u>9</u> ,	<u>38</u> ft.				Top of Protecti (Other, Specify	vc outsing	^l 4 B		
		the summer along to the				(,	· -			
Water paramet	Position pump	ible pump slowly to in center of screen is at every three mi	ed interval &	maximum pum;		iters/minute				
	Depth				Oxidation	. Dissolved	1			
Elapsed Time	To Water	Temperature	Hq	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
0 (100	1	Tomporature	, p.,	- Conductivity	, otomai	(9.7	(5/	400		
1,-0	9,95	11.6	7.01	0.14.	-147	2.5	146	150		
э †0	10.15	12.0	7.06	0.14	-156	1.1.	140	100		
20 *	10.15	1	6 99	0.14	-139	2.0	66	100		
15 x	10.15	12.3	698	0.15	-141	1,3	50.3	100		
30 30		12.0	1		1	1.1	59.9	75		
	77.1-	†	6.49	5.14	-141	1.2	49.7	75		
35 40	19.22	/2.1	6.97	· -	i		51.0	75		
40		12:2	6.98	0.15	-/4/	1.3		75		
45	10.26	12.6	6.96	0.14	-142	1-2	54.0	75		
50	10.30	12.7	6.96	0.14	-14/	1.0	47.3 53,2	75		
65 *	10.42	/3.1	6.95	0.14	-/35	2.2	46 2	13		
70	10.48	13/3	6.99 1,20		-143	1-1	46.8	75		
<u> 45 .</u>	10.52	12-6	1	0.14	-/36			75		
86	10,54	12-6	6.99	 	- 145	0.8	45.4	75-		
.85	10.56	12.5	6.79	0.14	-145	0.7	1	75		
90	10,55	12-5	7.04	2.14	-146		41.2			
95_	10.58	12.9	6.99	0.14	-146	0.8	112.2	75		
100	10.58	12.4	7.01	0.14	-145	0.7	42-3	75-		
105	10.58	13.0	6.98	0.14	- 143	0.8	72-3	1 73		
Water sample	<u>.l</u>				<u> </u>		1000	 		
Time collected	. 7 50			Total volume	of purged water	removed:	-1900	n1 1		
Physical appea		,		•	Physical appe	arance at samp		11 .		
	Color Greenis					Colo Odo	r slight ye	10W		
Sheen/Free Pr	Odor <u>Sultur</u> roduct <u>N</u>				Sheen/F	Free Product	10			
Samples colle	ected:									
Container Size	e Contain	ег Туре	# Collected			Preservative		niner pH		
401		-37/2	$\frac{3}{2}$		<u>ل ل</u>	NO				
··· <u>////</u>	in Smil	9-7: HAIH 9-2:	1 7		<u> </u>	Alle		= 		
7 00 n		12.5. 12.4.	+-/-	- - / ;	- 6· - C	Nat		7/2		
	A 15.1	4. 50h					<u>·, l , </u>			
Notes: 🗡	Flughed) Flow_	- 74 - 35 h 3	ce// . 1	3 m - 3 e	· yore+	1//				

O'Brien &	Gere	Engineers	, Inc.		Low F	low Grou	nd Water	Sampling	Log
	11/4		Persor	nnel		PGB, LP			
		rmer IFG Facilit	•	ation Method	peristaltic		- Well#	W-6D	
	Syracus	·		ing Method	peristaltic		- Project#		
Well information	on:		<u>. </u>		<u></u>				
Depth of Well *		2	4,25 ft.		* Measure	ements taken fi	rom		
Depth to Water	*				•	х	Top of Well Ca	sing	
Length of Water	r Column		7,88 ft.				Top of Protecti	ve Casing	-20
					•	<u></u>	Other, Specify	/)	
Water paramet		Position pump in	ble pump slowly to center of screen at every three mi	ed interval &	maximum pum _l		liters/minute		
	*	Depth	<u>*</u> .			Oxidation	. Dissolved		
Elapsed Time		To Water	Temperature	pН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0 (100	5)	8.37	·						200
5		9.09	11.01	8.02	1.70	-220	2.3	73.2	200
10	 	9,07.	11.28	8.01	1.67	-220	1.6	53,4	200
15		9.08	11.61	7.97	1.62.	-226	1.1	37.2	200
20		9,11	11.89	7.93	1.56	-211	0.9	21.6	200
25		9.12	11.9.1	7.89	1.52	-205	0.9	18.9	200
30		9.11	n. 37	7 96	1.50	-198	5.7	18 3	-00
35		9.4	11,90	7.80	1,50	-191	0.8	7.1	.200
40		912	11.87	7.80	1.50	-184	0.8	3.8	200
45		9.12	12.02	7,77	1.51	-180	0.8	3,0	200
50 55		9.12	12.0f	3.76	1.52	-178	0.7	1.1	200
55		9.12	.12.14	2.74	153	-176	2.7	3-	دو نے
60		9.12	11.93	1,12	1.56	-173	0.9	0.1	200
65		7.12	12.02	7.71	157	-171	0.8	0-1	200
							ļ .	•	
	ļ		<u> </u>				· · · · · · · · · · · · · · · · · · ·	<u></u>	
	-			<u> </u>					
Matar samul-		·		<u> </u>	1	<u> </u> :	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u></u>
Water sample: Time collected:		30		•	Total volume	of purged wate	r removed:	12800	h1 ,
Physical appea					, otal rolalita		·		
' ''	Color	,	sh			,	Colo	lear	- -
Sheen/Free Pro	Odor oduct	50/for	•			Sheen/	Odo: Free Product	NO	
Samples colle	cted:	· · · · · · · · · · · · · · · · · · ·							
Container Size		Containe		# Collected			Preservative		tainer pH
40 m			<u> 4786</u>	1 3	N.		1 1 1		<u>n / </u>
11/20	••	AND.		1 7	N C	0 10	1	12.7	- - - - - - - - - -
5001	nL.		+ p ² ."	1	1 h			<u> </u>	7/2
Notes:			i						
.10.03.		<u> </u>						RACER0	060850

jam:ers/div76/admin/4_notes/micrlog3

April 25, 1997

O'Brien &	Gere Enginee	Low Flow Ground Water Sampling Log							
Date	11/ g /99	Persor	nnel	, KuB	LPO, PG	S Weather	Cloudy	, 35	
Site Name	GM - Former IFG Fa	 cility Evacu	ation Method	peristaltic	•		W-115		
Location	Syracuse, NY		ing Method	peristaltic pump Project # 21535					
vell information	on:	<u>,, , , , , , , , , , , , , , , , , , ,</u>							
Depth of Weil'*	,	1,54 n.		* Measure	ements taken fro	om		0.0	
Depth to Water		7, 3.7 ft.			Х	Top of Well Ca	sing	c PO	
Length of Water		/, / 7 ft.				Top of Protecti	ve Casing		
-						Other, Specify	<i>(</i>)		
Water paramet	Position pur	ersible pump slowly t np in center of screer ings at every three m	ed interval &	maximum pumj		liters/minute			
	Depth	, , , , , , , , , , , , , , , , , , ,			Oxidation	Dissolved			
Elapsed	• То		l		Reduction	Oxygen	Turbidity	Flow	
Time	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).	
0/1145)	7.37			-					
5	1.26	13,16	6.90	0.14	-228	1.5	46.1	150	
10	7.98	13.51	7.17	0.14	- 245	1,2	46,6	150	
15	8,07	13.80	7.18.	0.14	-249	1,0	47.2	100	
20	8.14	14.11	7.16	0.14	-249	10	48,6	100	
25	8.19		7.14	0.14	-252	0.9	47.3	700	
30	8.21	1413	7.10	0.14	-250	0.7	41.9	100	
35	8.22		7.08	0.14	-250	0,7	40-1	1.00	
40	8.22		2.08	0,14	-252	0.7	39.3	,00	
	0,22		-,00	071-1	- 200 -		- ' - -	· · · · · · · · · · · · · · · · · · ·	
·-/					 				
			 	 					
	·			 	 				
,				<u> -</u>	<u> </u>				
			<u> </u>				,		
			1					<u> </u>	
···									
					<u> </u>				
	-	-		 -			†		
Water sample	<u> </u>		• .			1	1111		
Time collected				Total volume	of purged wate	r removed:	pling clear	16	
Physical appe	arance at start ,			•	Physical appo	earance at sam	pling /		
' ' ' '	Color Chec	ar .				Colo			
Sheen/Free Pr	odor <u>sul</u> roduct <u>No</u>	fur			Sheen/	Odo Free Product	r_sulfu_ NO		
Samples coll	ected:								
Container Size		ainer Type	# Collected			Preservative		tainer pH	
40 M		JA-VIAL	-3		NO	10%		<u> イ /</u>	
16,11		19. 1 3 to 12	2		<u></u>	1/27	0.7		
141-2 500 n		<u>)</u>	/		0 -	1/1516	11111	7/2	
J 33 //	- / .	<u> </u>	1 '		· <u>v</u>	1 / 1		<u> </u>	
Notes:									

O'Brien &	Gere Engineers	s, Inc.		Low Flow Ground Water Sampling Log						
Date	11/ 🞖 /99	Person	nel	puß !	(PO, PG)	3 Weather		1-, 35-0		
Site Name	GM - Former IFG Facilit	y Evacua	ition Method	peristaitic	pump	Well#	W-11 %)		
Site Location	Syracuse, NY	Sampli	ng Method	peristaltic	pump	Project #	21535			
Well informatio	n·									
Depth of Well*		5.90 ft.		* Measure	ements taken fro	om				
Depth to Water *	6	75 ft.			Х	Top of Well Ca	sing 4	29B		
Length of Water	Column / 7	, 05 ft.				Top of Protecti	ve Casing	90		
						(Other, Specify	<i>'</i>)			
Water paramete	Position pump in	ble pump slowly the center of screenes at every three min	ed interval &	maximum pumj		iters/minute	······································			
	Depth	at every times init	ible intervals	<u>'</u>	Oxidation	. Dissolved		 		
Elapsed	· To Water	Temperature	pН	Conductivity	Reduction	Oxygen	Turbidity (NTU)	Flow		
0 (1145)		Temperature	····		Potential	(mg/l)	(1410)	Rate (ml/min).		
(117)	6.75	/3.75	7-7	127	_ /2 =	2 1/	70110	1-70		
. 5	<u> </u>	12.72	7.59	1,33	-127	3.16	304.6	150		
16	7.12	12.72	7.57	1.33	-125	1.48	271.0	150		
15	7. 13	12.68	7.45	1.33	-127	1.27	2520	100		
20	7.28	12.93	7,55	1.33	-/28	1.15	244.0	150		
25	<u> </u>	13.36	7.56	1.33	-129	1.11	204.0	150		
35×	7.51	13.49	7.50	1.33	-125	0.73	120.0	150		
40	7.52	13,34	7.46	/,33	-125	0.74	122.0	150		
45	7,54	13,29	7.48	1.33	-12.6	0.58	94.6	150		
50	7.57	13.28	2.49	1.33	-128	0.35	79.8	150		
<u>:5</u>	2,55	13,23.	2,48	1,32	-129	0.54	66.1	150		
100	2.62	13.19	7.48	1.33	-124	0.62	54.6	10		
65.	7.67	13-15	7.48	1.33.	-125	0.51	43.0	190		
W	7.70	13.10	7.47	1.33	-125	0.47	34.8	190		
75 X	7.62	13.22	2.47	1.33	-118	0.95	33.2	150		
80,	7.60	13,13	7.46	1.32	-120	0.55	30-7	150		
85 X	7,32	12.54	7,49	1,34	-117	2-01	49.2	150		
90	7.54	13,20	7.47	1,32	-118	0.88	49-6	150		
95	7,80	13,22	7.47	1.33	-121	054	36.5	150		
100	7.90	13,24	7.47	1.33	-123	0.45	37,3	150		
Water sample: Time collected:	1515		•	Total volume	of purged water	removed:	~ 5,80	DMC		
Physical appear	:	. / /			Physical appe	arance at samp	-, ,	,		
	Odor Juliur	, con ay				Colo: Odo		' }		
Sheen/Free Pro		v			Sheen/F	Free Product	1/07-			
Samples collec		***		l==		In				
Container Size	Containe	# Collected	Field Filt		Preservative	Contai				
11,00		V116	2)	1/17	. a	1		
111-11	1-11		/	N		1/1-810				
500 m	L P. C.				1	1/2) 4	· 7/	2		
Notes: 🗡	Flusher Lien	1 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	coll.	Tuch 1	ine to	Relde	W.	,		
A -	Interior (a.	ne alt -	- waln		tical	,	RACER006	0852 / J. 2 / J. April 25, 1		

O'Brien &	Gere Engineer	s, Inc.		Low Flow Ground Water Sampling Log						
Date _	11 <i>11</i> /99	Person	onnel <u>kub CPO, PhD</u> Weather Cloudy 350							
Site Name	GM - Former IFG Faci	lity Evacu	ation Method	penstaltic	pump .	Well #	w-11.	<u>0</u>		
Location _	Syracuse, NY	Sampl	ing Method	peristaltic	pump	_ Project#	21535			
Vell information	n:		· · · · · · · · · · · · · · · · · · ·							
epth of Well*		3, 80 ft.		* Measur	ments taken fi	rom				
epth to Water *		ft.			X	Top of Well Ca	=			
ength of Water	Column /	705 ft.				Top of Protecti (Other, Specify	-			
				, i						
Vater paramete	Position pump	sible pump slowly t in center of screer as at every three m	ed interval &	maximum pum		liters/minute				
	Depth	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The state of the s		Oxidation	Dissolved				
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
105	8.03	13.24	7.47	1:32	· -	0.40	30.5			
· ·	8.49	13.43			-124	0.36	58.			
//0	9.37		7.48	1.32	-/26	0.33	 -			
115	<u>9,37</u> 9.85	13.48	7,52	1.30	-129	0.35	57.3			
120		13.48	7.47		-132	+	54.7	150		
125	8.97	13.27		1.32	-127	0.41	35-9			
/30	8.11	/3.23	7.46	1.32	-125	0.40	35,7	****		
135	8.50	13,21	7.46	1.31	-124	0.40	25,1	200		
140	8.50	13.17	7.46	1.31	-124	0.40	20.5	200		
1.45	8.50	13.15	7.46	1.32	-125	0.39	19.6	200		
, 150	8.50	13.21	7,45	1,35	-126	6,40	18.8	200		
		<u> </u>					1			
			<u> </u>							
						1				
		·								
				<u> </u>	,					
							•			
		•								
						,				
	·	ı		*						
Vater sample:	/		•				1 -0	00 ML		
ime collected:	1575			Total volume	of purged wate			JO ME		
hysical appear	ance at start Color <u>byown</u> , 1	Luck			Physical app	earance at samp Color	- 71. / · ·	, , , ,		
	Odor $Suff$:	<u> </u>				Odoi		<u>.4-7</u> (1.)		
Sheen/Free Pro	duct Nove	R			Sheen/	Free Product	Nor			
	4-1-	_								
amples collection container Size		er Type	# Collected	Field Filt	ered	Preservative	Co	ntainer pH		
	ontainer Size Container Type \[\sqrt{0} \ \lambda \l		3		//0	NAC		٦.7		
Line	[NF:1]		2		/,)	1.200		17		
1 12/13	$\frac{p_0}{2}$	<u>, </u>	 		70" 70	1/15	11513	1-d		
50070										

April 25, 1997

O'Brien &	Gere Engineer	s, inč.		Low F	low Grou	nd Water	Sampling	Log
Date	11/ 9 /99	Persor	nel		3, PGB, CA		Sunny	
Site Name	GM - Former IFG Facili	_	ation Method	· · · · · · · · · · · · · · · · · · ·	,		064-2	
Site Location	Syracuse, NY	_	ing Method	peristaltio		Project #		
Well information	on:				 			
Depth of Well *		ft.		* Measur	ements taken fr	rom		•
Depth to Water	6.	24 ft.			X	Top of Well Ca	asing .	
Length of Wate	er Column	ft.				Top of Protect	ive Casing	
						Other, Specif	y) .	
Water parame	Position pump	ible pump slowly t in center of screen s at every three m	ed interval &	maximum pum		liters/minute		
	Depth			1	Oxidation	· Dissolved		
Elapsed Time	To Water	Temperature	рH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0 (1120)	9.11							100
3	9.5%	15.36	6.34	0.51	-51	2.6	175,0	100
20	9.66	15.17	6-34	0.5)	-57	1.5	161.0	100
. 15	9.80	14,98	6.35	0.51	-51	1.3	159.0	100
20	996	14.82.	6.36	0.51	-57	1.2	145.0	/00
15	10.05	14.83	6.38	0.51	-65	1,0	132.0	100
35X	10.36	15.01	6.41	0.51	-71	2-1	121.0	100
40	10 48.	15.07	6.42	0.51	- 80	1.1	116.0	100
*	70 70	 	7.70			 	7.6.0	1
80 A		 				,		
~ 7		-	-		 	 		
					<u> </u>			
11/16/97 -	9.27 A	ample it	0830	D				
11/01/	1,27	14.42	6.25	0.42	141	10.8	3.4	
		74.42	(2, 2)		 	70.0	1,,,	
		 	<u> </u>	<u> </u>		 	 	
	<u> </u>	 				+		
		 -						
<u> </u>		 	ļ <u>.</u>			<u> </u>		
<u> </u>		<u> </u>					 	
Water sample	<u> </u>	1	<u> </u>				<u> </u>	
Time collected:		۶ ^{/۹} ۹	•	Total volume	of purged water	r removed:	n 800	mi
Physical appea	arance at start	.1		•		earance at samp		
	Color gray	- Claure,				Colo		_
05 15 D-	Odor // u				0	Odor		
Sheen/Free Pre	oduct				Sneen/i	Free Product	<u> </u>	•
Samples colle					•			
Container Size		VIN L	# Collected	Field Filt	ered //3	Preservative	Conf	tainer pH
140 K		11114	1 2	1	/()	Nosc	7	1 .
12	Poss		7	1	0	Nite	NOW 4	2.
500 m	- Park		/		0	No (OH 7	7/7
Notes: 🗡	Flushed Hon	through	cell	Touh +	time to	, refil	f.	000054
T.	well wound of	my 1				/	RACER0	
jam:ers/div76/admin	/4_notes/micrlog3	V						April 25,

O'Brien &	Gere	Engineer	s, Inc.		Low Flow Ground Water Sampling Log						
Date	11/9/	99	Persor	nnel	KuB.		Weather	Sunn	y 50	0	
Site Name		mer IFG Facili	ty Eva cu	ation Method	peristaltic		Weather 50 ny 50° Well # 0847 3				
- Location	Syracus		_	ing Method	peristaltic		Project #				
well information	on:	**		 	· · · · · ·			-			
Depth of Well *		12.7	14 ft. 6. ft. 6. ft.		* Measure	ments taken f	rom				
Depth to Water	*	10.	<i>09</i> ft.			Х	Top of Well Ca	ising .			
Length of Water	r Column	<u> 2.</u>	65 ft.				Top of Protecti	_			
						<u> </u>	(Other, Specify	<i>(</i>)			
Water paramet	1	Position pump	ible pump slowly t in center of screen s at every three mi	ed interval &	maximum pumj		liters/minute	,	· · · · · ·		
		Depth	s at every timee in	inute intervals		Oxidation	Dissolved	[
Elapsed Time		To Water	Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	y	Flow Rate (ml/min).	
0(2840)		10.09			,					100	
5	/	2.51	15,12	6.51	.43	-36	1.6	66,	2	108	
*							1				
	1.0	/			·				,		
11/10/93.	- 050	10 kg						3,5.	nta	7.5 ml	
· ·				_							
		,									
		 -	 .	 							
		*		 							
<u> </u>	,		· · · · · · · · · · · · · · · · · · ·			,	-	 		·	
			 	-							
	1			1				-	,		
			<u> </u>			<u>. </u>		<u> </u>			
	.						<u> </u>	<u> </u>			
	<u> </u>	 		<u> </u>		1		<u> </u>			
			1		,		· .				
		•									
Water sample: Time collected:		0/99-0	800		Total volume	of purged wate	r removed:	~7	00 p	46	
Physical appea			Turbidity	- 3.5	•	Physical app	earance at samp	- A /	C.		
	Color	grac:	· · ·				Colo	LOLO:	<u> </u>		
Sheen/Free Pro	Odor _ oduct _	$\frac{\mathcal{N}_{0}}{\mathcal{N}_{0}}$				Sheen/	Free Product	NO			
Samples colle	cted:	. <u></u>									
Container Size		Containe	ег Туре	# Collected	Field Filt		Preservative		Containe	er pH	
40 r	16	1011-	VIN!	3	1)	No.		بر	7	
-1/-/-		KMB.	·	+ 7	1/2	·	11100		1	·/	
500 m		0.8	•	1 1	11	·	1.21	7	<u> </u>	<u>. </u>	
V . 4)ii	001	-	11/1						· · · · · · · · · · · · · · · · · · ·	
Notes: //	VI L	<u> </u>	ry Turned	y off , sur	1 1 1	ind ju a	d'	, RAC	ER0060	855	

jam:ers/div76/admin/4_notes/micrlog3

O'Brien &	Gere Engineer	s, Inc.		Low F	low Grou	nd Water	Sampling L	.og
Date	11/ 9 /99	Persor	nnel	KiB	,cpo	Weather	Sonny	500
Site Name	GM - Former IFG Facili	ty Evacu	ation Method		,	- Well#	066-34	<u>3</u>
Site Location	Syracuse, NY	- Sampl	ing Method	peristaltio		- _ Project#		
Well information	on:							
Depth of Well *		ft.		* Measure	ements taken fr	om		
Depth to Water		. 32 ft.		,	х	Top of Well Ca	sing	
Length of Wate	· · · · · · · · · · · · · · · · · · ·	ft.				Top of Protecti	• •	
						Other, Specify	<i>)</i>	
Water paramet	Position pump	ible pump slowly to in center of screen s at every three mi	ed interval &	maximum pum		liters/minute		
	Depth	ar every times in	indic intervals	<u>, </u>	Oxidation	· Dissolved	}	
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
2(0940)	2.82	41 - 63 -						100
	4.81	11.68	6.65	0.38	41	0.8	43.9	200
10	5.19	11.66	6.76	0.38	2	0.8	32.9	200
15	5.50	11-60	6.82	0.38	-20	0,9	27,9	200
20	5.79	11,60	6.85	0.38	-35	0.9	29.9	200
25	6.04	11.57	6.87	0.38	-43	0.7	25,2	200
30	4.33	11.57	6.88	0.38	-50	0.8	32-4	200
35	6 58	11.51	6 88	0.38	-54.	0.6	30.7	200
40	6.75	11,57.	6.88	0.38	-58	0.5	30.0	200
45	6.94	11.54	6.89	0.38	-61	0.4	28.0) ٥٥٤
40	7.10	11.65	4.89	0.38	-64	0.4	33.6	200
55	2.15	. 11 . 78.	6.87	0.38	-66	0.3	32.7	-00
100	7. 23	11,80	4.89	0.33	-67	1.3	30.6	200
35	147	11.87	6.90	0.38	-69	0.3	31.2	200
70	1.62	11.71	6.90	0.38	-72	0.3	29,9	230
75	7.42	11.88	6.89	0.39	-72	0.3	30.5	(00
ફેઠ	7.28	12.12	6.89	0.38	-74	0.3	3/0	190
85	7 30	12.21	6.88	0.39	-76	0.3	29.8	190
90	7.29	12.23	6.89	0.39	-77	0.3	34.9	190
95	7.29	12.50	6.89	0.39	-78	0.3	36.8	190
Water sample:			•			-	1 1170	11 411
Time collected:		,		Total volume	of purged water			OML
Physical appea	rance at start Color Clear				Physical appe	arance at samp Color	· / .	_
	Odor —					Odor		_
Sheen/Free Pro					Sheen/f	Free Product		<u> </u>
Samples colle	ected:						······································	<u></u>
Container Size		ег Туре	# Collected	Field Filte	ered	Preservative	Contail	ner pH
Hom		11KZ	. 3	/	// 0	1/94	17	
12,00		1 0/032	2		<i>(</i> , <i>(</i>)	1111	17	-
500 MI	Poly	· .	/		. C V	Now	130 Z	
						<u> </u>	<u>'i l.://</u>	
Notes:	***				<u>.</u>	·	RACER00	60856

O'Brien &	Gere l	Engineers	s, Inc.	<u> </u>	Low F	low Grou	nd Water	Sampling	Log
Date	11/9/9		Person	inel		PG1B,CI		cloud	
Site Name		mer IFG Facili	- ty Evacua	ation Method	peristaltic	,		0361-6	
Location	Syracuse		•	ing Method	peristaltic		Project #	=	
Well information	on:								·
Depth of Well *		12.	20 n.		* Measun	ements taken fr	rom		•
Depth to Water	•	9.	<i>B7</i> ft.			X	Top of Well Ca	sing	
Length of Water	r Column	2.	3 <i>3</i> ft.				Top of Protect	ive Casing	-
							Other, Specify	/)	•
Water paramet	P	osition pump i	ible pump slowly to n center of screen s at every three mi	ed interval &	maximum pum		liters/minute		· · · · · · · · · · · · · · · · · · ·
Elapsed Time	· T	epth o Vater	Temperature	Нq	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
0 (1310)		9.87		'			······································	 `	75
5	-	10.64	14.83	6.26	0.31	-61	4.1	158	75
10		11.16	14.61	6.32	0.30	-61	1.9	97.9	75
15	· · · · · ·	11,22	14.49	6.32	0-31	-6Z	1.7	82.3	
30		11.41	14.33	6.31	6.30	-63	1.7	23.7	
25	T	11,70	14.30	6:30	0.30	-62	1->	1.0	75
30*		11.98	<u> </u>	<u>لاد . جا</u>	0.50	64	 /- > -	///	<u> </u>
204	<u> </u>	//				<u> </u>		<u> </u>	
	<u> </u>								
11/10/99	0140	991		<u> </u>			1	44.3	75
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	1	1 1 1						1 11	' '
					·				
	1		 		-				
							 		
	 							, -	
		·	·					,	
			• .				•		
					 		<u> </u>		-
	-								
Water sample:	<u> </u>		<u>, I , , , , , , , , , , , , , , , , , ,</u>				<u> 1 - </u>		<u> </u>
Time collected:	$-\omega L$.	199-09	40		Total volume	of purged wate	r removed:	. 525	ML
Physical appea	rance at s	tart ,			•	Physical appo	earance at samp	oling ,	
	Color _	Clear				-	Colo		_
Sheen/Free Pro	Odor _ oduct _	100			·	Sheen/	Odo: Free Product	10	_
Samples colle	otod:								
Container Size		Containe	т Туре	# Collected	Field Filt	ered	Preservative		ainer pH
40 ML		VOR-	-V/KL	3	1/)	NIC		a "
1/1/2		F1/1-	<u>0,1 0,31,4 </u>	2		3.	1/1/200		17
500 M		ر بدر را در بدر ه	4- ·	1	1)	<u>U '</u> (c	N/17/12	Klin 6	<u>- Z</u> -/ J
~	1 1 0 1 1	^	V da	·		·	1 10 C. O.		· <u>~</u>
Notes: 7	ww	Bambe	or way					RACER00	 060857

Brien &	Gere Enginee	513, IIIU.			V. A	(PO PO	B. Westher	Cloudy 4	100 Winds
e	11/3/99		Personr		<u> </u>	- 4 H 01	THE STATE OF THE S	0865-6	()
Name	Former IFG Facility		Evacua	tion Method			VVOII#	21535	
Location	Syracuse, NY		Samplin	ng Method	Periota	the Pene	Project #	<u> </u>	
ll informati	on:	17	0.1			4 4-1 4		•	
oth of Well *	·	14	<i>O.S.</i> n.		* Measure	ements taken fro	Top of Well Cas	ring	04)
oth to Water			.42ft.				Top of Protective	- 3	••
ngth of Wate		<u> </u>	<u>64</u> n.				(Other, Specify		
				·					
ater parame	ters:	Position pump i Collect reading	ible pump slowly the in center of screene s at every three min	q iuteran 🗞 u	nt water column naximum pumpi	ng rate of 0.5 lit	ters/minute	<u> </u>	T
Elapsed Time		Depth To Water	Temperature	рН	Conductivity	Reduction	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min
	200)	542				ļ	1	7,000	300
<u></u>		= 44	12.84	7,20	1,13	9	2.0	553	700
. 10		K. U.S	13.06	7.18	1.15	-14	0.9	150	325
/* ₃		1.45	13, 20	7,17	1,15	-16	2.7	37./	1 3 25
.`0		5.44	13.13	117	1,15	- 19	0.6	14.7	32.5
25		5,45	13.:3	7.17	1.16		0.6	7.9	, , -
30		5.45	13,42	7.17	1.17	-16_ -19_	0.7	B4.5	
35		5.45	17.54	117	1.16.	-17	0.6	1.0	320
40		c u r	12.24	717	1.16	-14	- 5	1.0	320
4 -		5 4=	12.54			-16	0.5	1.0	320
73		5.45	13.30	7.17	1.16	-/6_			
			- 		-				
			<u> </u>	 	\ 				
 		· _ · _ · _	 						
<u> </u>		·	· ·		 			<u> </u>	
									
			-						
·									
								<u> </u>	
Water sam	ole:				Tetal value	ne of purged wa	ter removed:	1.32	00 ML
Time collect	ed: <i>10 /</i> !				TOTAL VOIDI		ореагалсе at san		
Physical ap	pearance at start	Color L/Q	, de .		•	· ///	Co	olor <u>clear</u>	- ·
		Odor	- (/			Char	_	dor <u> </u>	 .
Sheen/Free	Product	<i>N</i> _()		·	Shee	en/Free Product		
Samples c		T 0	nings Tunn	# Collect	ed Field	Filtered	Preservativ		tainer pH
Container S			ainer Type	7		UO	Non	9	17
- 7 7	HIML		Der- oralis	- 2		1/0	1m		<u>~7</u>
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	11 27	\mathcal{D}_{0}	17			1/0	_ Nitr		<u>< 1</u> 7/2
. , ,						1/0	Not		

Orion 0	Gere Engine	ers Inc	<u></u>		Low FI	ow Grour	d Water S	ampling	LOG //	
srien &		ers, 1116	Personn	el	Kuß	, CPO, PG	B Weather _	(louds	10 Windy	
١ .	11/3/199			ion Method	Peris	Vub, CPO, PGB Weather Cloudy 40 Peristaltic Well # OBL7-68 Peristaltic Project # Z1535				
Name	Former IFG Facility	<u> </u>	Sampling Method		Per; St					
on	Syracuse, NY	_ 	Sampan	g meu co						
1 information	on:	7.0	17		* 14	ments taken fro	m		. •	
th of Well *		<u></u>	. 13 ft. 52 ft. .61 ft.		- Measure	X X	Top of Well Cas	sing	PGB	
th to Water	•		5 4 ft.			 	Top of Protectiv			
gth of Wate	r Column	<u> 30</u>	. // / " "		!		(Other, Specify))		
ter paramet	ters:	Position numn in	ble pump slowly thr center of screene	g interval e m	water column	ng rate of 0.5 lit	er s/m inute			
		Collect readings	at every three min	ute intervals		Oxidation	Dissolved	<u> </u>		
		Depth To				Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min	
Elapsed Time	<u> </u>	Water	Temperature	pH	Conductivity	Potential	1 (3.)	<u> </u>		
0 (00	70)	5.52			1.25		0	7/000	220	
5		5.54	11.34	661	1,32	230	0	711	120	
10		7.36	11.58	2.91	1,29	139			230	
,5		5,57	11, 29	= 0 /	1,27	28	0	362	230	
20		5.57	11.76	06	1.26	-27	2	28/	1 30	
2 ~	+	5,5%	11, 20	12.10	1.26	- :9	0	217		
		557	12.06	7.16	1.25	- 32	0_	49	230	
30		5,57	12.02	2.1	1.25	-4-	0	34	230	
35		5.57		212	1.25	2	0	23.	233	
40			. 12.15	7.16	1.24	-66	0	15.4	220	
45		5.57	12 . 21	2.15	1.25	171	1	10-7		
<u> </u>		557	12.03			-74	0	23.3	2.30T	
J-5-5	{	5.57	11.70	2.16	1,25		6	35.		
60		557	11.58	7.16.	1.25	-75		38.6		
65		₹.5 1	11.51	3/16	1.24	- 76	0	22.		
70	1.	5,57	1.77	1.20	1.23	- 79	0			
1	- `	7 †	11.30	2.1%	<u> </u>	-80	0	/3.1		
		7,52	. 11.62	1:1	1 2 2/	- 72	0	1.0		
<u> 10 </u>		5 ()	11 34	277	1.23	-83	6	1.0	220	
10		5.57	- - - - - - - - - - 	7.20	1.24	- 84	0_	1.0	220	
								<u> </u>		
Water samp	ole:	2			Total volum	e of purged wa	ter removed:	242	200 M.L	
Time collect				*			pearance at san	npling ,		
Physical app	pearance at start	ColorGR	k4 .					olor <u> </u>		
		Odor NO	<u> </u>				-	dor	·	
Sheen/Free	Product	N_0		-	•	Shee	en/Free Product			
B	- liested:						Preservativ	<u></u>	Container pH	
Samples co		Conta	iner Type	# Collecte	d Field	NO _	Preservativ		17	
	40 mL	<u> </u>	10-11/51	$\frac{3}{4}$		NO	No		17	
	16,50	P_{o}	18e1-9.10-	1		NO		Chlis	47	
	11/121	1 1/01	17	1	1		Nac	111	712	

O'Brien &	Gere Enginee	s, inc.		Low F	Low Flow Ground Water Sampling Log						
-	11/09/99	Persor	nel		(PO, PGB, Kab Weather Partle, Sunny -60%						
Site Name	GM - Former IFG Faci	 lity Evacua	ation Method	peristaltic	pump	- Well#	OBG-71	V			
Site Location	Syracuse, NY	_	ing Method		peristaltic pump Project # 21535						
Well information Depth of Well *		25 ft.		* Moscum	ements taken fr						
Depth to Water		.86 ft.		Wicasuit	X X	Top of Well Ca	sina				
Length of Water		30 ft.				Top of Protecti	,				
				_		Other, Specify	<i>ı</i>)				
Water paramet	Position pump	sible pump slowly t in center of screen gs at every three m	ed interval &	maximum pumj		liters/minute					
	Depth	·			Oxidation	. Dissolved	-				
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).			
0 (1/35/2)	9.59	1644	4.77	2,22	-45	1,88	117.0	125			
	9.72	11/13	176	220	-36	1.28	701	175			
5	9.85	15.62	6.75	2,18	-29	1,05	576	175			
10	9,00	13.62	6.13	0/1/0	- 27	1,00	J"6	120			
75				· · · ·	<u> </u>		`	-			
20	1000	1./ 12	175	1111	24	077	121t	100			
25	10.29	15,13	6,75	2.//	-34	0.73	53.4	125			
30	, _	FLUSH	CYLI	NOFR		1000	/ / /				
35	10.51	14.88	6,76	2,13	-41	2.09	lid	125			
40	10,66	14.86	477	2.14	-47	1,10	0.19	125			
45	10.69	15,13	6.77	214	-45	0.87	0,]	125			
50	10,81	15.36	6,77	2,14	-46	0,86	0,2	100			
55	10.86	15.76	6.77	2,15	147	0.94	0./	100			
60	10.88	15,86	678	2,15	-48	0.87	0.7	100			
1.3	10.88	15,85	6.78	2,14	-48	0,81	0.5	100			
10	10.88	15,83	6.77	2,15	-47	0,83	0.1	100			
1,2	1,5,00					1					
		· ·									
	-	_				<u> </u>					
			† ·	†	 			-			
		1		 	 		†				
Water sample Time collected	1310	<u> </u>		Total volume	of purged wate			ML			
Physical appea	Color ORAN 6 Odor NO	<u>E</u>			Physical app	earance at samp Colo Odo	1 Cofortes	<u>v</u>			
Sheen/Free Pr		<u> </u>	· · · · · · · · · · · · · · · · · · ·		Sheen	Free Product	Nove				
Samples colle Container Size		ner Type	# Collected	Field Fill	tered	Preservative	Cont	ainer pH			
	MZ VOA-	·UILL.	3	\mathcal{N}	0	None		· 7			
Life	7	ez glass	2	1	0	None		-7			
	es Pu	(<u>/</u>	 		10	Witrie	Acid :	7/2			
	mz Po	7			· V	<u> </u>	r				
Notes:			 				RACER0	060860			

O'Brien &	Gere Engineer	s, Inc.		Low Flow Ground Water Sampling Log						
	11/ <i>Y</i> /99	Persor	nel	KiB.	LAD PG		Sunn	1,450		
Site Name	GM - Former IFG Facil	ty Evacua	ation Method	peristaltic	pump	Well#	0027- 3	-5		
> Location	Syracuse, NY	Sampli	ing Method	peristaltic	pump	Project #	21535	<u> </u>		
Well information	on:		-							
Depth of Well *	18	<i>,18</i> ft.		* Measure	ements taken fr	<u>o</u> m		11 3		
Depth to Water	÷	ft.			. x	Top of Well Ca		PG13.		
Length of Water	r Column	<i>, 1 U</i> ft.				Top of Protecti				
	· 				L	Other, Specify	/) 			
Water paramet	Position pump	sible pump slowly t in center of screen is at every three m	ed interval &	maximum pum _l		liters/minute				
	Depth	di every unee m	The street value		Oxidation	Dissolved		<u> </u>		
Elapsed	To	7		Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).		
Time	Water	Temperature	pH	Conductivity	Potential	(mgn)	(1410)	125		
0(1315)	9.64		1 01		, , , , , , , , , , , , , , , , , , , ,	<i>U.9</i>	27.5	125		
	9,15	13.0	681	0.15	-15	4.9	93.5			
10	8,99	12.5	6,75	0.15	-37	2-6	131	125		
15	9,06	12,2	6.75	0.15	-44	2.2	124	125		
20×	9,06	12.2	6.74	0.15	-47	2.1	122	125		
30	9.14	12.2	6.75	0.14	- 48	3.2	43.7	125		
35	9,14	12.4	6.77	0.14	-52	2.0	44	125		
40	9.17	12.6	6.78	0.14	-56	1.5	98.9	12.5		
45-4	9.19	12.6	6.76	0.14	-57	1.6	107	125		
ON XX	/ 	13.1	6.50	0.15	-34	1.8	1.0	125		
15 80	9.53	13.3	6.55	0.15	-59	0.9	1.1	125		
10	9.47	.,3,0.	6.59	0.15	-69	68	1,0	100		
· .				•						

			1 .				,			
		· · ·								
					1	-		-		
	 	+			 	-				
Water sample	<u> </u>	!		. !	<u> </u>		<u>ا</u>			
Time collected	1 - 2			Total volume	of purged wate	er removed:	1/4/	ML		
Physical appea	arance at start	/ / /		•	Physical app	earance at sam		·		
		4-Broudone	<u>u</u>			Colo Odo		<u> </u>		
Sheen/Free Pr	Odor NO		U		Sheen/	/Free Product	1/1			
Officelly rec 1 1	- 7/7 / 7/7									
Samples colle			L# 0 - 11 - 4	lette en	lorod	Droopyotiyo	100	ntainer nH		
Container Size	7	er Type -V/ / L	# Collected		tered	Preservative Variable		ntainer pH		
121TE		1 1	2		, i,	んごに	•	17		
1617.5	d ly		/	12	/i``	Nitte	1.20	Z2		
500 %:	· · ·	11/2	1.2	7 45	/U	1. Mac	H.	7/2		
Notes: X	Emited I'm	the with	1.1C1	Touh fu	me -0 1	efell				
A	licalitrate	of meter					RACER0			
jam:ers/div76/admin								April 25		

O'Brien &	Gere Engineer	 s. Inc.		Lcw F	low Grou	nd \Vater S	Sampling L	_oq
Date Date	11/ 4/199	Person	inel		10, PS-B		Sunny 4)
Site Name	GM - Former IFG Facili	- ty Evacua	ation Method	peristaltic	,	- Well#	0367-78	
Site Location	Syracuse, NY	_	oling Method penstaltic pump			Project #		
Well information	on:						•	
Depth of Well *	36	, <u>50</u> ft.		* Measure	ements taken fr	om.		ی شر سے
Depth to Water	* 9	7,46 ft.			X	Top of Well Ca	- •	L
Length of Wate	r Column	<u>, 94 </u>				Top of Protecti	•	
<u>.</u>						J (Other, Specify	/) 	
Water paramet	Position pump	ible pump slowly t in center of screen	ed interval &	maximum pumj		liters/minute		
	Collect reading Depth	s at every three mi	inute intervals	<u> </u>	Oxidation	Dissolved	Г	1
Elapsed	To				Reduction	Охудеп	Turbidity	Flow
Time	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
0(1315)	9.46							
5	11.66	11.95	7.38	1.57	39	2.9	482	150
10	12.55	11.80	7.37	1,57	35	2.2	428	150
10 X	13.22	11.82	7.39.	1.56	39	4.0	92.1	/5 0
25	15,56	11, 30	2.37	1,56	37	2.6	75.8	150
30	13.91	11.71	7.37	1.56	35	2-1	86.3	150
40 X	14.13	11.58	7.37	1.53	53	2.5	48:8	150
45	14.21	11:55	7.37	1.53	32-	2,0	48.5	100
50	14.29	11.48	737	1.54	30	1.7	45.5	./20
47	14.36	11.38	7.36	1.52	26	1.7	44.9	100 (
60	14.51	11.38	7.36	1.55	21	1.7	35.7	100
65	14 55	11.39	7.36	1.51	18	1.6	38.5	100
70	14.62	//- 38	7.35	1,50	/3	1.5	35.6	100
75	14.59	11.32	7.35	1.49	10	1.5	29.7	100
80	14.56	1/./8	7.35	1.49	6	1.4	27.5	100
85	14.56	11.11	2,35	1.48	/	1,5	19.5	100
90	14, 48	11.15	7.35	1.47	-1	1.5	18,0	100
		*1				,		
							,	
Water sample		•	•				1.7 7	111
Time collected	•	•		Total volume	of purged wate	2 2 11 1.11.11.11.11	··· · ;	TI ML
Physical appea	arance at start Color 9 41.	cloudy	•		Physical app	earance at sam Colo		
	Odor //e	- 1				Odo		<u>·</u>
Sheen/Free Pr	roduct // 3				Sheen/	Free Product	No	
Samples coll						10		
Container Size		er Type	# Collected	Field Fill		Preservative		ainer pH
40mi Vok-VIKi 3 No						1.55		2.7
	105		17			1/1:5:5	13211	-2
	ρ_0	7 3 T	/	N		Nast	/ -	710
Notes: En	ystad Flow	through c	cell. To	of in	ne to e	of ell		
						7	RACER00	060862

Brian &	Gere Engineer	s. Inc.			Low Flow Ground Water Sampling Log						
nien a	11/2/99		Personnel Evacuation Method Sampling Method Low Flow Ground Water Sampling Log Kin 170 155 Weather Governments, and Per: 5 for 1 f i C pump Well # 015 17 - 500 Per: 5 for 1 f i C pump Project # 215 3.5								
	Former IFG Facility		- Evacuat	ion Method	Per:	strittic p	Walf Well#	2100	~		
)n	Syracuse, NY		- Samplin	g Method	Perista	1/1:1/11	Project #	415 35	·		
<u> </u>	Sylacuse, IVI		<u>. </u>								
informatio	*	19	,52_ft.		* Measure	ments taken from	1		م رم		
h of Well *			72 ft.				Top of Well Ca	sing	,		
th to Water		-17	10 ft.				Top of Protecti				
gth of Wate	r Column						(Other, Specify) 			
ter parame	ters:	Position numb	sible pump slowly the in center of screene	o interval or II	nt water column naximum pumpii	ng rate of 0.5 liter	s/minute				
		Collect reading Depth	s at every three min	ute intervals		Oxidation	Dissolved	Turbidity	Flow		
Elapsed	•	То		pH	Conductivity	Reduction Potential	Oxygen (mg/l)	(NTU)	Rate (ml/min)		
Time	<u> </u>	Water	Temperature	pri	Conduction						
_ଚ 🔼	1	3.7-		1 91	1.34		2.2	6.2	7		
		8.87	14,08	6.94			2 (2	-1	90		
10		7 7 7	121, 12	1.9.	7 44	7 514	12				
<u> </u>			117 17	: `	- "./	, -		7	·		
0		1.5	1 =	1 3-	1,54	1.60	1,5		 		
			7.	İ			<i>1,</i> 1	6/2			
		}	123		7		1	T-7-5	300		
	24417			: : .	7	- 50_	2.00	<2. ₹	30° 0		
35		0:11	7, -	1.90	7.7	. 69	2. 2	50.4	300		
40		24/	 	- 117		- 2.7		47	300		
, <u>,</u>				1 2111	1 2 2		1	45	300		
	×.	8,71				1 250	2, 13	177	300		
		7 -1	_ l			·	1,5	/	300		
			7.7				 	 			
		·					 -				
<u> </u>				<u> </u>			<u> </u>				
						_ \		<u> </u>			
								_			
, ,											
Nater sam Fime collect Physical ap	ted: //, 40	Color/Odor//O	ar .		Total volum	·	pearance at sar C	mpling older older	ML Cui		
		<u> </u>						10-	ntainer pH		
Samples of Container		Con	tainer Type	# Collec	ted Field	Filtered	Preservati		ntainer pri		
	40/112	<u> V</u> o	11-VIAL	3		<u>(/-1</u> /- · · ·	1/A	<u>ic</u>	11		
	41-00		100101010	/		1 0	Lit	W. Fin	12		
	1:00		Poly			<u> </u>	N	OH	72		
-5	000 M/		(:				•				

Drien 2	Gere Enginee	rs. Inc.		•	Low Fi	ow Groun	d Water S	ampling L	uy	
prien &	, · 'Ga	10, 11101	Personn	ام	Leek	1 PO PG	3 Weather	loude; NICO	1300F	
e						etec pun	// Wel)#	じわらって	<u></u>	
e Name	Former IFG Facility			ion Method		71 7 .	2 Project #	21535		
e Location	Syracuse, NY		Samplin 	g Method	Perisblic pund Project # 21535					
il informatio	on:	7/.	<u></u>		* Moneyee	ments taken from	m		1 6	
oth of Well *		3/.			Measure		Top of Well Cas	sina	/ ~	
pth to Water	•		ft.			·	Top of Protectiv			
ngth of Wate	r Column		ft.				(Other, Specify			
ater parame	ters:	Position numn in	ple pump slowly thr center of screene	d interval & m	t water column aximum pumpi	ng rate of 0.5 lite	ers/minute	:	*	
		Collect readings	at every three min	ute intervals		Oxidation	Dissolved	1		
Elapsed		Depth To		 	Conductivity	Reduction	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min	
Time	<u> </u>	Water	Temperature	pH_	Conductivity	Potentia.	\		2/5	
C)		1211		/ -	1,28	190	0	77.6	215	
5		ブ. S.A	12.74	6.84	1,24	30	13	27,	1	
70			12 31	7.05		92	5	· · · · · · · · · · · · · · · · · · ·		
/-			17 2 144		,2/ ,3	-11	2	-14.7	? 25	
25		14. 1	15 -40	<u> </u>	1,17	-1	0_	27.2		
= 5			12:35	3.17	1,11		\ \ \	1-7	1	
		<u> </u>	<u> </u>	 		1 7	7	· -		
			12.70	2 20	1 15	1 29	<u>j</u>	9,6	250	
. ,		<u> </u>	10	7,21	1 /5	-29		45	250	
		<u> 2.57</u>	12.27	7.22	1,15	-34		 /-}- -	1 .	
				- 					7	
				 	 				 	
				 	<u> </u>					
			<u> </u>	}						
			<u> </u>		 					
					 			 	-	
			<u> </u>	- 						
										
					 		- 			
				<u> </u>	<u> </u>				-/ ₁ ,)	
Water samp		n			Total volum	e of purged water	er removed:	~235	UML	
Time collect	eu						pearance at sem	npling / /		
Physical app	pearance at start	Color	orless.		•	•	Co	lor Color Co	4	
		Odor V U	· - · · · · · · · · · · · · · · · · · ·			Shoer	n/Free Product	dor <u>1/0</u>	 ,	
Sheen/Free	Product	<i>N</i> o				Gildel				
Samples co	ollected:			Lii O II a - 1 a	a lejala l	Filtered	Preservativ	e Con	tainer pH	
Container S	Size.		ner Type	# Collecte	rieio i	V()	Non		<u> </u>	
	40ML	AMD	· · · · · · · · · · · · · · · · · · · 			110	No		77	
,	11-21	1 /Y/M/2/					1/1/	1 132.1	42	
<u></u>	<u> </u>	1).	JV J	ſ	ĺ	1/1	Na	, C 137		

Brien &	Gere Engine	ers, inc.			Low Flow Ground Water Sampling Log						
	11/2/99	, ,,,,,	Personn	el	Rub, CPO, PGB Weather Words, winger 60°F Well # 005-95						
e		·		ion Method	Pum	ρ	00G-	9.5			
Name	Former IFG Facility		_			Itic pump		Project # 2/535			
on	Syracuse, NY		Samplin	Sampling Method					 		
II information								•			
pth of Well *		<u></u>	183ft.		* Measure	ments taken from		ning.	PSE		
pth to Water	•		,45 . ft.				Top of Well Cas		•		
ngth of Wate		<u> 10</u>	<u>.38</u> _f.				(Other, Specify)				
								· 			
	toer:	Lower subme	rsible pump slowly thr	ough stagnar	it water column	-160 E lito					
ater parame	reia.	Position numr	rsible pump slowly thro in center of screene gs at every three min	d interval & m	aximum pumpi	ng rate of 0.5 lite					
		Depth	gs at every times min	ate milet vere		Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow		
Elapsed		To	Temperature	Нa	 Conductivity	1	(mg/l)	(NTU)	Rate (ml/min)		
Time	 	Water	Temperature	<u></u>	·				175		
011	<u> 3の)</u>	7.45	- 07	1 -0	1.7	5.0	1.31	181	125		
5		7.97	15-07	6.70			0	143	220		
16		8.07	14.98	5.8-	1,7	-3/		7 - 0	? 220		
15		9.24	1499	3.86	1.63	- 40	0	4/5			
2.8		8.14	14.96	3.88	1,60	- 4:-/	0		7 730		
25	 	9.12	1-1,28	3.87	1,59	-55	.0	- ''	<u> </u>		
		2,12	1003	1.22	1.34	- 4	2_	17	170		
30		2.12	12.91	1.72	1,49		0_		150		
25				6.89	1.62	-82	0	5.1	150		
40		9, 12	14.89	6.01	1.62	. 20	5	21, 2	1:7		
4		9,12	111 25			1 - 2 =	5	7.2	11.5		
		9.70	14 80				+	1			
\bigcirc		5.75	1475	, 3	1,00		<u></u>				
			<u> </u>								
								<u> </u>			
-				Ţ.							
		<u> </u>		<u> </u>				<u> </u>			
				- 							
			- 	- 							
				_	 						
											
Water samp	ole:				Total volum	e of purged water	er removed:	ad.	150/1/2		
Time collect	ed:	hr mittinger".			Total volum		pearance at san	npling ,			
Physical app	pearance at start		- chul	•	;	, itypioei ap		olor <u>c/æ</u>			
		Color	<u> </u>				O	dor			
Sheen/Free	Product		V υ		•	Sheer	√Free Product	NO			
Oliesivilee											
Samples co			tainer Tune	# Collect	ed !Field	Filtered	Preservativ	re C	Container pH		
Container S	10 /11 L		ntainer Type シムーレ/お L	3	 -	J	1.0)(1		
			<u> </u>	2		N.	1/1/1/-	c l	ж <u>, </u>		
			ADEA Alex								
-/	Lita		MCC, alexa Poly - Poly	7		//\\ //\\		15 / W	212 212		

Prion &	Gere Enginee	rs. Inc.		resonnel Kus, CPO, Plaß Weather Moderation and Constructi							
	, 1/2/99	10, 11101	Personn	el	<u>^ </u>						
te	Former IFG Facility		 Evacuat	ion Method	Perista	Vic Pum		000-97	<u>ت </u>		
e Name	Syracuse, NY		- Samplin	g Method	Perista	alter Pany	Project #	Z1535			
e Location	Syracuse, N1		_ 								
eil informati	•	3/	1,55_n.		* Measure	ments taken from	m				
epth of Well *		- 57	1,3 a n.			+	Top of Well Cas		ونبر >		
epth to Water		- 74	# <u>J</u>			•	Top of Protectiv				
ength of Wate	it Column	<u></u>	<u> </u>				(Other, Specify)) 			
ater parame	ters:	Position numb	sible pump slowly thr in center of screened as at every three min	d interval & n	nt water column naximum pumpii	ig rate of old in		`·			
	`	Depth				Oxidation Reduction	Dissolved Oxygen	Turbidity	Flow		
Elapsed		To Water	Temperature	pH_	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
Time	3/0)	7.39		-			<u> </u>	1	325		
	<u> </u>	7.88	13.34	2.34	1.33	21	4.7	150	325		
	 	8.02	13.16	2.25	1.34	-23	4.0	122	400		
10_		8.09	13.07	2.22	1.33	-5-1	2.9	164	350		
<u>15</u>		8.05	13.08	1.19	1.31	-65	1.5	85.	350		
<u> </u>			13.06	7.19	1.31	- 71	1.2	682	757		
2.5		8,07	15.02	2.19	1.30	- 74	1.0	5.7	350		
		2.08 2.02	13.01	2.17	1,30	- 35	1.7	-17.7	350		
	_				1.30	- 77	0.9	.9.6	3:0		
<u> </u>		8.08	/2 98	1.18 1.18	1,30	- 78	0,9	6.0	3,27		
45		908	12 9 4	7.18	1.30	_	0.8	2.5	3:50		
50		9,09	2.92	7.		- = >	9.8	2.4	1.50		
<u> </u>		2,39	3 74	- 8	27	- 20	j	υ <u>-</u>	350		
:0		7.07	2 95				 	 	350		
		1.31		12.13		7.5	_ -				
				<u> </u>				 			
				_							
			,	<u> </u>							
				<u>. </u>				·			
				<u>,</u>		<u> </u>					
Water sam	ple:				Total volum	e of purged wat	er removed:	140	0011/		
Time collect	ted:	- · · · · · · · · · · · · · · · · · · ·	•	•			pearance at san	npling	/		
Physical ap	pearance at start	Color	owish ·					olor <u>2010</u> 1	(C22		
		Odorん	10			Chan	n/Free Product	dor <u>/// ()</u> // ()			
Sheen/Free	Product	^	/0		•	20066	INFIER FIGURE				
C	ellestad:		= =====================================				Decreesity	<u> </u>	ntainer pH		
Samples c			tainer Type	# Collect	-	Filtered	Preservativ		L L		
	HOML		PROUNTED	2		iii	1.51		n]		
1	1 Cites		2/11) July 1	1		NU	Nitro	7 / /	<u> </u>		
	T711-31	1 1-					T Na (1 []	フレン		

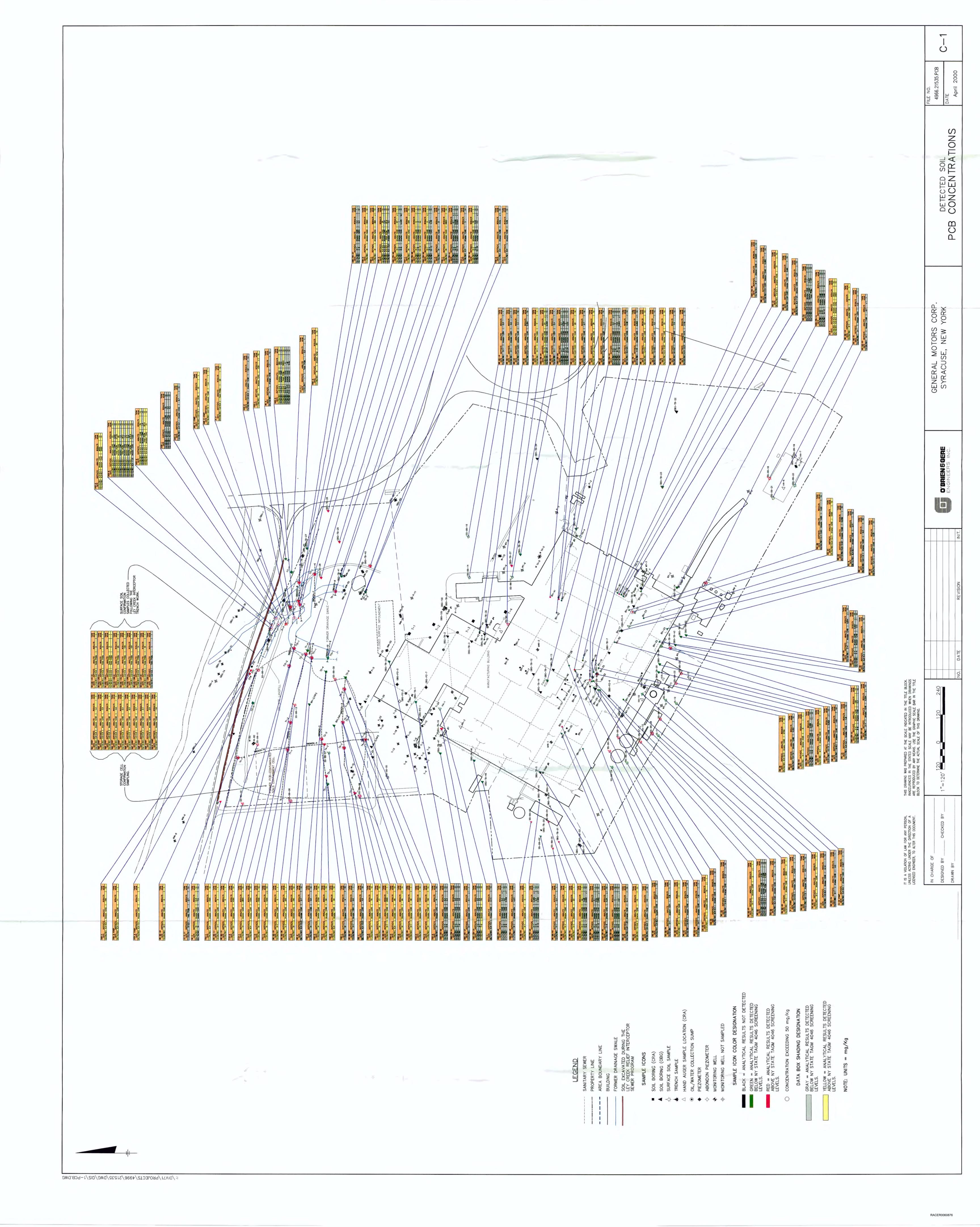
O'Brien &	Gere Engineers	s, Inc.	· · · · · · · · · · · · · · · · · · ·	Low F	Low Flow Ground Water Sampling Log						
Date	11/ 7/99	Persor	nel			$\underline{\beta}$. Weather					
Site Name	GM - Former IFG Facilit	y Evacu	ation Method		,	= Well#	08:0	1-105			
Location	Syracuse, NY	Sampl	ing Method	peristaltic		p Project # 21535					
well information											
Depth of Well*		.66 ft. .21 ft. .45 ft.		* Measure	ements taken f	rom	•				
Depth to Water	•	. 21 ft.			Х	Top of Well Ca	sing	000			
Length of Water	r Column8	<u>, 45</u> ft.				Top of Protecti	_				
			4		<u> </u>	(Other, Specify	<i>(</i>)				
Water paramet	Position pump in	ble pump slowly to center of screen at every three m	ed interval &	maximum pum		liters/minute					
.	Depth	·			Oxidation	Dissolved					
Elapsed Time	· To Water	Tomporatura	, - n	Conductivity	Reduction	Oxygen	Turbidity	Flow			
. 1		Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)			
0 (0515)	5,21			4.11							
5	5, 79	13.5%	6.86	1.41	/9/	4.46	2.7	/50			
ſÛ	5,96	13.92	690	1. 39	179	3,53	1.5	150			
,<	6.06	14.13	6.89	1.39	167	3.34	0.9	150			
٥٧	6.11	14.01	6.87	1.40	134	3,34	0.1	140			
25	6.16	2. 7	4.87	1.41	107	2.73	0.1	140			
<i>35</i>	6.21	13,87	6.87	1.41	98	<u> زم</u> ي	011	140			
35	6.22	13:74	6.87	1.41	78	2,39	0.1	100			
40	6.23	13.68	6.87	1.41	74	2.24	0-1	100			
45.	6.20	12.12	<i>j. 0</i> ;	7.41	7/	2.19	0-1	150			
50	6 23	13.52	6.86	141	68	1.98	0.1	100			
.,						, , ,		1			
					•						
	-		 								
			<u> </u>				 				
					,			<u> </u>			
			1			-	<u> </u>				
			 								
			 	<u> </u>	<u> </u>	,	<u> </u>				
	<u> </u>			1			1				
	<u> </u>			<u> </u>]:	<u> </u>	<u> 1 </u>				
Water sample:			•	T-1-1	- 4		NILIAD.				
Time collected:				i otal volume	of purged water		2/4/10/	-: <u>L</u> -			
Physical appea	Color Clear				Physical app	earance at samp Color	oling lea	⋌			
	Odor No					Odo					
Sheen/Free Pr	oduct //o				Sheen/	Free Product	W O				
Samples colle	ected:				- <u></u>			<u> </u>			
Container Size		г Туре	# Collected	Field Filt	ered	Preservative	Сог	ntainer pH			
7-7	ul VOR	Viax	3	L		NOW					
1/4/15		21 Diris	2	1/3		11/60	(· · · /				
1/600		1/2. 6	<i>f</i>		C .	Nitric 1		<u>-17</u>			
5,00	miss Poly		1 !		<u> </u>	1 7000	1				
Notes:							DAGES	0060967			
							KACER	0060867			

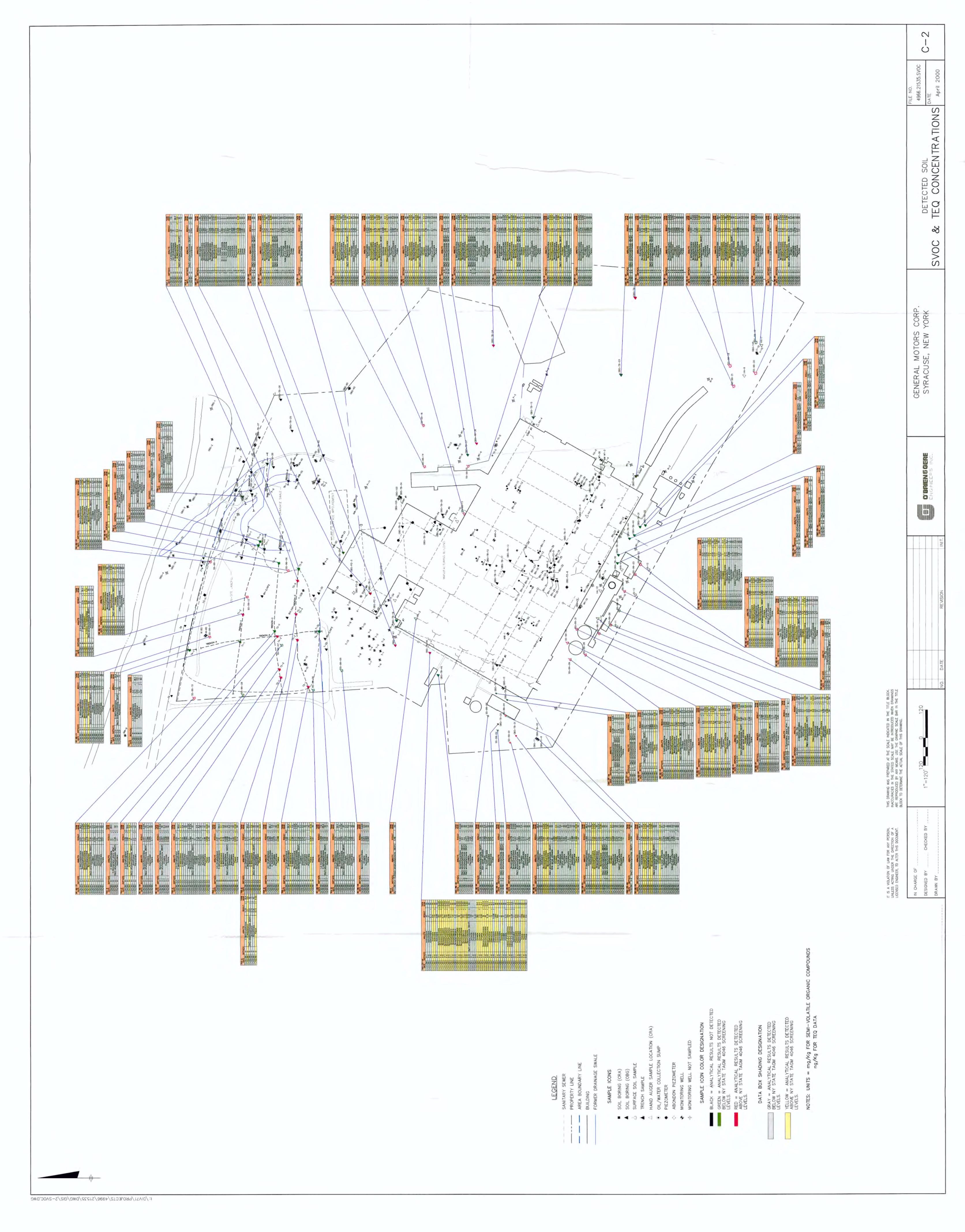
	Gere Engineers				low Grou			
-	11/ % /99	Person	inel -	KWB	_PO POS	- ,	ریماری داری	
Site Name	GM - Former IFG Facility	/ Evacua	ation Method	peristaltic	pump	=	2/3/36	0 <u>D</u>
Site Location	Syracuse, NY	Sampli	ng Method	peristaltic	pump	Project #	21535	
Well informatio	n:	40			· · · · · · · · · · · · · · · · · · ·			
Depth of Well *	29	,09 ft.		* Measure	ements taken fro	om		
Depth to Water 1	•	<u>.62</u> ft.			Х	Top of Well Ca	ısing	. 3
Length of Water	Column	, <u>/</u> 7 ft.				Top of Protecti (Other, Specify		1 _{C7} B
Water paramete	Position pump in	ble pump slowly the center of screen at every three mi	ed interval &	maximum pumi		liters/minute		
	Depth				Oxidation	Dissolved		
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min
2(0815)	5.62	•	<u> </u>					·
	5.74	13.79	6,58	0:11.	3 48	4.7	66	180
/2	7.75	17.87	7,06	0.10	3 23	2.5	55	180
	5.76	17.91	7.16	0.10	2 99	19	44.2	180
20	5, 76	14,02	7.19	0.11	2 76	1.7	39.5	180
3/	577	14.02	7.19	6-11	234	1.4	33.2	1.80
3.5 ★	5.77	14.07	7.21	6:11	83	1.5	12.3	180
40	5.77	14:05	7,20	0.11	33	1.6	9.7	180
45	5.78	14.05	7.19	0.11	-9.	1.2	29	200
50	5.78	14.02	7.21	0/11	-46	0.9	5.7	200 (
:/	7.18	14.06 -	7.22	0.4	-59	1.1	4,2	266
60	5,78	14.07	7,23	0.11	-67	1/1	3.9	200
65							<u> </u>	 -
					<u> </u>		•	
		·	<u> </u>			1	<u> </u>	
-	<u> </u>	,					<u> </u>	
		<u> </u>	<u> </u> .					
			<u> </u>			· · · · · · · · · · · · · · · · · · ·		
	• -					 .	+	
Water sample:	1	1		<u> </u>	1		111	
Time collected:	0945			Total volume	of purged water		~220	0 717
Physical appea	Color Cloudy 1	hite_			Physical appe	earance at sam Colo	, clear	<u>-</u>
Sheen/Free Pro	Odor <u>// O</u> oduct // O				Sheen/	Odo Free Produ ct	<i>NO</i>	<u> </u>
Samples colle		· · · · · · · · · · · · · · · · · · ·						
Container Size			# Collected			Preservative		ainer pH
<u> 40%</u>		UIAL.	13	<u> </u>) :2	Nors	` _	7
////		en 10.2.1	1	1/1	υ /()·	Nitric		
5001				1/	<u>~~</u>	NaOH		12

O'Brien &	Gere Engineer	s, Inc.		Low F	low Grou	nd Water s	Sampling I	
Date	11/ 8/99	Persor	nel		PGB.CF	Weather	Chily	75
Site Name	GM - Former IFG Facil	_	ation Method	peristaltic		- Well#	7/	
te Location	Syracuse, NY	-	ing Method	peristaltic		Project #		· · · · · · · · · · · · · · · · · · ·
Well information	on:					- W-01-72		
Depth of Well	. 18.	. 25 ft.		* Measure	ements taken fr	rom		
Depth to Water	. 12	7 <u>7</u> ft.			х	Top of Well Ca	sing	
Length of Water	r Column 5	.53 ft.				Top of Protecti	• •	
,						Other, Specify	<i>'</i>)	
Water paramet	Position pump	sible pump slowly t in center of screen s at every three mi	ed interval &	maximum pum		liters/minute		
	Depth				Oxidation	Dissolved		
Elapsed Time	To Water	Temperature	рН	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
0(1540)	12.72							
5	13.36	14.03	7,25	1.05	63	2.24	492	190
10					1	1		/10
15	13.41	13.93	7.25	1,04	63	1.79	304	
	13.45	13.86	7,25	1.04	62	1.35	228	190
20 *	13.41	13.82	7,25	1.04	66	1.08	135	150
30 *	13,42	13.80	7.25	1.04	66	1,01	105.0	150
35	13, 43	13,70	7.25	1.03	74	1.23	66.0	
40	13.44	13:69	7.25	1.03	72	0.92	52.9	130
45	13.39	13.51	7.26	1.03	77	2 48	41.8	730
, -0	1= 39	13.33	7.25	11.04	724	1.85	39.5	/30
55	13.39	13.30	2,25	10=	72	2 %	38.1	130
	,							
				·				
		·						
								
		·						
		• • • • • • • • • • • • • • • • • • • •						
		-		 	 			-
			 	 	 		 	
	,	1	 		 	 	<u> </u>	
Water sample:	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	
Time collected:	. /			Total volume	of purged wate	r removed:	1700 %	<u>11.2</u>
Physical appea		0 1	•	•	Physical appe	earance at samp	ling 1	
	Color Ked .	ondy	•			Color		<u>=-</u>
Sheen/Free Pro	Odor <u>// ()</u>				Sheen/	Odor Free Product	NU	<u> </u>
Samples colle	cted:							
Container Size		er Type	# Collected	Field Filt	ered	Preservative		iner pH
40 11	L VOK	-018.1	3	li)	<u> </u>	NOW		-7 -
1110	·	<u>545 - 7.332</u> 1525 -		1 /-	<u>.'</u>	Nore	1211	
1 1 Life		1	 	// //	<u> </u>	10005	182,10 Z	<u> </u>
1/			2 cell	- 1 /V	1.	1 / 1		
Notes: -X	Flushed Plan	u markadanik	7	. Took	me !	r jall	RACER0060	0869

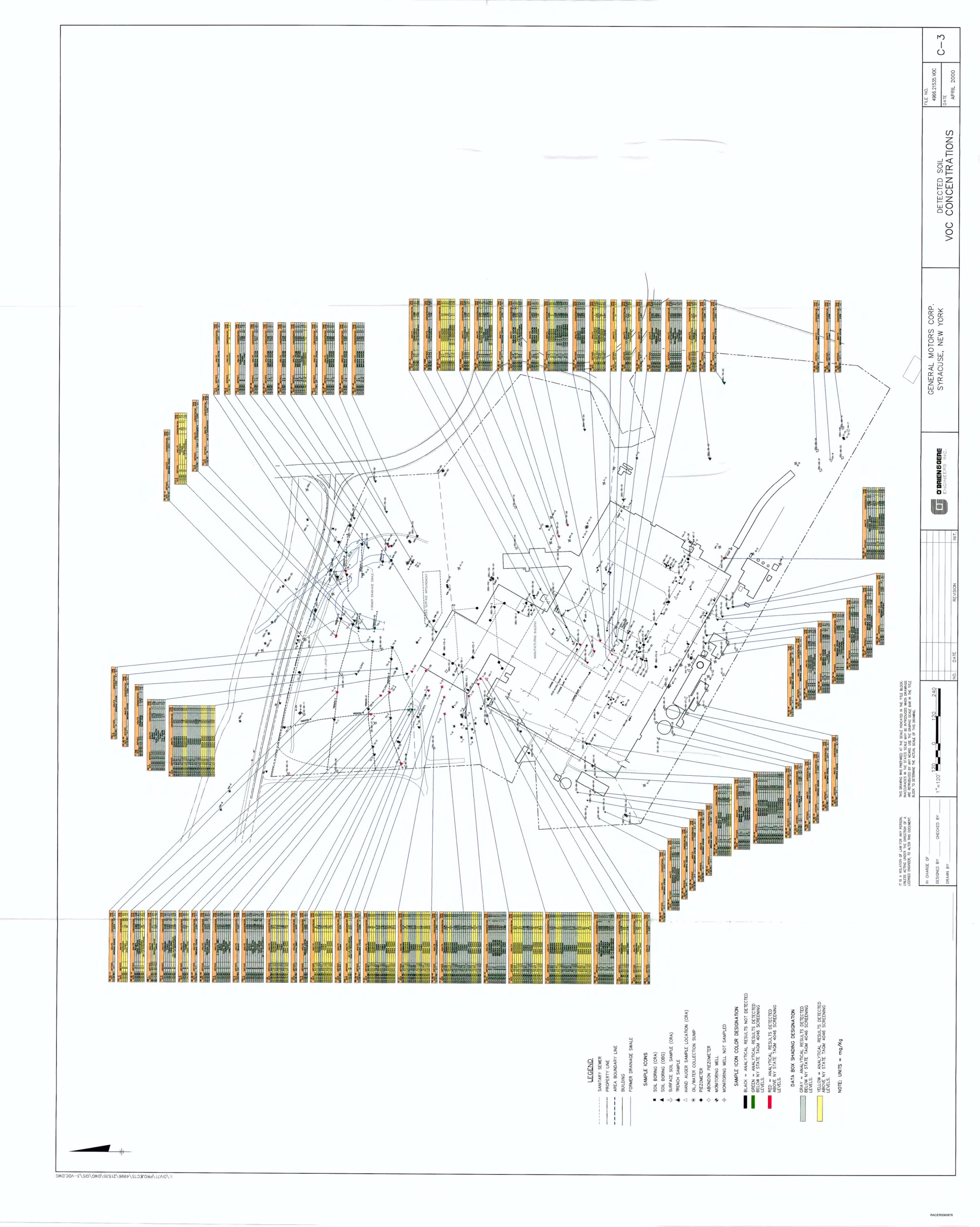
O'Brien &	Gere Engine	ers, Inc.		Low Flow Ground Water Sampling Log						
Date	11/03/99	Perso	nnel	CPO/	4/:	// Weather	Rain: Wi	ef = 40%		
Site Name	GM - Former IFG Fa	acility Evacu	ation Method	peristaltic	pump		OB6-12	7 '		
Site Location	Syracuse, NY	Samp	oling Method	peristaltic pump Project # 21535						
Well information	on:									
Depth of Well *	/	5,54 A.		* Measure	ements taken f	rom				
Depth to Water	*	1 <i>83</i> ft.			X	Top of Well Ca	sing _.	•		
Length of Wate	r Column		•			Top of Protecti	-			
						Other, Specify	<i>'</i>)			
Water paramet	Position pur	nersible pump slowly mp in center of scree lings at every three n	ned interval & a	maximum pum _l		liters/minute				
	Depth	ings at every three in	illidie litervais		Oxidation	. Dissolved	1			
Elapsed Time	To Water	Temperature	pH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)		
0	10.46	15,3	7.35	0.10	40	1.0	373	: 350		
5	10.53	15.6	734	0.10.	25	1,3	339	275		
10	10,62	15.9	7,33	0,10	B	1,2	343	275		
15	10.62	15.1	732	0,10	-8	0,1	3/4	250		
17	10102	EMPTY -	 	Tra Cell	1	 	 			
25	10,60	15.9	7,34	111	-20	12	127.0			
30		1 1 0	1	011	132	1.3	115,0	250		
	10,62	16.0		0.10			,	250		
36	10.65	15.8	1.35	0,10	-30	2.7	28.5			
40	10.65	15,9	7,34	0,10	-44	1.2	26.7	200		
45	101/25	16.0	733	0,10	-5/	1.5	25.1	250		
50	10.65	15,9 .	7,32	0.11	-46	1,2	19,4	250		
55	10.65	12,0	7,32	0,11	<u> 158</u>	1.2	17,5	250		
			<u> </u>							
· · · · · · · · · · · · · · · · · · ·		~								
			 	_						
					,					
		_	 	<u> </u>		1.				
<u> </u>			<u> </u>		 		<u> </u>			
-	-				 		+			
Water sample Time collected Physical appea	: 1600 hrs		<u> </u>	Total volume	of purged wate	er removed:		TOML		
	Color <u>9ra</u> Odor <u>10</u>	/			-	Colo Odo	r <u>Colorle</u> r <u>No</u>	<u> </u>		
Sheen/Free Pr	oduct // 0		·		Sheen	/Free Product	<u> </u>			
Samples colle			140-11-1-1	1 Fr Fr.	\	Decement	10	ntainer nu		
Container Size		tainer Type ドーレルドレ	# Collected	Field Fill	tered えん)	Preservative		ntainer pH		
1401		1100 1 300 de	1	1	/\u003	Non	\$.	7		
/Lite		10 11	1		<i>υ</i>		4/	12		
700		1	/	N	j	NaOH		712		
Notes:		•								
Notes:							RACER	0060870		

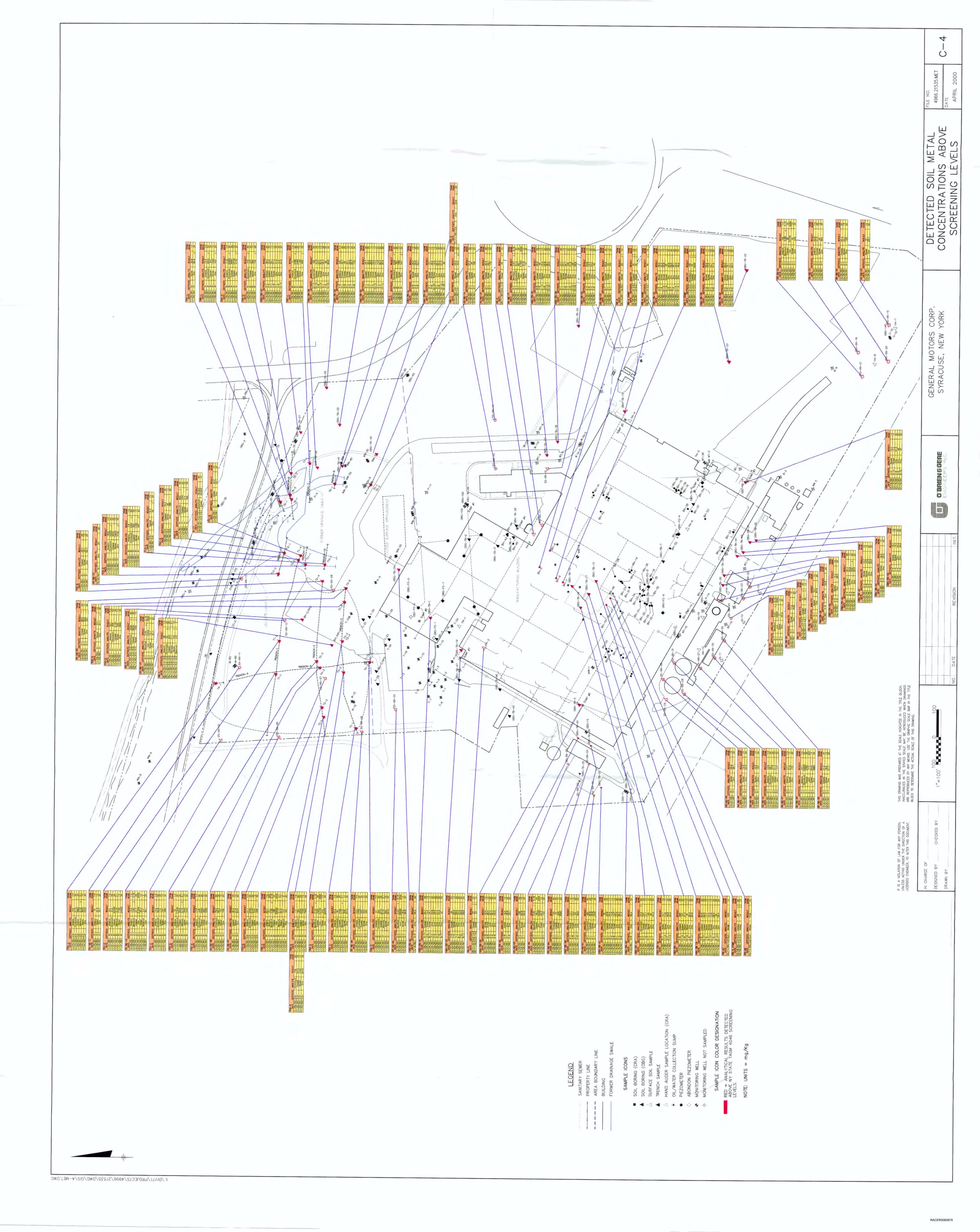
O'Brien &	Gere Engineers	, Inc.		Low F	low Grou	nd Water S	Sampling	Log
Date	11/ 7 /99	Persor	nnel	KnB	PGB	Weather	Mouly,	40.0
Site Name	GM - Former IFG Facilit	y Evacu	ation Method	peristaltic	pump	- Weli#	036/21	3
	Syracuse, NY		ing Method	peristaltic	pump	- Project #		
			•			· .		<u> </u>
Well information	on: 17 î	24 ft.		* Magaire	ements taken fr	· ·		•
Depth of Well * Depth to Water	$-\frac{1}{2}$			Measure	X X	Top of Well Ca	sina	
Length of Water		7 ft.				Top of Protecti	- •	
						Other, Specify	<i>'</i>)	
Water paramet	Position pump in	ble pump slowly to center of screer at every three m	ned interval &	maximum pumj		liters/minute		-
	Depth	at overy kines in	1		Oxidation	. Dissolved		
Elapsed	To	Temperature	pH	Conductivity	Reduction	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
Time	Water	remperature	pn	Conductivity	roteitiai	(11197)	(110)	Nate (minimi).
0 (1445	· · · · · · · · · · · · · · · · · · ·	1110-		A 05-11		1 7	188	230
	11-39	14.85	7,0	0.854	71	1.3		-
	11.52	15.28	2.0	1.04	66	1.8	175	200
15	11.90	15.52	7.06.	0.856	70	1.04	277	200
20	12-14	15.50	7:03	0.86	75	1.8	33/	200
25	12-40	15.36	8.05	1.05	88	2.3	320	150
35 X	12.94	14,40	7.09	1,03	96	1,2	203	100
40	13.02	14.29	7.09	1.05	101	5.7	197	100
45	13.19	14.40	7.03	1.05	101.	5.6	167	100
50	13.38	14.41	7-05	1.06	100	5.6	150	100
- 55 X		14.09	2,18	1.07	90	5.5	105	100
60	13.84	14.02	7.13	1.07	93	4.5	104	100
٠,٠٠٠	14.00	13.95	7.08	1.07	91	42	141	100
	Well Went		7 70 5	7,00	- //	 	1	1,00
_ 70	WC// Worl/	Wry.	 			-		
			<u> </u>	<u> </u>		 	1.	
		 		 	-		-	
			<u>.</u>	<u> </u>			-	
		 	 	 	<u> </u>	<u> </u>	<u> </u>	
			 ,		 -		· · · · · · · · · · · · · · · · · · ·	
		<u>]</u>				· .:	<u> </u>	
	arance at start Color Cloudy Odor —	•	•	Total volume		.,,	or	1 <u>L</u> <u>Sec Paox 2</u> —
Samples coll								
Container Size		er Type	# Collected	Field Fil	tered	Preservative	Con	tainer pH
<u> </u>		· ·	 					
<u> </u>			-					
								/
Notes: X	Flushed out	Slow throw	19h Cy-	linder	W/DE	Wider	1	(10FZ
INUICS.	Needed + me -	or cell to	, 4.11V.	<u> </u>			RACERO	0060871
jam:ers/div76/admi	Flushed out Needed + me- n/4_notes/micrlog3 & P.	er OEC,	-urnid	flow Rat	Le to 4	00		April 2

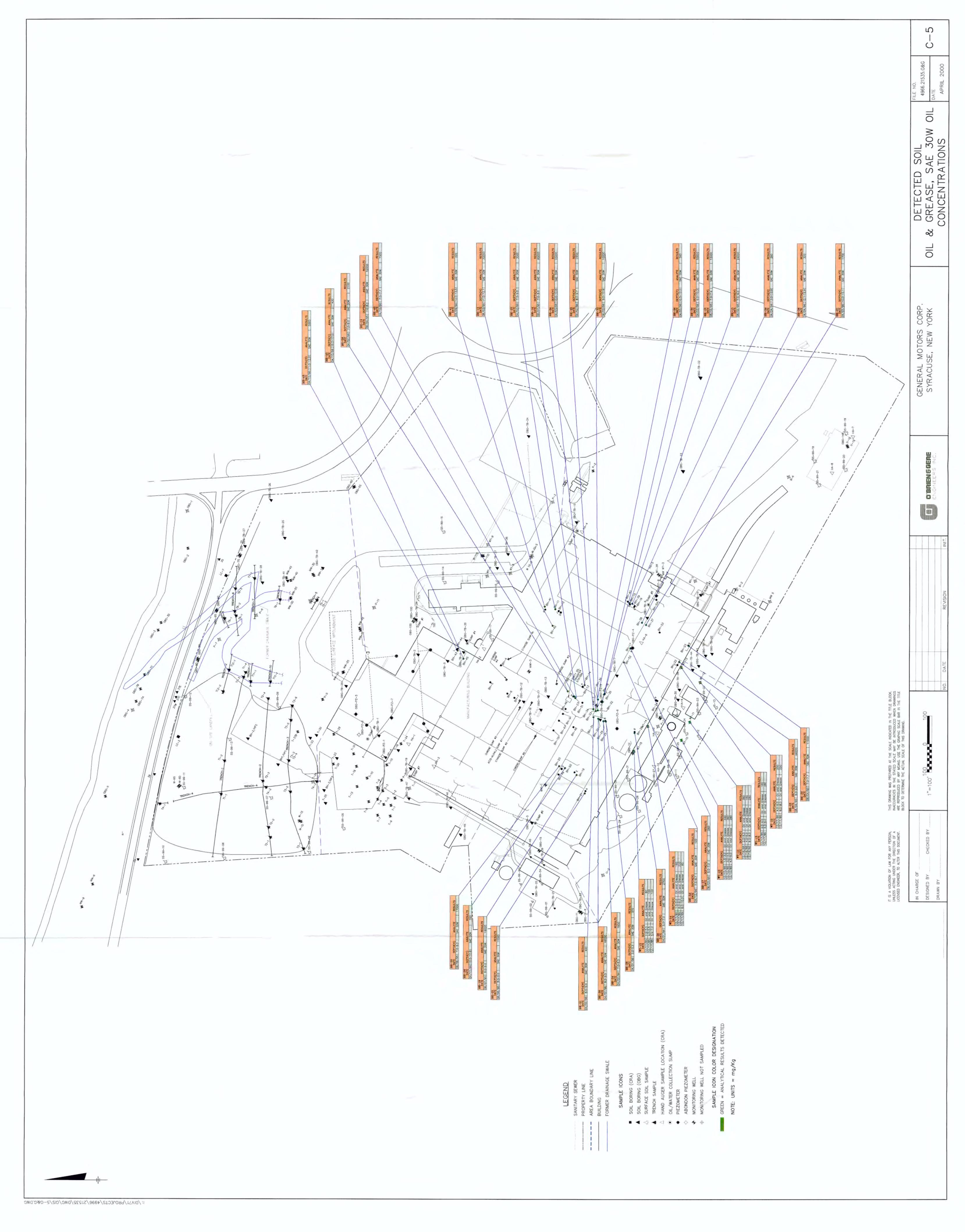

O'Brien &	Gere	Engineers	s, Inc.		Low F	low Grou	nd Water S	Sampling L	og
Date	11/4/	99	Person	ınel	KuB,	CPO, PGI	3 Weather	Cloudy 110	OF
Site Name		mer IFG Facili	y Evacua	ation Method	peristaltic	pump	Well#	000-13	
Site Location			=	ing Method	peristaltic	pump	Project #		— : ~ !
Well information	on:		011						
Depth of Well *		17, 8 9, 3 8.5	54_nt.		* Measure	ements taken fr	om .		
Depth to Water	*	9,	5 / [*] ft.			x	Top of Well Ca	sing	
Length of Wate	r Column	<u> </u>	3. ft.	•			Top of Protecti		
					•		(Other, Specify	· .	
Water paramet		Position pump i	ible pump slowly to n center of screen s at every three mi	ed interval &	maximum pum		liters/minute		
Elapsed Time		Depth To Water	Temperature	pH	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
			10.34	736	1,03	91	9.9 7	21.1	100
0(08)		9.41	10.07	77,5	//- /	 '' ·	'''	-177	100
`	-		 		· ·			62,3ntu	
	+		<u></u>		,	<u> </u>			-t
	 	<u> </u>	 					inmetals	Containe
	<u> </u>	···-				1			<u> </u>
		·				·	<u> </u>	·	
								<u></u>	
]			\	
	 								
	<u> </u>		-	 					
				<u> </u>					+
	 		1					 	
				<u> </u>					
	_	<u> </u>	<u> </u>		ļ		<u> </u>	ļ	-
					<u> </u>				
[_			
								•	<u> </u>
			•						
	 			1	 				
-	-		 	 	 				
Water sample Time collected Physical appe Sheen/Free P	d: 08. earance at Color Odor	start Clear	See page For purge ii	Mor,	Total volume	-	earance at samp	r <u>clear</u>	n1L - -
Samples coll	ected:								
Container Size	е		ег Туре	# Collected	i Field Fil		Preservative		ner pH
40111			-VIAL	1 3		NO	1000		1 1
11.00		AMDES	المارين	+ 4	1 10	NU	Ning		$\frac{1}{22}$
1/10		$\frac{P_0}{P_0!}$	· · · · · · · · · · · · · · · · · · ·	1 1	1-1/e		Na		5/2
500 n	, ,	1 1	<u> </u>	1.7		/ /		13.F.	- <u>:-</u> -
Notes: /\/	t tin	a of	Filling M	Class D	OFFE FO	Mark!!	WOD De	RACERO06	<u>/</u>

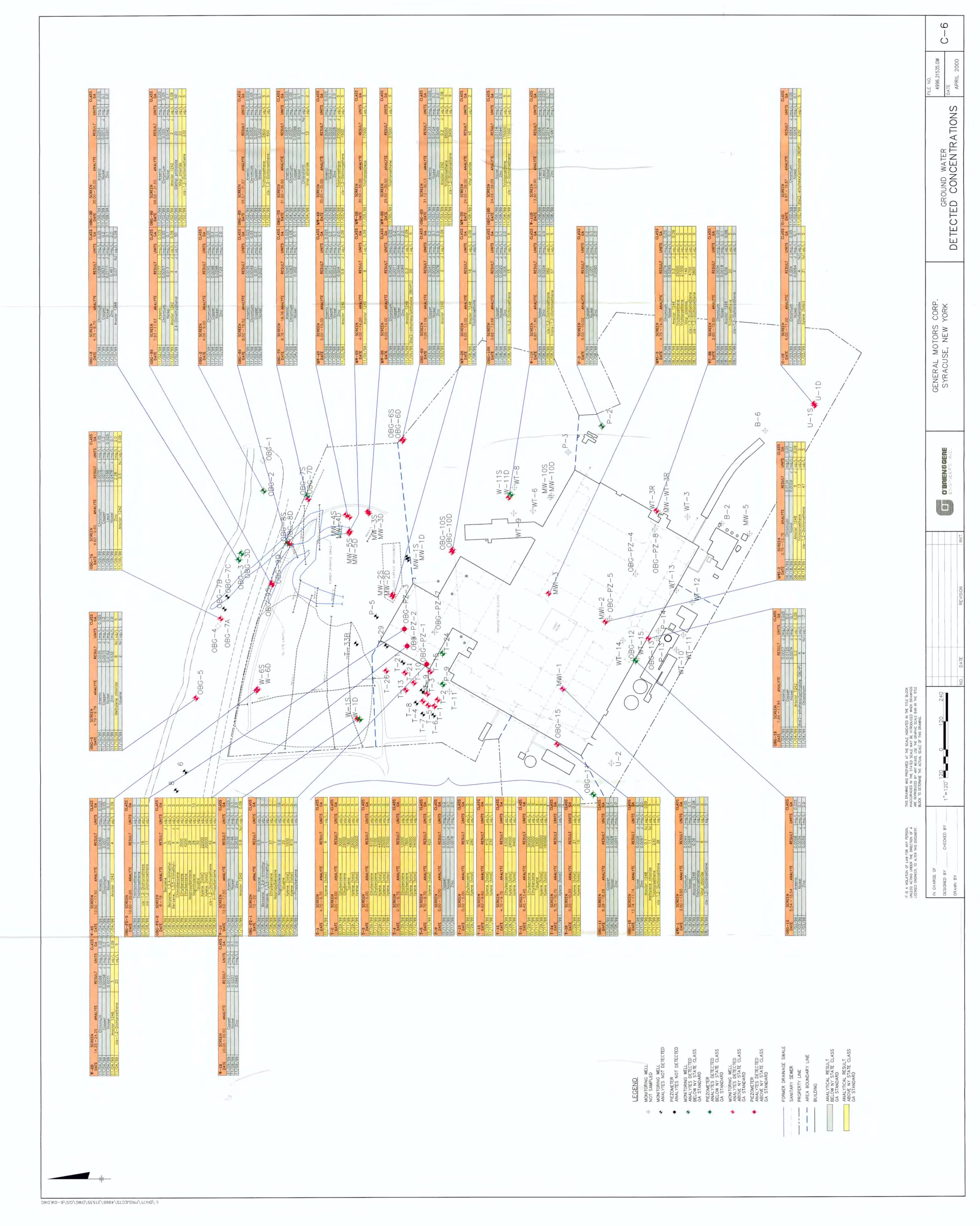

O'Brien &	Gere Engineers	, Inc.		Low F	low Grou		Sampling L	
Date _	11//0/99	Person	inel	CPO)	Weather	OVERCAST,~	55°F
Site Name	GM - Former IFG Facility	y Evacua	ation Method	peristaltic	pump	Well #	alt-15	<u> </u>
Location	Syracuse, NY	Sampli	ing Method	peristaltic	pump	Project #	21535	
well information	n: 177,	1						
Depth of Well *	12.19	7ft.		* Measure	ements taken fr	7		
Depth to Water *	77	ft.		:	X	Top of Well Ca	- •	
Length of Water	Column $4, 5$	<u>7</u> ft.				Top of Protecti	_	
	·					Other, Specify	") 	
Water paramete	Position pump in	ble pump slowly to center of screen at every three mi	ed interval &	maximum pump		liters/minute		
	Depth	arevery timee in	TOTO INTO I VAIS		Oxidation	Dissolved		
Elapsed	То		[·		Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
0(1200)	9.37	16.28	1 <i>7.9</i> /	63	1/5/	6.4	1120	150
5	19 14	15.04	7,53	61.	154	5.7	4220	125
	10.02	75011	100		158	5.2	5100	125
10	10.05	13,07	7,58	60	 	 	27722	17:
15	11,41	15,99	1,65	59	163	6,8	5 19,0	1/-25
20	11.86	15,76	7,56	172	166	5.6	7/000	100
15	1210 .	15 70	753	73	164	8.5	>1000	100
20	12.30	15 02	152	7//	163		 	100
50		19,83	1,12	77	+	3.9	7/000	188
35	12.48	15.81	7.47,	79	160	3.4	958	100
40	12.61	15.90	7.44	9/	3/	3.6	>1000	100
`		7	,		•			-
	D09			<u> </u>				
201-11/1/2	B. 61	941	777	47	200	95	3940	100
0915-11/18ad	0,61	_ / /	1166	 4./	200	- -/- 	1 37 7. U	1/00
	No. No.						<u></u>	<u> </u>
							,	
-			†	-				
				-	-			 `
								
	<u> </u>							ļ
					İ			
					,			
Water sample:		/	<u> </u>	.l	<u></u>		1	<u> </u>
Time collected:	0915-11/11	a3 .		Total volume	of purged wate	er removed:	~/300,	ML.
		7 1				earance at samp		
Physical appear	Color Blown				Physical app	Colo	1 / 6	n
	Odor 10					Odo	76	<u> </u>
 Sheen/Free Pro					Sheen/	/Free Product	alone	_
								-
Samples colle	cted:							
Container Size	Containe		# Collected		7	Preservative	Contai	ner pH
40 M		VIAL	3	70	10	None	\1´	<u> </u>
1 Lites	AMD	es ofass	3	1-ye		None	101/2	
Liter	ρ_0	/V"	a 2	1-14	es//-NO	Nitrie	Acid L	ø
1 -11.01		 			1 1	7/	, , , , , , , , , , , , , , , , , , ,	7
500 m	L Pol	ý	á	1-1/	e=/1-NO	Nach		2

APPENDIX C

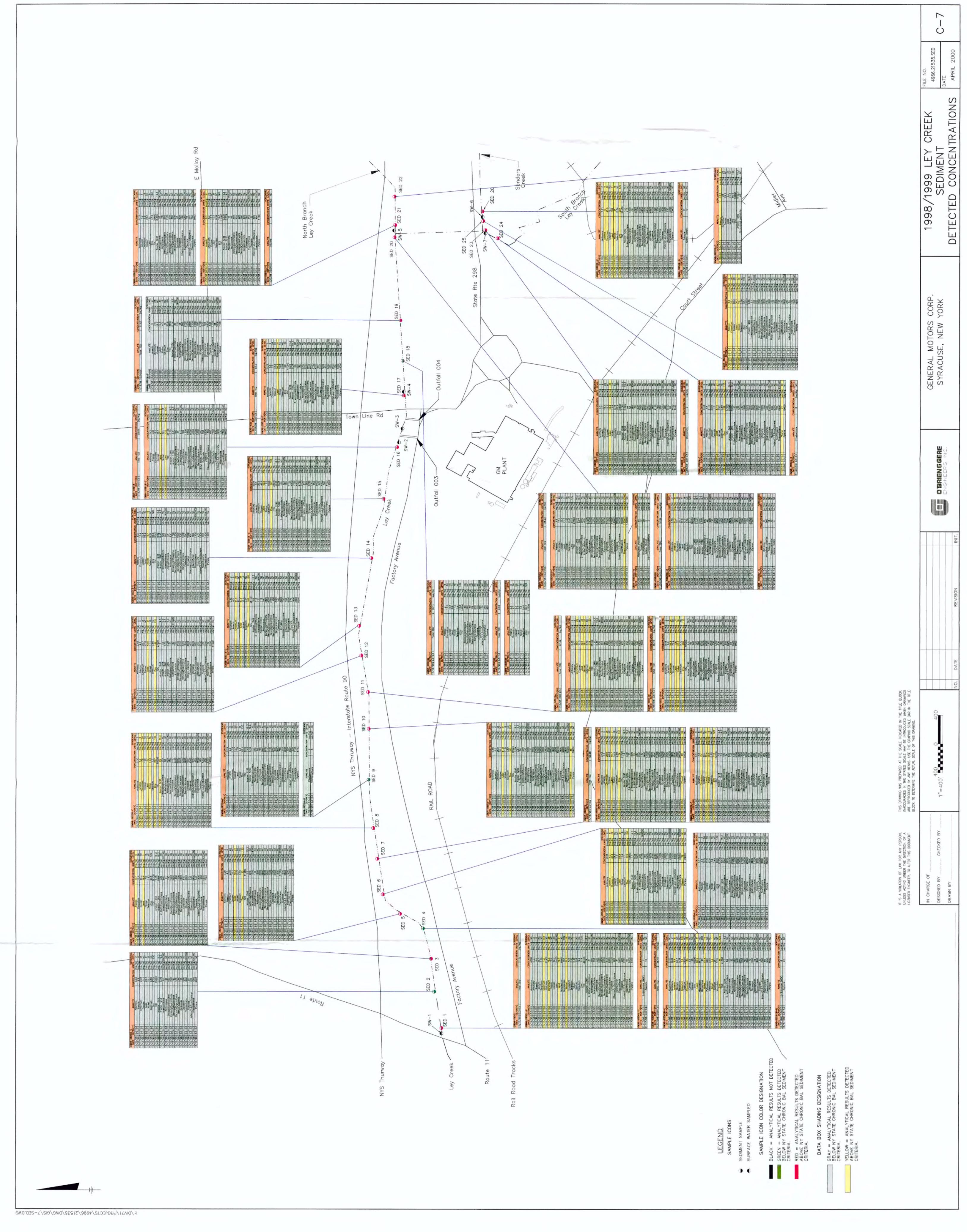

1999 Supplemental RI detected concentrations


Figure C-1	Detectected soil PCB concentrations
Figure C-2	Detected soil SVOC concentrations
Figure C-3	Detected soil VOC concentrations
Figure C-4	Detected soil metal concentrations above
	screening levels
Figure C-5	Detected soil oil & grease concentrations
Figure C-6	Ground water detected concentrations
Figure C-7	Sediment detected concentrations





RACER0060877



RACER0060881

RACER0060882

APPENDIX D

1999 Dioxin toxicity equivalence calculations

APPENDIX D

Toxic equivalency factor calculations

Toxic Equivalency Factors (TEFs) were applied to standardize the detected chlorinated dioxins and furans concentrations. 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) is the most widely studied chlorinated dioxin (from a human health perspective), while most of the chlorinated dioxin and furan congeners have not been tested as extensively as 2,3,7,8-TCDD. Available data indicates that some of the congeners may display toxic properties, though they are less potent than 2,3,7,8-TCDD. Therefore, to facilitate the evaluation of mixtures of chlorinated dioxins and furans, a Toxic Equivalency Factor (TEF) approach has been used by regulatory authorities and has been widely accepted and used by the scientific and regulatory communities in many parts of the world. Basically, the TEF approach multiplies the congener specific TEF (relative to 2,3,7,8-TCDD) by the detected concentration to derive the congener specific Toxic Equivalent (TEQ). The sum of the congener specific TEQs constitutes the total sample TCDD TEQ. The sample specific TCDD TEQ is then compared with toxicity data for 2,3,7,8-TCDD.

In order to improve communication and consistency amongst scientists and regulators, an interim set of International-TEFs (I-TEFs) were published in 1988 by the NATO\CCMS Pilot Study on International Information Exchange on Dioxins (USEPA 1989), and recently updated by a World Health Organization (WHO) working group (Van den Berg et al. 1998). The updated I-TEFs for mammals were used in this assessment to standardize the observed PCDD/PCDF concentration. This approach facilitates the comparability of the results with data in the open literature. However, it should be recognized that the total toxic equivalents (TEQs) calculated using the TEF approach do not necessarily reflect the actual relative toxic potency of the mixture, due to the simplifications of the TEF approach.

Van den Berg, Martin. et al. 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environmental Health Perspectives. Volume 106, Number 12, December 1998

USEPA 1989, Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and dibenzo-furans (CDDs and CDFs) and 1989 update., Risk Assessment Forum, USEPA, Washington D.C., PB90-145756

Syracuse, NY

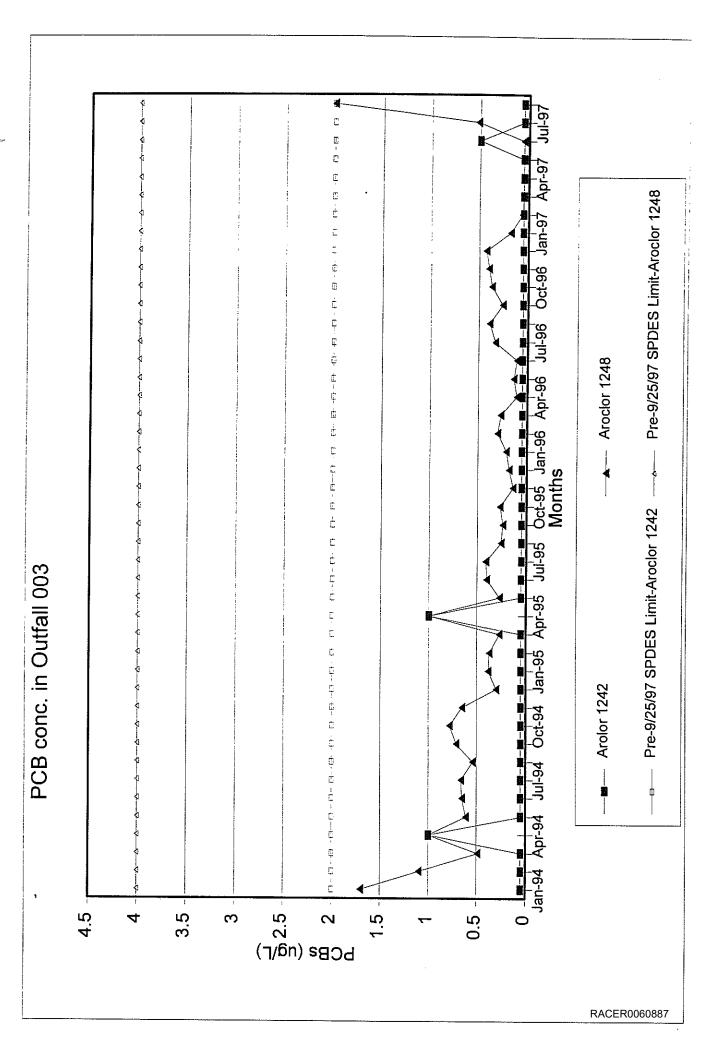
8290 Dioxins and Furans Toxicity Equivalent Quotient (TEQ) Data Former IFG Facility Soil Samples

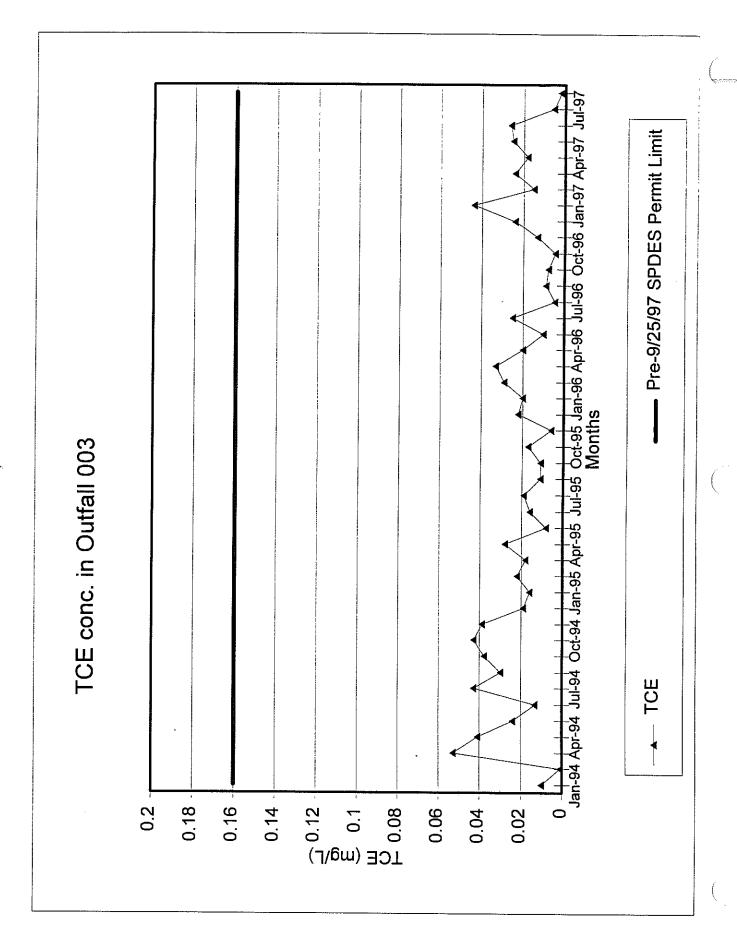
Sample ID		SS-99-24	SS-99-25	SS-99-26	SS-99-27	SS-99-31
Area Sample Date Sample Depth Units	Equivalent Date Factor (TEF) Depth	0.0 - 0.5 A. 10/27/99 ng/Kg	0.0 - 0.5 A. 10/27/99 ng/Kg	0.0 - 0.5 ft. 10/27/99 ng/Kg	0.0 - 0.5 ft. 10/27/99 ng/Kg	0.0 - 0.5 ft. 10/27/99 ng/Kg
Compound						
2,3,7,8-Tetrachlorodibenzo-p-dioxin		1.00	0.83	2.49	1.00	1.00
2,3,7,8-Tetrachlorodibenzofuran	0.1	0,49	0.84	67.00	0.87	
1,2,3,7,8-Pentachlorodibenzofuran	0.05	0.25	0.21	16.75	0.25	
1,2,3,7,8-Pentachlorodibenzo-p-dloxin	5.0	2.50	2.10	3.72	2,50	
2,3,4,7,8-Pentachlorodibenzofuran	0.5	2.50	7.40	690.00	2.50	materials of the twenty man decreased at the company of the compan
1,2,3,4,7,8-Hexachlorodibenzofuran	10	0.50	19:0	70.00	0.50	
1,2,3,6,7,8-Hexachlorodibenzofuran	0.1	0.50	0.42	22.10	0.50	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.1	0.50	0.42	0.50	0.50	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin		0.50	0.42	10.20	0.50	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	10	0.50	0,42	3.80	0.50	
2,3,4,6,7,8-Hexachlorodibenzofuran	0.1	0.50	0.42	11.30	0.50	
1,2,3,7,8,9-Hexachlorodibenzofuran	0.1	0.50	0.42	1.64	0.50	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.01	0.05	0.08	6.63	0.07	
1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin	10:0	90.0	0.14	5.71	0.21	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.01	0.05	0.04	1.50	0.05	
Octachlorodibenzo-p-dioxin	0,001	0.05	0.12	1.88	0.19	
Octachlorodibenzofuran	0.001	0.01	0.02	1.19	0.02	2.84
Total TEQ		10.46	14,92	916.41	11.15	26.01
		•	:			

NOTES:

Date Printed: 03/16/00 10:03:54
DBF File: N:024721535\SRRITEMP.DBF
FXP File: N:024721535\SRRITEMP.OSOTEQ.FXP

RACER0060885


File Number: 3247,21535


1 of

Page

APPENDIX E

Historic SPDES monitoring data

APPENDIX F

Historic ground water elevation data

Water Levations Water Levations Water Levations User Water Levations User Water Levations User Water Levations User Water Levations User	Appendix F.			<i>ion Data Sumr</i> Initial G				Decer	Ground	Vator FI	-4: /5::		
Investigation Note Well ID Date (t) 3/96 3/97 6/96 6/97 9/96 9/97 12/95 12								Recent	Groung v	vater Elev	rations (ft)		
EDIHIBS P-2 66-986 382.20 IDIHIBS P-2 66-986 382.20 IDIHIBS P-3 66-986 380.93 IDIHIBS P-4 66-885 374.71 EDIHIBS P-5 66-896 377.18 EDIHIBS P-6 65-885 373.60 EDIHIBS P-6 65-885 373.60 EDIHIBS P-7 65-886 373.18 EDIHIBS P-7 65-886 373.18 EDIHIBS P-1 66-886 373.18 EDIHIBS P-1 66-886 373.18 EDIHIBS P-1 66-886 373.18 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS P-1 66-886 376.20 EDIHIBS W-2 66-886 376.20 EDIHIBS W-3 66-886 376.20 EDIHIBS W-3 66-886 376.20 EDIHIBS W-4 66-886 376.20 EDIHIBS W-4 66-886 376.20 EDIHIBS W-5 66-886 376.20 EDIHIBS W-5 66-886 376.20 EDIHIBS W-6 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-7 66-886 376.20 EDIHIBS W-8 66-886 376.20 EDIHIBS W-8 66-886 376.20 EDIHIBS W-8 66-886 376.20 EDIHIBS W-7 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-8 66-886 376.30 EDIHIBS W-9 66-886 376.30 EDIHIBS W-9 66-886 376.30 EDIHIBS W-9 66-886 376.30 EDIHIBS W-9 66-886 376.30 EDIHIBS W-1 66-886 386.00 EDIHIBS W-1 66-886 38		Note	Well ID			3/96	3/97	6/96	6/97	9/96	9/97	12/95	12/96
DilHilis					383.20					0,00	0,01	12700	12/30
EDIHIBS													
EDIHIBS P-6 6/5-6/85 377.18 EDIHIBS P-7 6/5-6/85 373.18 EDIHIBS P-8 6/5-6/85 373.18 EDIHIBS P-9 6/5-6/85 380.87 EDIHIBS P-10 6/5-6/85 376.60 EDIHIBS P-11 6/5-6/85 376.60 EDIHIBS P-12 6/5-6/85 376.60 EDIHIBS P-14 6/5-6/85 376.60 EDIHIBS P-15 6/5-6/85 376.60 EDIHIBS P-16 6/5-6/85 376.60 EDIHIBS P-17 6/5-6/85 376.60 EDIHIBS P-18 6/5-6/85 376.60 EDIHIBS P-19 6/5-6/85 376.60 EDIHIBS P-19 6/5-6/85 378.15 EDIHIBS P-10 6/5-6/85 378.15 EDIHIBS P-10 6/5-6/85 376.71 EDIHIBS W-29 6/5-6/85 376.71 EDIHIBS W-29 6/5-6/85 376.71 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 376.30 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 375.40 EDIHIBS W-29 6/5-6/85 386.00 EDIHIBS W-39 6/5-6/8													
EDIHI85 P-6 6/6-6/85 373-60 EDIHI86 P-7 6/5-6/85 380-59 EDIHI86 P-8 6/5-6/85 380-59 EDIHI86 P-9 6/5-6/85 380-59 EDIHI86 P-10 6/5-6/85 376-34 EDIHI86 P-11 6/5-6/85 376-34 EDIHI86 P-12 6/5-6/85 376-34 EDIHI86 P-13 6/5-6/85 376-34 EDIHI86 P-14 6/5-6/85 376-34 EDIHI86 P-14 6/5-6/85 376-34 EDIHI86 P-14 6/5-6/85 376-34 EDIHI86 P-14 6/5-6/85 378-34 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 378-24 EDIHI86 P-14 6/5-6/85 376-20 EDIHI86 P-14 6/5-6/85 376-20 EDIHI86 P-14 6/5-6/85 376-20 EDIHI86 P-14 6/5-6/85 376-20 EDIHI86 P-15 6/5-6/85 376-20 EDIHI86 P-15 6/5-6/85 376-20 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 376-30 EDIHI86 P-15 6/5-6/85 375-30 EDIHI86 P-15 6/5-6/85 380-20 EDIHI86 P-15 6/5-6/8													
EDIHIBS P-8 6/5-6/85 380.87 EDIHIBS P-9 6/5-6/85 380.87 EDIHIBS P-10 6/5-6/85 380.87 EDIHIBS P-11 6/5-6/85 376.60 EDIHIBS P-12 6/5-6/85 376.60 EDIHIBS P-14 6/5-6/85 376.60 EDIHIBS P-14 6/5-6/85 376.80 EDIHIBS P-14 6/5-6/85 385.83 EDIHIBS P-14 6/5-6/85 376.34 EDIHIBS P-14 6/5-6/85 385.83 EDIHIBS P-14 6/5-6/85 379.17 EDIHIBS P-15 6/5-6/85 379.17 EDIHIBS P-15 6/5-6/85 379.17 EDIHIBS P-15 6/5-6/85 378.15 EDIHIBS P-15 6/5-6/85 378.15 EDIHIBS P-15 6/5-6/85 378.15 EDIHIBS P-15 6/5-6/85 376.19 EDIHIBS P-15 6/5-6/85 376.19 EDIHIBS P-15 6/5-6/85 376.19 EDIHIBS P-15 6/5-6/85 376.20 EDIHIBS P-15 6/5-6/85 376.20 EDIHIBS P-15 6/5-6/85 376.20 EDIHIBS P-15 6/5-6/85 376.20 EDIHIBS P-15 6/5-6/85 376.20 EDIHIBS P-15 6/5-6/85 376.39 EDIHIBS P-15 6/5-6/85 386.05 EDIHIBS P-15 6/5-6													
EDIHBS P-8 6/5-6/85 386.59 EDIHBS P-10 6/5-6/85 376.39 EDIHBS P-11 6/5-6/85 386.29 EDIHBS P-12 6/5-6/85 386.29 EDIHBS P-14 6/5-6/85 386.29 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS P-14 6/5-6/85 386.20 EDIHBS W-15 6/5-6/85 376.20 EDIHBS W-15 6/5-6/85 376.20 EDIHBS W-2D 6/5-6/85 376.20 EDIHBS W-2D 6/5-6/85 376.20 EDIHBS W-2D 6/5-6/85 376.20 EDIHBS W-2D 6/5-6/85 376.20 EDIHBS W-3D 6/5-6/85 376.30 EDIHBS W-45 6/5-6/85 376.30 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 380.20 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDIHBS W-57 6/5-6/85 381.10 EDI													
EDHIBS P-10 66-6665 374-69 EDHIBS P-11 66-685 375-69 EDHIBS P-12 66-685 375-69 EDHIBS P-13 66-685 375-69 EDHIBS P-13 66-685 375-69 EDHIBS P-14 66-685 375-69 EDHIBS P-15 66-685 375-71 EDHIBS P-16 66-685 375-71 EDHIBS W-15 66-685 376-20 EDHIBS W-15 66-685 375-71 EDHIBS W-20 66-685 375-71 EDHIBS W-20 66-685 375-71 EDHIBS W-30 66-685 376-20 EDHIBS W-45 66-685 376-20 EDHIBS W-45 66-685 376-20 EDHIBS W-45 66-685 376-20 EDHIBS W-45 66-685 376-20 EDHIBS W-45 66-685 376-20 EDHIBS W-45 66-685 376-30 EDHIBS W-45 66-685 376-30 EDHIBS W-58 66-685 376-30 EDHIBS W-75 66-685 376-30 EDHIBS W-80 66-685 376-30 EDHIBS W-70 66-685 376-30 EDHIBS W-70 66-685 375-70 EDHIBS W-90 66-685 375-70 EDHIBS W-90 66-685 375-70 EDHIBS W-90 66-685 375-70 EDHIBS W-90 66-685 375-70 EDHIBS W-90 66-685 375-70 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-90 66-685 381-80 EDHIBS W-71 66-685 381-80 EDHIBS W-71 66-685 381-80 EDHIBS W-90 66-68													
EDIHI85 P-10 6/5-6/85 3776.90 EDIHI86 P-11 6/5-6/85 376.30 EDIHI86 P-12 6/5-6/85 376.30 EDIHI86 P-13 6/5-6/85 376.30 EDIHI86 P-14 6/5-6/85 385.23 EDIHI86 W-15 6/5-6/85 3776.30 EDIHI86 W-15 6/5-6/85 3776.17 EDIHI86 W-15 6/5-6/85 3776.17 EDIHI86 W-25 6/5-6/85 3776.17 EDIHI86 W-25 6/5-6/85 3776.17 EDIHI86 W-25 6/5-6/85 3776.17 EDIHI86 W-25 6/5-6/85 3776.17 EDIHI86 W-26 6/5-6/85 3776.17 EDIHI86 W-27 6/5-6/85 3776.30 EDIHI85 W-49 6/5-6/85 376.39 EDIHI85 W-49 6/5-6/85 376.39 EDIHI85 W-50 6/5-6/85 376.35 EDIHI85 W-50 6/5-6/85 376.35 EDIHI85 W-70 6/5-6/85 375.35 EDIHI85 W-70 6/5-6/85 375.49 EDIHI85 W-70 6/5-6/85 375.49 EDIHI85 W-70 6/5-6/85 375.49 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-70 6/5-6/85 375.10 EDIHI85 W-71 6/5-6/85 389.20 EDIHI85 W-71 6/5-6/85 389.20 EDIHI85 W-71 6/5-6/85 389.20 EDIHI85 W-71 6/5-6/85 389.20 EDIHI85 W-71 6/5-6/85 389.67 EDIHI85 W-71 6/5-6/85 381.50 EDIHI8													
EDIHB66 P-11 6/5-6/65 375-60 EDIHB68 P-12 6/5-6/65 375-63 EDIHB65 P-13 6/5-6/65 385-83 EDIHB65 P-14 6/5-6/65 385-83 EDIHB65 P-14 6/5-6/65 385-83 EDIHB65 P-14 6/5-6/65 378-15 EDIHB66 W-15 6/5-6/65 378-15 EDIHB66 W-15 6/5-6/65 378-15 EDIHB66 W-22 6/5-6/65 378-15 EDIHB66 W-22 6/5-6/65 378-15 EDIHB66 W-23 6/5-6/65 375-71 EDIHB66 W-24 6/5-6/65 375-71 EDIHB66 W-25 6/5-6/65 375-71 EDIHB66 W-25 6/5-6/65 376-20 EDIHB66 W-25 6/5-6/65 376-20 EDIHB66 W-25 6/5-6/65 376-20 EDIHB66 W-25 6/5-6/65 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB66 W-25 6/5-6/6/5 376-20 EDIHB67 W-70 6/5-6/6/5 376-20 EDIHB68 W-85 6/5-6/6/5 376-20 EDIHB68 W-85 6/5-6/6/5 376-20 EDIHB68 W-80 6/5-6/6/5 375-70 EDIHB68 W-80 6/5-6/6/5 375-70 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB68 W-80 6/5-6/6/5 381-20 EDIHB69 W-15 6/5-6/6/5													
EDIHI85 P-12 6/5-6/85 376.34 EDIHI86 P-13 6/5-6/85 385.83 EDIHI86 P-14 6/5-6/85 386.20 EDIHI86 W-15 6/5-6/85 379.17 EDIHI86 W-15 6/5-6/85 378.23 EDIHI86 W-20 6/5-6/85 378.23 EDIHI86 W-20 6/5-6/85 378.23 EDIHI86 W-20 6/5-6/85 378.23 EDIHI86 W-20 6/5-6/85 378.23 EDIHI86 W-20 6/5-6/85 376.20 EDIHI86 W-30 6/5-6/85 376.20 EDIHI86 W-30 6/5-6/85 376.20 EDIHI86 W-30 6/5-6/85 376.20 EDIHI86 W-40 6/5-6/85 383.46 EDIHI86 W-50 6/5-6/85 376.35 EDIHI86 W-50 6/5-6/85 376.35 EDIHI86 W-50 6/5-6/85 376.35 EDIHI85 W-50 6/5-6/85 376.35 EDIHI85 W-70 6/5-6/85 375.00 EDIHI85 W-70 6/5-6/85 375.00 EDIHI85 W-70 6/5-6/85 375.00 EDIHI86 W-89 6/5-6/85 375.00 EDIHI86 W-89 6/5-6/85 375.00 EDIHI86 W-89 6/5-6/85 375.00 EDIHI86 W-89 6/5-6/85 375.00 EDIHI86 W-70 6/5-6/85 389.29 EDIHI86 W-70 6/5-6/85 389.20 EDIHI86 W-70 6/5													
EDIHI86 P-13 6/6-6/85 385.83 EDIHI86 P-14 6/6-6/85 376.24 EDIHI86 W-15 6/6-6/85 378.15 EDIHI86 W-25 6/6-6/85 378.15 EDIHI85 W-20 6/6-6/85 378.15 EDIHI85 W-20 6/6-6/85 376.24 EDIHI85 W-30 6/6-6/85 376.21 EDIHI85 W-30 6/6-6/85 376.21 EDIHI85 W-30 6/6-6/85 376.21 EDIHI85 W-30 6/6-6/85 376.29 EDIHI86 W-45 6/6-6/86 376.39 EDIHI86 W-45 6/6-6/86 376.39 EDIHI86 W-50 6/6-6/86 376.39 EDIHI86 W-50 6/6-6/86 376.39 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-50 6/6-6/86 376.30 EDIHI86 W-80 6/6-6/86 376.30 EDIHI86 W-80 6/6-6/86 375.10 EDIHI86 W-80 6/6-6/86 375.10 EDIHI86 W-80 6/6-6/86 375.10 EDIHI86 W-80 6/6-6/86 375.10 EDIHI86 W-80 6/6-6/86 380.29 EDIHI86 W-80 6/6-6/86 380.29 EDIHI86 W-80 6/6-6/86 380.29 EDIHI86 W-80 6/6-6/86 380.29 EDIHI86 W-80 6/6-6/86 380.29 EDIHI86 W-70 5/6-6/86 380.29 EDIHI86 W-70 6/6-6/86													
EDIHI86													•
EDIHB6 W-15 6/6-6/85 379-17 EDIHB6 W-10 6/6-6/85 378-24 EDIHB6 W-25 6/6-6/85 378-15 EDIHB6 W-30 6/6-6/85 378-15 EDIHB6 W-30 6/6-6/85 378-15 EDIHB6 W-30 6/6-6/85 376-20 EDIHB6 W-45 6/6-6/85 383-46 EDIHB6 W-45 6/6-6/85 383-46 EDIHB6 W-45 6/6-6/85 383-46 EDIHB6 W-45 6/6-6/85 383-46 EDIHB8 W-45 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-5 6/6-6/85 376-39 EDIHB8 W-70 6/6-6/86 376-39 EDIHB8 W-80 6/6-6/86 375-79 EDIHB8 W-80 6/6-6/85 381-59 EDIHB8 W-80 6/6-6/85 381-59 EDIHB8 W-90 6/6-6/85 381-58 EDIHB8 W-90 6/6-6/85 381-58 EDIHB8 U-10 6/6-6/85 381-58 EDIHB8 U-17 04/01/86 381-79 386-63 382-91 382-07 380-07 300-78													
EDIHI85 W-1D 6/6-6/85 378.15 EDIHI85 W-2D 6/6-6/85 378.15 EDIHI85 W-2D 6/6-6/85 378.35 EDIHI85 W-3D 6/6-6/85 376.20 EDIHI85 W-3D 6/6-6/85 376.20 EDIHI85 W-3D 6/6-6/85 376.20 EDIHI85 W-3D 6/6-6/85 393.46 EDIHI85 W-4D 6/6-6/85 393.46 EDIHI85 W-5D 6/6-6/85 376.20 EDIHI85 W-5D 6/6-6/85 376.39 EDIHI85 W-5D 6/6-6/85 376.39 EDIHI86 W-6D 6/6-6/85 376.39 EDIHI86 W-6D 6/6-6/85 376.30 EDIHI86 W-7D 6/6-6/85 376.36 EDIHI86 W-7D 6/6-6/85 376.36 EDIHI86 W-8D 6/6-6/85 376.40 EDIHI86 W-8D 6/6-6/85 375.40 EDIHI86 W-9D 6/6-6/85 375.10 EDIHI86 W-9D 6/6-6/85 375.10 EDIHI86 W-9D 6/6-6/85 389.07 EDIHI86 U-1D 6/6-6/85 389.07 EDIHI86 U-1D 6/6-6/85 389.07 EDIHI86 U-1D 6/6-6/85 389.19 EDIHI86 U-1D 6/6													
EDIHI85 W-2D 6/5-6/85 378.15 EDIHI86 W-3D 6/5-6/85 376.20 EDIHI85 W-3D 6/5-6/85 376.20 EDIHI86 W-3D 6/5-6/85 376.20 EDIHI86 W-3D 6/5-6/85 376.20 EDIHI86 W-3D 6/5-6/85 376.20 EDIHI86 W-5S 6/5-6/85 393.46 EDIHI86 W-5S 6/5-6/85 376.35 EDIHI86 W-5D 6/5-6/85 376.35 EDIHI86 W-5D 6/5-6/85 376.35 EDIHI86 W-5D 6/5-6/85 376.36 EDIHI86 W-5D 6/5-6/85 376.36 EDIHI86 W-5D 6/5-6/85 376.36 EDIHI86 W-5D 6/5-6/85 376.36 EDIHI85 W-7D 6/5-6/85 376.36 EDIHI85 W-7D 6/5-6/85 376.36 EDIHI85 W-7D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 375.40 EDIHI85 W-9D 6/5-6/85 380.29 EDIHI86 W-1D 6/5-6/85 380.29 EDIHI86 W-1D 6/5-6/85 381.58 EDIHI86 W-1D 6/5-6/6/5-6/85 381.58 EDIHI86 W-1D 6/5-6/6/5-6/6/5-6/6/5-6/6/													
EDIHI85 W-3D 6/5-6/85 376.20 EDIHI85 W-3D 6/5-6/85 376.20 EDIHI85 W-4D 6/5-6/85 393.46 EDIHI85 W-4D 6/5-6/85 393.46 EDIHI85 W-4D 6/5-6/85 393.46 EDIHI85 W-5D 6/5-6/85 376.30 EDIHI85 W-5D 6/5-6/85 376.30 EDIHI85 W-5D 6/5-6/85 376.30 EDIHI85 W-5D 6/5-6/85 376.30 EDIHI85 W-5D 6/5-6/85 376.32 EDIHI85 W-5D 6/5-6/85 376.32 EDIHI85 W-7D 6/5-6/85 374.08 EDIHI85 W-7D 6/5-6/85 374.08 EDIHI85 W-8D 6/5-6/85 374.08 EDIHI85 W-8D 6/5-6/85 375.70 EDIHI85 W-8D 6/5-6/85 375.70 EDIHI85 W-8D 6/5-6/85 375.70 EDIHI85 W-9D 6/5-6/85 375.70 EDIHI85 W-9D 6/5-6/85 389.20 EDIHI85 U-1D 6/5-6/85 389.20 EDIHI85 U-1D 6/5-6/85 380.06 EDIHI85 U-1D 6/5-6/85 380.06 EDIHI85 U-1D 6/5-6/85 381.58 EDIHI85 W-7D 6/5-6/85 381.58 EDIHI85 W-7D 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.51 385.36 383.71 382.65 380.90 380.78 384.01 3													
EDIHI85 W-3D 6/5-6/85 376.20 EDIHI85 W-4D 6/5-6/85 393.46 EDIHI85 W-4D 6/5-6/85 393.46 EDIHI85 W-5S 6/5-6/85 393.46 EDIHI85 W-5S 6/5-6/85 393.46 EDIHI85 W-5S 6/5-6/85 376.39 EDIHI86 W-6S 6/5-6/85 376.39 EDIHI86 W-6S 6/5-6/85 376.36 EDIHI86 W-7S 6/5-6/85 376.36 EDIHI86 W-7S 6/5-6/85 376.36 EDIHI86 W-7S 6/5-6/85 376.36 EDIHI85 W-7D 6/5-6/85 375.49 EDIHI86 W-8D 6/5-6/85 375.49 EDIHI86 W-9D 6/5-6/85 375.10 EDIHI86 W-9D 6/5-6/85 375.79 EDIHI86 U-1S 6/5-6/85 389.29 EDIHI86 U-1D 6/5-6/85 389.29 EDIHI86 U-1D 6/5-6/85 389.19 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/5-6/85 381.58 EDIHI86 U-1D 6/6-6/6-6/85 381.58 EDIHI86 U-1D 6/6-6/6-6/85 381.58 EDIHI86													
EDIHI85 W-49 6/5-6/85 393.46 EDIHI85 W-45 6/5-6/85 393.46 EDIHI85 W-45 6/5-6/85 393.46 EDIHI85 W-55 6/5-6/85 376.39 EDIHI85 W-55 6/5-6/85 376.39 EDIHI85 W-55 6/5-6/85 376.35 EDIHI85 W-55 6/5-6/85 376.35 EDIHI85 W-56 6/5-6/85 376.36 EDIHI85 W-75 6/5-6/85 376.36 EDIHI85 W-77 6/5-6/85 376.36 EDIHI85 W-88 6/5-6/85 376.36 EDIHI85 W-89 6/5-6/85 375.10 EDIHI85 W-99 6/5-6/85 375.10 EDIHI85 U-10 6/5-6/85 399.29 EDIHI85 U-11 6/5-6/85 399.29 EDIHI85 U-11 6/5-6/85 399.29 EDIHI85 U-10 6/5-6/85 391.19 EDIHI85 W-77 6/5-6/85 391.19 EDIHI85 W-77 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.20 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.01 382.50 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384.01 385.01													
EDHIB5													
EDIHI85 W-55 6/5-6/85 376.39 EDIHI85 W-55 6/5-6/85 376.39 EDIHI85 W-65 6/5-6/85 376.35 EDIHI85 W-65 6/5-6/85 376.35 EDIHI85 W-65 6/5-6/85 376.36 EDIHI85 W-75 6/5-6/85 376.36 EDIHI85 W-77 6/5-6/85 EDIHI85 W-79 6/5-6/85 EDIHI85 W-89 6/5-6/85 375.10 EDIHI85 W-99 6/5-6/85 375.10 EDIHI85 U-10 6/5-6/85 389.29 EDIHI85 U-110 6/5-6/85 389.19 EDIHI85 U-110 6/5-6/85 389.19 EDIHI85 U-12 6/5-6/85 389.19 EDIHI85 U-13 6/5-6/85 381.58 EDIHI85 W-73 6/5-6/85 381.58 EDIHI85 U-14 04/01/86 383.82 384.55 385.28 383.91 383.64 382.39 (4) 384.04 385.50 EDISS86 (1) T-2 31503 383.46 384.91 383.26 1382.59 380.90 380.78 384.01													
EDIHI85 W-5D 6/5-6/85 376.39 EDIHI85 W-5D 6/5-6/85 376.35 EDIHI85 W-6D 6/5-6/85 376.35 EDIHI85 W-6D 6/5-6/85 376.85 EDIHI85 W-6D 6/5-6/85 376.85 EDIHI85 W-70 6/5-6/85 EDIHI85 W-70 6/5-6/85 EDIHI85 W-70 6/5-6/85 374.08 EDIHI85 W-8D 6/5-6/85 375.19 EDIHI85 W-9D 6/5-6/85 375.19 EDIHI85 U-15 6/5-6/85 389.29 EDIHI85 U-15 6/5-6/85 389.29 EDIHI85 U-15 6/5-6/85 389.19 EDIHI85 U-15 6/5-6/85 389.19 EDIHI85 W-7-3 6/5-6/85 389.19 EDIHI85 W-7-3 6/5-6/85 389.19 EDIHI85 W-7-3 6/5-6/85 389.19 EDIHI85 W-7-3 6/5-6/85 389.19 EDIHI85 W-7-3 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.20 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.98 384.09 385.20 EDISS86 (1) T-4 04/01/86 384.76 383.70 384.66 382.61 382.65 380.90 380.78 384.09 385.20 EDISS86 (1) T-5 04/01/86 384.76 383.70 384.65 382.61 382.65 380.90 380.78 384.09 385.20 EDISS86 (1) T-5 04/01/86 384.96 384.78 385.36 383.91 383.64 382.07 (4) 384.39 385.20 EDISS86 (1) T-6 04/01/86 383.79 384.78 385.36 383.97 383.64 382.07 (4) 384.39 385.20 EDISS86 (1) T-7 31503 384.36 386.93 380.93 383.64 382.07 (4) 384.39 385.20 EDISS86 (1) T-8 04/01/86 383.79 384.78 385.36 383.96 383.46 (4) (4) 387.24 389.20 EDISS86 (1) T-8 04/01/86 383.75 385.91 385													
EDIHI85 W-6D 6/5-6/85 376.35 EDIHI85 W-6D 6/5-6/85 376.36 EDIHI85 W-7D 6/5-6/85 EDIHI85 W-7D 6/5-6/85 EDIHI85 W-7D 6/5-6/85 EDIHI85 W-8S 6/5-6/85 375.10 EDIHI85 W-9S 6/5-6/85 375.10 EDIHI85 W-9D 6/5-6/85 375.79 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 389.67 EDIHI85 W-7D 6/5-6/85 380.67 EDISS86 (1) T-1 04/01/86 384.75 383.70 384.66 382.61 382.25 380.90 384.01 384.01 385 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 380.87 (4) 384.90 385 EDISS86 (1) T-5 04/01/86 385.90 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.90 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 383.75 (5) 386.23 383.95 383.46 (4) (4) 387.24 389 EDISS86 (1) T-9 04/01/86 383.75 (5) 386.23 383.95 383.46 (4) (4) 387.24 389 EDISS86 T-11 04/01/86 382.64 382.93 385.90 385.90 385.91 385.67 385.36 385.91 385.67 385.36 385.91 385.87 385.91 385.67 385.36 385.91 385.87 385.86 385.91 385.87 385.91 385.87 385.86 385.91 385.87 385.91 385.87 385.86 385.91 385.87 385.91 385.87 385.86 385.91 385.87 385.86 385.91 385.87 385.86 385.91 385.87 385.91 385.87 385.86 385.91 385.87 385.86 385.91 385.87 385.87 385.86 385.91 385.87 385.87 385.86 385.91 385.87 385.87 385.88 385.91 385.87 385.87 385.88 385.91 385.87 385.87 385.88 385.91 385.87 385.87 385.88 385.91 385.87 385.88 385.91 385.87 385.88 385.91 385.87 385.88 385.91 385.87 385.88 385.91 385.87 385.88 385.91 385.88 385.91 385.87 385.88 385.91 385.88 385.91 385.87 385.88 385.91 385.88 385.91 385.87 385.88 385.91 385.87 385.91 385.88 385.91 385.87 385.91 385.88 385.91 3	EDIHI85												
EDIHI85 W-6S 6/5-6/85 376.82 EDIHI85 W-7D 6/5-6/85 EDIHI85 W-7D 6/5-6/85 EDIHI85 W-8S 6/5-6/85 374.08 EDIHI85 W-8D 6/5-6/85 375.10 DIHI85 W-8D 6/5-6/85 375.10 DIHI85 W-8D 6/5-6/85 375.10 DIHI85 W-9D 6/5-6/85 375.79 EDIHI85 U-10 6/5-6/85 389.29 EDIHI85 U-10 6/5-6/85 389.29 EDIHI85 U-10 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDIHI85 W-71 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.50 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385.50 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.85 380.90 380.78 384.01 384.50 EDISS86 (1) T-5 04/01/86 384.96 384.44 385.53 382.94 382.70 380.87 (4) 384.39 385.50 EDISS86 (1) T-5 04/01/86 383.79 384.47 385.63 382.94 382.70 380.87 (4) 384.39 385.50 EDISS86 (1) T-6 04/01/86 383.79 384.49 385.36 383.71 383.64 382.07 (4) 384.39 385.50 EDISS86 (1) T-6 04/01/86 383.79 384.99 385.91 383.46 (30.27) 382.93 387.67 391.50 EDISS86 (1) T-8 04/01/86 383.76 (6) 386.23 383.96 382.09 382.07 (4) 384.39 385.50 EDISS86 (1) T-9 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.72 382.93 387.67 391.50 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 385.80 385.91 385.66 (4) 385.52 386.50 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 385.80 385.91 385.67 38													
EDIHI85 W-75 6/5-6/85 376.36 EDIHI85 W-77 6/5-6/85 EDIHI85 W-78 6/5-6/85 375.49 EDIHI85 W-80 6/5-6/85 375.49 DIHI85 W-90 6/5-6/85 375.79 EDIHI85 U-10 6/5-6/85 389.29 EDIHI85 U-10 6/5-6/85 389.29 EDIHI85 U-10 6/5-6/85 389.67 EDIHI85 U-10 6/5-6/85 381.19 EDIHI85 U-10 6/5-6/85 381.19 EDIHI85 W-70 6/5-6/85 381.19 EDIHI85 U-10 6/5-6/85 381.19 EDIHI85 U-10 6/5-6/85 381.19 EDIHI85 U-10 6/5-6/85 381.19 EDIHI85 U-10 6/5-6/85 381.88 EDISS86 (1) T-1 04/01/86 381.83 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.81 382.94 382.70 380.87 (4) 384.09 385 EDISS86 (1) T-4 04/01/86 384.96 384.78 385.38 383.91 383.64 382.07 (4) 384.39 385 EDISS86 (1) T-6 04/01/86 385.99 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.99 386.93 380.99 382.99 380.78 382.99 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.99 386.93 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.99 386.93 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.89 385.89 382.82 383.77 385.66 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 384.63 387.99 385.99 382.82 383.77 385.66 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 384.63 387.99 385.99 382.99 385.09 385.67 385.91 385.67 385.91 EDISS86 (1) T-9 04/01/86 385.89 385.69 385.99 382.82 385.70 385.91 385.67 385.91 385.67 385.91 EDISS86 (1) T-9 04/01/86 384.63 387.39 385.69 382.99 385.67 385.91 385.67 385.91 EDISS86 (1) T-9 04/01/86 384.63 387.39 385.69 382.99 385.67 385.91 385.67 385.91 385.67 385.91 EDISS86 (1) T-9 04/01/86 386.89 385.89 385.89 382.82 385.70 385.91 385.67 385.91 385.67 385.91 EDISS86 (1) T-9 04/01/86 386.89 385.8													
EDIHI85 W-75 6/5-6/85 374.08 EDIHI85 W-76 6/5-6/85 374.08 EDIHI85 W-8D 6/5-6/85 375.49 EDIHI85 W-8D 6/5-6/85 375.10													
EDIHI85 W-8S 6/5-6/85 374.08 EDIHI86 W-8D 6/5-6/85 375.49	EDIHI85												
EDIHI85 W-8D 6/5-6/85 375.49 **DIHI86 W-9D 6/5-6/85 375.10 **DIHI85 U-15 6/5-6/85 375.10 **DIHI85 U-15 6/5-6/85 389.29 **EDIHI85 U-1D 6/5-6/85 389.67 **EDIHI85 U-1D 6/5-6/85 389.67 **EDIHI85 U-1 6/5-6/85 389.67 **EDIHI85 U-1 6/5-6/85 389.67 **EDIHI85 U-1 6/5-6/85 389.19 **EDIHI85 U-1 6/5-6/85 381.58 **EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.56 **EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385.50 **EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384.01 384.55 **EDISS86 (1) T-4 04/01/86 384.75 385.36 383.73 384.64 382.70 380.87 (4) 384.39 385.50 **EDISS86 (1) T-5 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.07 389.50 **EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 482.07 (4) 384.39 385.50 **EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 **EDISS86 (1) T-8 04/01/86 385.89 385.88 385.98 382.82 383.77 385.66 (4) 387.24 389 **EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.93 385.66 383.77 385.66 (4) 385.32 386.61 **EDISS86 (1) T-10 04/01/86 385.89 385.68 385.98 382.82 385.77 385.66 (4) 385.32 386.61 **EDISS86 (1) T-10 04/01/86 385.89 385.68 385.98 382.82 385.77 385.66 (4) 385.35 386.61 **EDISS86 (1) T-10 04/01/86 385.89 385.68 385.98 385.80 385.68 385.6	EDIHI85		W-7D										
EDIHI85 W-8D 6/5-6/85 375.10 2DIHI85 W-9D 6/5-6/85 375.10 EDIHI85 U-15 6/5-6/85 389.29 EDIHI85 U-10 6/5-6/85 389.67 EDIHI85 U-10 6/5-6/85 389.67 EDIHI85 U-17 6/5-6/85 389.19 EDIHI85 WT-1 6/5-6/85 381.19 EDIHI85 WT-1 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.55 385.58 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385.55 385.58 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01	EDIHI85		W-8S		374.08								
EDIHI85 U-1S 6/5-6/85 389.29 EDIHI85 U-1D 6/5-6/85 389.29 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 U-2 6/5-6/85 381.19 EDIHI85 WT-1 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 381.58 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385 EDISS86 (1) T-4 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384 EDISS86 (1) T-5 04/01/86 383.79 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-6 04/01/86 383.99 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 382.40 383.90 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.29 383.96 382.09 384.04 (4) 387.24 389 EDISS86 (1) T-9 04/01/86 383.75 (6) 386.29 383.96 382.09 384.04 (4) 387.24 389 EDISS86 (1) T-9 04/01/86 384.83 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.89 385.89 385.89 385.80 383.99 384.09 385.67 385.36 387.38 385.66 (4) 385.50 386 EDISS86 (1) T-9 04/01/86 385.89 385.89 385.89 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 385.93 387.38 386.89 385.89 38			W-8D	6/5-6/85									
EDIHI85 U-1S 6/5-6/85 389.29 EDIHI86 U-1D 6/5-6/85 389.19 EDIHI86 U-2 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.15 380.90 380.78 384.01 384 EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 383.79 384.78 385.36 383.73 382.94 382.07 (4) 384.39 385 EDISS86 (1) T-6 04/01/86 385.09 386.95 390.73 385.16 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.95 390.73 385.19 384.46 (4) 438.72 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.71 385.91 385.67 385.36 387. EDISS86 (1) T-10 04/01/86 385.93 385.68 385.98 385.80 385.70 385.91 385.67 385.36 387. EDISS86 (1) T-10 04/01/86 385.89 385.68 385.98 385.80 385.70 385.91 385.67 385.36 387. EDISS86 (1) T-10 04/01/86 382.24 EDISS86 T-13 31503 376.30 EDISS86 T-18 04/01/86 381.95 EDISS86 T-29 04/01/86 381.95 EDISS86 T-29 04/01/86 381.95 EDISS86 T-29 04/01/86 387.87 EDISS86 T-29 04/01/86 387.87 878.87 EDISS86 T-33 04/01/86 387.87 878.87 EDISS86 T-34 04/01/86 387.92 376.93	DIHI85		W-9S	6/5-6/85									
EDIHI85 EDIHI85 U-1D 6/5-6/85 389.67 EDIHI85 U-2 6/5-6/85 391.19 EDIHI85 WT-1 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 383.46 384.91 385.63 384.03 383.77 382.15 381.96 384.04 385.63 382.61 382.65 380.90 380.78 384.01 384.65 386.63 382.91 383.64 382.65 380.90 380.78 384.01 384.65 386.83 EDISS86 (1) T-2 31503 383.46 384.91 385.63 382.91 382.65 380.90 380.78 384.90 385.65 382.91 382.65 380.90 380.78 384.90 385.65 382.91 382.67 380.87 382.15 381.96 384.01 384.81 385.63 382.94 382.70 380.87 (4) 384.39 385.61 EDISS86 (1) T-5 04/01/86 385.99 386.95 380.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.96 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 383.96 383.96 384.08 385.89 385.88			W-9D	6/5-6/85	375.79								
EDIHI85				6/5-6/85	389.29								
EDIHI85 WT-1 6/5-6/85 386.06 EDIHI85 WT-3 6/5-6/85 381.58 EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385 EDISS86 (1) T-4 04/01/86 384.96 384.96 384.44 385.65 382.61 382.65 380.90 380.78 384.01 384.39 385 EDISS86 (1) T-5 04/01/86 384.96 384.78 385.36 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 385.99 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387 EDISS86 (1) T-10 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-10 04/01/86 380.89 EDISS86 (1) T-24 04/01/86 380.89 EDISS86 (1) T-25 04/01/86 380.89 EDISS86 (1) T-26 31503 376.30 EDISS86 (1) T-28 04/01/86 380.89 EDISS86 (1) T-29 04/01/86 380.89 EDISS86 (1) T-29 04/01/86 380.89 EDISS86 (1) T-29 04/01/86 380.89 EDISS86 (1) T-34 04/01/86 380.89 EDISS86 (1) T-34 04/01/86 380.89 EDISS86 (1) T-34 04/01/86 380.89 EDISS86 (1) T-34 04/01/86 380.89 EDISS86 (1) T-35 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.89 EDISS86 (1) T-30 04/01/86 380.90 EDISS86 (1) T-30 04/01/86 380.90 EDISS86 (1) T-30 04/01/86 380.90 EDISS86 (1) T-30 04/01/86 380.90 EDISS86 (1) T-30 04/01/86 380.90 EDISS86 (1) T-30 04/01/86 380.90				6/5-6/85	389.67								
EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385.55 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385.55 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384. EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385. EDISS86 (1) T-5 04/01/86 383.79 384.78 385.36 383.73 383.64 382.07 (4) 384.39 385. EDISS86 (1) T-6 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391. EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389. EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 387.24 389. EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386. EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 (1) T-11 04/01/86 382.24 EDISS86 (1) T-13 31503 381.50 EDISS86 (1) T-14 04/01/86 382.24 EDISS86 (1) T-15 04/01/86 382.24 EDISS86 (1) T-16 04/01/86 382.24 EDISS86 (1) T-17 31503 381.95 EDISS86 (1) T-18 04/01/86 382.93 EDISS86 (1) T-19 04/01/86 382.24 EDISS86 (1) T-13 31503 381.95 EDISS86 (1) T-16 04/01/86 382.94 EDISS86 (1) T-17 31503 381.95 EDISS86 (1) T-18 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-13 31503 381.95 EDISS86 (1) T-14 04/01/86 382.94 EDISS86 (1) T-15 04/01/86 382.94 EDISS86 (1) T-15 04/01/86 382.94 EDISS86 (1) T-16 04/01/86 382.94 EDISS86 (1) T-17 04/01/86 382.94 EDISS86 (1) T-18 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-19 04/01/86 382.94 EDISS86 (1) T-29				6/5-6/85	391.19								
EDISS86 (1) T-1 04/01/86 383.82 384.55 385.38 383.91 383.64 382.39 (4) 384.04 385 EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384 EDISS86 (1) T-4 04/01/86 383.79 384.78 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 383.79 384.78 385.36 383.73 383.64 382.07 (4) 384.39 385 EDISS86 (1) T-6 04/01/86 383.79 384.78 385.36 383.73 383.64 382.07 (4) 384.39 385 EDISS86 (1) T-7 31503 384.36 386.43 382.94 382.07 (4) 384.39 385 EDISS86 (1) T-7 31503 384.36 386.43 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 382.24 EDISS86 (1) T-10 04/01/86 382.24 EDISS86 (1) T-11 04/01/86 382.24 EDISS86 (1) T-13 31503 381.50 EDISS86 T-13 31503 381.50 EDISS86 T-13 31503 379.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 379.95 EDISS86 T-26 31503 379.23 EDISS86 T-28 04/01/86 381.95 EDISS86 T-29 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34 04/01/86 379.23 EDISS86 T-34													
EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385.55 EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384 EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387 EDISS86 T-11 04/01/86 382.94 EDISS86 T-13 31503 381.50 EDISS86 T-24 04/01/86 382.90 E	EDIHI85		WT-3	6/5-6/85	381.58								
EDISS86 (1) T-2 31503 383.46 384.91 385.36 384.03 383.7 382.15 381.96 384.09 385. EDISS86 (1) T-3 04/01/86 384.75 383.70 384.66 382.61 382.65 380.90 380.78 384.01 384 EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 383.46 (4) (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387 EDISS86 T-11 04/01/86 382.94 EDISS86 T-13 31503 381.50 EDISS86 T-24 04/01/86 380.89 EDISS86 T-24 04/01/86 380.89 EDISS86 T-24 04/01/86 380.89 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.90 EDI	EDICCOS	(4)	Τ.4	0.4/0.4/0.0	000.00								
EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 383.79 384.86 385.93 383.73 383.64 382.07 (4) 384.39 385 EDISS86 (1) T-8 04/01/86 383.79 384.86 385.93 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.83 388.79 383.96 383.79 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 385.90 385.91 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 T-11 04/01/86 381.50 EDISS86 T-18 04/01/86 381.50 EDISS86 T-18 04/01/86 381.50 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-25 31503 376.30 EDISS86 T-26 31503 376.30 EDISS86 T-27 04/01/86 382.20 EDISS86 T-28 04/01/86 379.23 EDISS86 T-29 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-28 04/01/86 379.23 EDISS86 T-33B 04/01/86 379.23 EDISS86 T-33B 04/01/86 379.23 EDISS86 T-34 04													385.82
EDISS86 (1) T-4 04/01/86 384.96 384.44 385.63 382.94 382.70 380.87 (4) 384.39 385 EDISS86 (1) T-5 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 385.89 385.89 385.89 385.80													385.34
EDISS86 (1) T-5 04/01/86 383.79 384.78 385.36 383.73 383.64 382.07 (4) 384.39 385 EDISS86 (1) T-6 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 T-11 04/01/86 381.95 EDISS86 T-13 31503 381.50 EDISS86 T-21 04/01/86 380.89 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 381.95 EDISS86 T-26 31503 376.30 EDISS86 T-28 04/01/86 379.95 EDISS86 T-33B 04/01/86 379.23 EDISS86 T-33B 04/01/86 379.23 EDISS86 T-34 04/01/86													384.59
EDISS86 (1) T-6 04/01/86 385.09 386.95 390.73 385.91 384.41 383.70 382.93 387.67 391 EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 383.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 T-11 04/01/86 382.24 EDISS86 T-13 31503 381.50 EDISS86 T-18 04/01/86 381.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-24 04/01/86 381.95 EDISS86 T-29 04/01/86 381.95 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.00 OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.00													385.02
EDISS86 (1) T-7 31503 384.36 386.43 388.79 383.96 383.46 (4) (4) 387.24 389 EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387 EDISS86 T-11 04/01/86 381.95 EDISS86 T-18 04/01/86 381.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-26 31503 376.30 EDISS86 T-34 04/01/86 381.95 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.00 OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.00													385.65
EDISS86 (1) T-8 04/01/86 383.75 (6) 386.23 383.96 382.09 384.08 (4) 383.52 386 EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386 EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387 EDISS86 T-11 04/01/86 382.24 EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-25 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 381.95 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													391.39
EDISS86 (1) T-9 04/01/86 385.89 385.68 385.98 382.82 383.77 385.66 (4) 385.05 386. EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 T-11 04/01/86 382.24 EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													389.15
EDISS86 (1) T-10 04/01/86 384.63 387.38 386.82 386.12 385.70 385.91 385.67 385.36 387. EDISS86 T-11 04/01/86 382.24 EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													386.52
EDISS86 T-11 04/01/86 382.24 EDISS86 T-13 31503 381.50 EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 382.20 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													386.50
EDISS86 T-13 31503 381.50 EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 379.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.		(' /				307.30	300.02	300.12	365.70	385.91	385.67	385.36	387.38
EDISS86 T-15 04/01/86 381.95 EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 379.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-18 04/01/86 380.89 EDISS86 T-21 04/01/86 379.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-21 04/01/86 379.95 EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-24 04/01/86 382.20 EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-26 31503 376.30 EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-29 04/01/86 381.95 EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-33B 04/01/86 378.87 EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.													
EDISS86 T-34 04/01/86 379.23 BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.	EDISS86												
BGSIM (3) MW-1S 32414 375.86 379.15 378.78 378.27 377.53 377.25 (10) 377.29 377. OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.	EDISS86												
OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.	i												
OBGSIM (3) MW-1D 09/28/88 375.41 376.96 376.87 376.33 376.00 375.49 (10) 377.29 376.				32414	375.86	379.15	378.78	378.27	377.53	377.25	(10)	377.29	377.77
OPCCIM (2) MIM DO COMO CONTROL					375.41								376.80
	OBGSIM	(3)	MW-2S	09/28/88	375.28	380.77	380.74	380.26	379.49	378.93	(10)	377.29	380.90

Аррелdix F.	Ground	Water Elevati	on Data Sumn	nary								
			Initial Gr				Recent	Ground W	ater Eleva	tions (ft)		<u>.</u>
Investigation	Note	Well ID	Water Ele Date	vations (ft)	3/96	3/97	6/96	0.107	0.00	0.10=	40.00	
OBGSIM	(3)	MW-2D	09/28/88	375.66	377.28	377.31	376.88	6/97	9/96	9/97	12/95	12/96
OBGSIM	(3)	MW-3S	09/28/88	375.42	377.58	377.46	376.03	376.57 375.73	376.00	(10)	377.29	377.16
BGSIM	(3)	MW-3D	32414	375.47	376.15	376.1	(6)	375.73	374.86 374.79	(10)	377.02	377.55
OBGSIM	(3)	MW-4S	09/28/88	375.70	378.09	377.88	376.17	375.95	374.79	(10)	375.82	376.02
OBGSIM	(3)	MW-4D	09/28/88	375.64	376.00	375.93	375.50	375.20	374.79	(10)	377.29	377.91
OBGSIM	(3)	MW-5S	09/28/88	375.38	377.41	377.05	375.97	375.80	374.71	(10) (10)	375.60 376.77	375.83 377.26
OBGSIM	(3)	MW-5D	09/28/88	375.24	375.73	375.71	375.38	375.09	374.67	. ,	375.40	
	(-)		30,23,03	0.0.21	010.10	0,0.,	0.00	070.03	314.01	(10)	373.40	375.55
OBGLCHI	(8)	OBG-1	07/29/92	370.05								
OBGLCHI	(8)	OBG-2	07/29/92	370.85								
OBGLCHI	(8)	OBG-3	07/29/92	370.18								
OBGLCHI	(8)	OBG-4	07/29/92	371.61								
OBGLCHI	(8)	OBG-5	33814	371.75								
OBGLCHI	(8)	OBG-6	07/29/92	372.02			****					
OBGLCHI	(8)	OBG-7A	07/29/92	371.58								
OBGLCHI	(8)	OBG-7B	07/29/92	371.27								
OBGLCHI	(8)	OBG-7C	07/29/92	371.62								
0001051	(0)											
OBGLCFI	(9)	MW-8	07/29/92	372.01								
OBGLCFI	(9)	MW-9	07/29/92	372.45								
OBGLCFI	(9)	MW-10	07/29/92	371.68								
OBGLCFI	(9)	MW-11	07/29/92	(7)								
OBGLCFI OBGLCFI	(9) (9)		07/29/92	370.37								
OBGLOFI	(9)	MW-13	07/29/92	372.46								
OBGLC93		MW-3D	07/29/92	375.75								
OBGLC93		MW-9D	07/29/92									
ODOLOGO		10100-30	01123132	(5)								
Notes:											<u>.</u>	
(1)	From 198	36-1997, grou	nd water eleva	ations mea	sured bi-v	veekly and	d reported	monthly	under SPD	ES cons	ent order	
(2)	From 198	33-1997, grou	nd water eleva	ations mea	sured mo	nthly and	reported o	maderly n	inder SPNI	ES cons	ent order	
(3)	From 198	36-1997, grou	nd water eleva	ations mea	sured qua	rterly and	reported	guarterly	under nost	-closure	monitorine	1 Drogra
(4)	Monitorin	g well dry at t	ime of samplir	ng		,		4-20.19	uo. pool	Journ		Progra
(5)	Monitorin	g well exhibit	ed artesian co	nditions, p	iezometrio	surface i	nigher tha	n the top o	of casing e	levation		
(6)	Monitorin	g well not sar	npled - obstru	cted by sn	ow and ice	•	J					
(7)	Monitorin	g well not loc	ated - well sus rceptor Sewer	pected to			ed during 1	1991 insta	llation of			
(R)	•		v campled 12/		ot rooms	-1	_4					

- (8) Monitoring wells initially sampled 12/3-8/86, most recent data collected
- during the Ley Creek Remedial Investigation (OBGLC93) presented here
 (9) Monitoring wells initially sampled 10/6/88, most recent data collected
- during the Ley Creek Remedial Investigation (OBGLC93) presented here
- (10) Monitoring well sampling data not available.
- Ground water elevation not reported

EDIHI85 EDI Engineering & Science, Inc.

Hydrogeological Investigation, September 1985

EDISS86 EDI Engineering & Science, Inc.

Solvent Spill Hydrogeological Investigation, April 1986

OBGLCHI O'Brien & Gere Engineers, Inc.

Report - Hydrogeologic Investigation of Fill Area Along Ley Creek, April 1987

OBGSIM O'Brien & Gere Engineers, Inc.

Report- Surface Impoundment Post Closure Monitoring Program, March 1989

OBGLCFI O'Brien & Gere Engineers, Inc.

Field Investigation - Ley Creek Dredged Material Area, July 1989

OBGLC93 O'Brien & Gere Engineers, Inc.

Report - Ley Creek Remedial Investigation, September 1993.

APPENDIX G

NYSDEC comments on 1997 Preliminary RI/FS Report

	, ort
	he 1997 Preliminary RJ/FS
	6 19¢
	on th
	 GM Response to NYSDEC Comments o
	1
The Colonia	Appendi).

March 13, March 13, 1998 NVSDEC Comment (1) May 18, 1998 Response/Considerations (2) Revision location in SRI Reference Refe			Miscellaneous Errors/Clarifications	cations	33 4 4
1 There are many obvious errors or inconsistencies in the report which have made double checking the validity of the information a necessary and unduly cumbersome part of the review. Details on such errors are provided below. 2 p. 2 Page xxi: Should the second sentence of the third full paragraph on page xxi refer to " more recent previous routine sampling data collected in" and will include the most discussions were recent data collected in" and will include the most discussions were recent data and will include the most discussions were recent data collected in" and will include the most discussions were recent data collected in and will include the most discussions were recent data collected in and will include the most discussions were recent data collected in and will include the most discussions were recent data collected in and will include the most discussions were recent data collected in and will include the most discussions were recent data collected in and will include the most discussions were data as comment of the responsible and threshold criterion listed also includes compliance with ARARS. The text will be revised to indicate that SCGs include ARARS. 2 p. 2 Page xxix, pp. 189 and 190-194; For purposes of CERCLA, the recent data collected in and will include the most of discussions were discussions were an are not shown on effect to make it clear the SCGs include ARARS. 3 p. 4 Page 19; Contrary to the text, the hydraulic oil sumps and tanks Figure 1-4 will be revised to deptc the second sentence from that Page 55. Ist bullet: Site AI A is NOT consistent with Site 3 of the 1987 Storm Outfall Assessment. The latter Site is at the public which incorrectly indicates that AI is consistent with subtracted treference data conditions. 3 p. 5 Page 52: 1st bullet: Site AI A is NOT consistent with Site 3 of The text will be revised to delete the second sentence from that Page 56 public site BIA on page 52 instead be referred to as BAI? The public which incorrectl		March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
Page xxi: Should the second sentence of the third full paragraph on page xxi refer to " more recent previous routine sampling or page xxi refer to " more recent previous routine sampling data collected in" and will include the most discussions were adata? Page xxix, pp. 189 and 190-194: For purposes of CERCLA, the recent data collected in" and will include the most of or reflect conditions. Page xxix, pp. 189 and 190-194: For purposes of CERCLA, the recent data collected in" and will include the most of or reflect conditions. The text will be revised to indicate that SCGs include ARARs. Include ARARS. Include ARARS. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved to depict the hydraulic oil sumps and tanks leaved accordingly. Page 52: Ist bullet: Site AI A is NOT consistent with Site 3 of the text will be revised to delete the second sentence from that hydraulic oil sumps and the 1987 Stom Outland Assessment. The later Stom Outland Assessment in the report should be revised accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 19: Contrary to the text, the hydraulic oil sumps and tanks leaved accordingly. Page 20: Is the leaves as Site 2 the intended reference? Site 2 AI A is also ont the same as Site 2. Site 2 is the same as Should site BIA on page 52 instead be referred to as BAI? If so, have sampled for Figure 1-8 will be revised to indicate the manholes ampled for Figure 1-8 will be revised to indicate the most to the proper text and the leaves and the leaves and the leaves and the leaves	-	p. 1	There are many obvious errors or inconsistencies in the report which have made double checking the validity of the information a necessary and unduly cumbersome, part of the review. Details on such errors are provided below.	Specific comments are addressed below.	d belc
Page xxix, pp. 189 and 190-194: For purposes of CERCLA, the second threshold criterion listed also includes compliance with ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The text is to be revised to make it clear the SCGs include ARARS. The scalar includes a discussions. Page 19: Contrary to the text, the hydraulic oil sumps and tanks Figure 1-4 will be revised to depict the hydraulic oil sumps and tanks I tanks locations. The latter Site is at the bullet, which incorrectly indicates that AIA is consistent with opposite end of the property. Was Site 2 the intended reference? Site 3. AIA is also not the same as Site 2; Site 2 is the same as Site 3. AIA as a sample location, which is the same as BAI. It will therefore be noted in the text that site BIA is the same as BAI. It will therefore be noted in the text that site BIA is the same as BAI. Figure 1-8 should also indicate the locations of 03B and 04I. Pigure 1-8 will be revised to indicate the manholes sampled for Figure 1-8 Outfalls 003, 004, 03B, and 04I.	2		Page xxi: Should the second sentence of the third full paragraph on page xxi refer to " more recent previous routine sampling data"?	The second sentence will be revised to refer to: "more recent routine sampling data collected in" and will include the most recent data collected.	cound cussions were reflect nditions.
Figure 1-4 will be revised to depict the hydraulic oil sumps and tanks locations. Page 52: 1st bullet: Site AI A is NOT consistent with Site 3 of the 1987 Storm Outfall Assessment. The latter Site is at the opposite end of the property. Was Site 2 the intended reference? Should site BIA on page 52 instead be referred to as BAl? If so, the report should be revised accordingly. Page 52: 1st bullet: Site AI A is NOT consistent with Site 3 of The text will be revised to delete the second sentence from that bullet, which incorrectly indicates that AI A is consistent with Site 3. AI A is also not the same as Site 2; Site 2 is the same as Should site BIA on page 52 instead be referred to as BAl? If so, the report should be revised accordingly. Report refers to site BIA as a sample location, which is the same location as manhole #BAI. It will therefore be noted in the text that site BIA is the same as BAI. Figure 1-8 should also indicate the locations of 03B and 04I. Figure 1-8 will be revised to indicate the manholes sampled for Outfalls 003, 004, 03B, and 04I.	<u> </u>		Page xxix, pp. 189 and 190-194: For purposes of CERCLA, the second threshold criterion listed also includes compliance with ARARS. The text is to be revised to make it clear the SCGs include ARARS.	***	RI Report includes ans. T t will d in ental FS Rep
p. 6 Page 52: 1st bullet: Site Al A is NOT consistent with Site 3 of the 1987 Storm Outfall Assessment. The latter Site is at the opposite end of the property. Was Site 2 the intended reference? Site 3. Al A is also not the same as Site 2; Site 2 is the same as Should site Bl A on page 52 instead be referred to as BAl? If so, the report should be revised accordingly. Report refers to site Bl A as a sample location, which is the same as BAl. 6 p. 6 Figure 1-8 should also indicate the locations of 03B and 04I. Figure 1-8 will be revised to indicate the manholes sampled for Outfalls 003, 004, 03B, and 04I.	4	ų.		Figure 1-4 will be revised to depict the hydraulic oil sumps and tanks locations.	Figures 1-3 and 1-4.
6 p. 6 Figure 1-8 should also indicate the locations of 03B and 04I. Figure 1-8 will be revised to indicate the manholes sampled for Outfalls 003, 004, 03B, and 04I.	ν.		Page 52: 1st bullet: Site Al A is NOT consistent with Site 3 of the 1987 Storm Outfall Assessment. The latter Site is at the opposite end of the property. Was Site 2 the intended reference? Should site B1A on page 52 instead be referred to as BAl? If so, the report should be revised accordingly.		Page 56
	SACER(Figure 1-8 should also indicate the locations of 03B and 04I.		Figure 1-8

sediment conditions in 1998 and 1999. Sample Revision location in SRI To provide the latest Report presents the latest data collected in 1996, locations are shown in Figures C-1 and 3-5C the Figures 2-7 and 2-8. Ley Creek, Figure 3-5A Page 66 The text will be revised to refer to the thickness of the fill Figure 2-10 will be revised to indicate the outfall and Figure 3-4 will be revised to include boring locations and data tanks (borings HA-5 and HA-6), as well as hydraulic oil sumps/tanks. PCB concentrations in borings HA-5 and HA-6 associated with suspected former PCB oil underground storage downstream sampling locations, as referred to in the text. May 18, 1998 Response/Considerations (2) Figure 3-6 will be revised to make this correction. material at the landfill as "greater than 16 ft." were less than 50 mg/kg. Miscellaneous Errors/Clarifications Page 59: Contrary to the text, the 1992 OBG sediment sampling locations are not indicated on Figure 2-10. The report needs to material at the former landfill is as great as 16 feet and it Page 64: Site Geology: The text states that the thickness of fill references boring BH-2. However, a review of the boring log for BH-2 does not indicate that native materials were The borings associated with HA-6 need to be identified on Figure 3-4. The 1,2-dichloroethylene concentration for BH-48 on Figure 3-6 encountered before the boring was terminated at 16.0 feet. This March 13, 1998 NYSDEC Comment (1) should be corrected to 310 $\mu g/kg$. be revised accordingly. needs to be clarified. March 13, 1998 (1) Reference Letter Page p. 7 p. 8 6 ப் ച്ച 10 00 6

I:\DIV71\PROJECTS\4966\21535\5_\RPTS\SRI_RPTS\APP_G.WPD O'Brien &\tau_are Engineers, Inc.

- GM Response to NYSDEC Comments on the 1997 Preliminary RI/FS
Append.

ance of the third S to MW-5S and change should be WW-5D are WW-3D" should Will be revised as noted. The text will be revised as noted. The text will be revised as noted. The text will be revised as noted, will be replaced with "W-6D." Figure 2-4 will be revised to remove the label A12 from the manhole which is further south, which does not have an identifier code associated with it. The figure will be revised as noted. The figure will be revised as noted. The figure will be revised as noted. The figure will be revised as noted. The figure will be revised to indicate that SW-1 is approximately 4,200, not 420, ft downstream from Outfall 003. The table and/or approximately 4,200, not 420, ft downstream from Outfall 003. Figure 3-16 (instead of 3-17) will be revised to report the correct value Figure 3-16 (instead of 3-17) will be revised to report the correct PCB concentration of 1.28 mg/kg at L9.			Miscellaneous Errors/Clarifications	tions	
March 13, 1998 NYSDEC Comment (1) Page 78: It is assumed that the first sentence of the third panegraph should be revised to state"	1			10 1009 Demonce/Considerations (2)	Revision location in SRI
Page 78: It is assumed that the first sentence of the third manage of the third paragraph should be revised to state." MW-1S0 MW-SS and made. The last sentence of the third paragraph should be revised to state." concentrations in wells MW-1D to MW-SD are presented		March 13, 1998 (1)	March 13, 1998 NYSDEC Comment (1)		Report
Page 78: It is assumed that the first sentence of the third made. The last sentence of the third paragraph should be revised to made. The last sentence of the third paragraph should be revised to The text will be revised as noted. The last sentence of the second paragraph, "MW-5D" are presented		Letter Reference			
The last sentence of the third paragraph should be revised to The text will be revised as noted. The last sentence of the third paragraph should be revised to The last sentence of the second paragraph, "MW-3D" are presented		Page p. 11	Page 78: It is assumed that the first sentence of the third paragraph should be revised to state " MW-1S to MW-5S and MW-1D to MW-5D". If so, the appropriate change should be	The text will be revised as noted.	The ground water discussion has been revised to reflect most current ground water
p. 12 In the first sentence of the second paragraph, "MW-3D" should be replaced with "W-3D". p. 19 Figure 2-4: Two manhole locations are labeled A12. p. 19 Figure 3 -5: Legend indicates green square represents contamination < (below certain levels). It should be changed to > (greater than). A review of Table 3-14 and Figure 2-10 suggests an inconsistency regarding the location of SW-1. The table and/or figure need to be revised as appropriate. Figure 3-17 should be revised so that it reports the correct value income and the stable serving to the sample location 1.9		p. 11	sentence of the third paragraph show concentrations in wells MW-1D d	The text will be revised as noted.	referring to 1997 data has been deleted.
p. 19 Figure 2-4: Two manhole locations are labeled A12. Pigure 3 -5: Legend indicates green square represents contamination < (below certain levels). It should be changed to > (greater than). A review of Table 3-14 and Figure 2-10 suggests an inconsistency regarding the location of SW-1. The table and/or figure need to be revised as appropriate. p. 20 Rigure 3-17 should be revised so that it reports the correct value inconsistency regarding the location I.9		p. 12	In the first sentence of the second paragraph, "MW-3D" should be replaced with "W-3D".	The text will be revised as noted, and additionally, "MW-6D" will be replaced with "W-6D."	
p. 19 Figure 3 -5: Legend indicates green square represents contamination < (below certain levels). It should be changed to > (greater than). A review of Table 3-14 and Figure 2-10 suggests an inconsistency regarding the location of SW-1. The table and/or figure need to be revised as appropriate. p. 20 Figure 3-17 should be revised so that it reports the correct value income and the stable for sample location 1.9.		p. 19	Figure 2-4: Two manhole locations are labeled A12.	Figure 2-4 will be revised to remove the label A12 from the manhole which is further south, which does not have an identifier code associated with it.	Figure 1-8
p. 20 A review of Table 3-14 and Figure 2-10 suggests an inconsistency regarding the location of SW-1. The table and/or figure need to be revised as appropriate. p. 20 Figure 3-17 should be revised so that it reports the correct value in the property of the sample location 1.9.		p. 19	Figure 3 -5: Legend indicates green square represents contamination < (below certain levels). It should be changed to	The figure will be revised as noted.	Figures 3-5A, B, and C
p. 20 Figure 3-17 should be revised so that it reports the correct value	1	p. 20	A review of Table 3-14 and Figure 2-10 suggests an inconsistency regarding the location of SW-1. The table and/or figure need to be revised as appropriate.	Table 3-14 will be revised to indicate that SW-1 is approximately 4,200, not 420, ft downstream from Outfall 003.	To provide the latest sediment conditions in Ley Creek, the SRI Report presents the latest data collected in 1996, 1998 and 1999. Sample locations are shown in Figures 2-7 and 2-8. Data results are shown in Figures 3-17 and 3-18.
location 27:	1 -	p. 20	Figure 3-17 should be revised so that it reports the correct value of 1.280 parts per million PCBs for sample location L9.	Figure 3-16 (instead of 3-17) will be revised to report the correct PCB concentration of 1.28 mg/kg at L9.	Figure C-7

INDIV71\PROJECTS\4966\21535\5_RPTS\SRL_RPTS\APP_G.WPD O'Brien & Gere Engineers, Inc.

Appendix G - GM Response to NYSDEC Comments on the 1997 Preliminary RI/FS Report

	Revision	Report		No revision.
Historic Plant Layout and Operations	May 18, 1998 Response/Considerations (2)			Page 4: <i>Plating Operations</i> : In regard to the plating operations, trenches are not apparent on Figure 1-3. Revise the figure to clearly depict the trenches. Revise the figure to clearly depict the trenches. Revise 4: <i>Plating Operations</i> : In regard to the plating surrounding each plating tank to capture leaks or overflows. Figure 1-3 indicates the locations of Plating Unit Nos. 1 through 9, but historic drawings depicting the exact trench locations are not available.
Historic Plan	March 13, 1998 NYSDEC Comment (1)			Page 4: Plating Operations: In regard to the plating operations, trenches are not apparent on Figure 1-3. Revise the figure to clearly depict the trenches.
	March 13, 1998 (1)	Letter Reference	Page	p. 2
				18

1 1	Historic Plant	Historic Plant Layout and Operations	
March 13, 1998 (1) Letter Reference Page	 March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
p. 2	Die casting and press line operations: What do the floor layout plans indicate regarding the locations of the sumps, trenches, and pits? The revised report should contain copies of these plans. Does "pit" have the same meaning as "trench"? What is known about the purpose of the trenches, pits, and sumps? Have former employees been interviewed to assist in determining how the sumps, trenches, and pits were used?		Pages 5, 6, and 7.
p. 2	 In regard to all of the operations, where did materials that would collect in the sumps, trenches, and pits go to? How deep were these features? Did the depths vary? How were the sumps, trenches and pits constructed?	concrete sump which led to the storm sewer system. Historic plant drawings indicate the configuration of die cast units within the die cast area, including pits, and shaker and utility trenches. Press lines: In the press line operations, reinforced concrete pits of up to approximately 14 ft depth were located beneath the press lines, and contained air cushions and air bladders. Reinforced concrete sumps were located in each pit, and were pumped out for pit clean out. Pit sumps were pumped out to the process sewer system, which connected to the storm sewer system prior to IWTP construction, and to the acid/alkail bunker and IWTP following IWTP construction. Separate trenches are not recollected by former employees to be part of press line operations. Historic layout drawings for the press line operations were not found during the historic drawing review.	
		Injection molding: Hydraulic oil leakage collected in shallow concrete trenches (of approximately 6 in depth; some cut and others formed) surrounding each injection molder. Prior to implementation of the oil reclamation system, oil was pumped out for off-site disposal. In approximately 1975, thirden underground concrete sumps (depths and construction described in Attachment I) were installed to collect oil from the trenches, and five underground steel tanks (depths and construction described in Attachment I) were installed to store molder oil when molder expair was necessary. Sumps were pumped out with portable pumps, which transported oil to the above-ground Dirty Oil Transfer Station, and pumped via overhead piping to the oil reclamation system at the IWTP. Several former employees have been interviewed related to these issues.	

Historic Plan	Historic Plant Layout and Operations	
March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
 Page 5: The text should clearly state that the hydraulic systems of the injection molders used oil containing PCBS. Did the die-casting machines also use PCB-containing oils?	The plant used Pydraul PCB hydraulic oil in the die cast machines. There is no record of whether the hydraulic systems of the former press lines contained PCB oil. The text will be revised to include these points, as well as to note that some of the injection molder hydraulic systems contained PCBs.	Page 6
Contrary to the text, Figure 1-4 does not indicate the locations of the oil sumps and tanks used in conjunction with the molding operation. Figure 1-4 needs to be revised as appropriate. The text should indicate how the oils were collected and handled once they were released to the trenches surrounding the molders.	Figure 1-4 will be revised to include the locations of the hydraulic oil sumps and tanks, as indicated by the text. The text will be revised to include a discussion of the collection/handling of oil, as discussed above.	Figures 1-3 and 1-4 Revised text on Page 7
Contrary to the text, Figure 1-4 does not indicate the locations of the painting facilities. Figure 1-4 needs to be revised as appropriate.	The text will be revised to refer to Figure 1-3, which indicates the locations of both the paint room and the paint storage and mix rooms.	Figure 1-3
Page 6: Upon removal/abandonment, were the soils around the hydraulic oils tanks and sump sediments sampled? This needs to be indicated, and any data included in the report.	There is no known analytical data for soils around the hydraulic oil sumps and tanks or sump sediment. Pursuant to a SPDES consent order, hydraulic oil sumps were filled, hydraulic oil tanks were pulled, and piping associated with the sumps and tanks was plugged. This information will be noted in the report.	Page 7
 Page 6: Were there any spills, or leakage of thinner from the paint thinner piping, storage room or paint room, other than the known 1985 spill outside the building? If so, data regarding such is to be provided.	In approximately 1976 or 1977, a thinner odor was detected in the abandoned fire main west of the administration building. The odor was found to be related to a thinner line pipe break in the courtyard area, which had resulted in thinner migrating into the abandoned fire main and to the plugged end west of the administration building. The pipeline was repaired. No documentation is available in the plant records related to this event.	No revision

¥	
~	
_	
. ~	

		Historic Plan	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
26	p. 3	Page 6: Main Manufacturing Building: The report should include a figure which clearly depicts the footprints of the various additions to the Main Manufacturing Building. All of the report's figures should be to scale. If the locations of the buildings, sewers, parking areas, monitoring wells, etc. are known to be accurate but some of the sampling locations (e.g. borings within the buildings) are not, this should be indicated on the figures.	A figure will be provided which will indicate the footprints of each of the building additions. GM is currently conducting a survey of the former IFG facility property. The site map generated from the survey will be used as a base map for future document figures. Non-surveyed sample locations will be indicated as approximate locations on the scaled drawings.	Figure 1-2
27	p. 3	Page 7: The natural gas house needs to be identified on Figure 1-2. Is the "Bulk Handling Building" on Figure 1-2 the "metal sided shed constructed over the rail line" which is referred to in the text?	The natural gas house will be identified on Figure 1-2. The text will be revised to refer to the "bulk handling building" instead of the "railcar building."	Pages viii, 3, 8 and 134 Figure 1-2
28	p. 3	Page 7: IWT Plant- Figure 1-5 does not depict the temporary hazardous waste storage area. Is it the same as the Hazardous Waste Accumulation Area?	The text will be revised to note that the temporary hazardous waste storage area is also known as the Hazardous Waste Accumulation Area.	Page 9
RACER0000900	p. 3	The report should state the types of construction materials used in the various tanks and other storage facilities in the IWT Plant. The report should also address what is known regarding the integrity of these facilities. This should be based on any structural integrity testing or evaluations which may have been performed as well as environmental sampling results for this area. What is known regarding operations practices in this area? What materials were stored on the Storage Pad? How was Trichloroethylene (TCE) handled in this area? The report should provide any such information that may be available.	The revised submittal will document the construction materials of the IWTP tanks and storage facilities, which are also presented in Attachment 2. Materials stored on the storage pad include waste oil drums, grease drums, waste TCE drums, and miscellaneous drums. The area was curbed; drums were stored on skids, and aisles were maintained between rows of drums.	Appendix G

		Historic Plan	Historic Plant Layout and Operations	
March 13, March 13, 1998 NYSDEC Comment (1) 1998 (1) Letter Reference Page		_	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
p. 3 Page 8: The wet pad sump and courtyard sump locations need to be depicted on one of the report figures. What material do these sumps collect? The report should provide any such information that may be available.	Page 8: The wet pad sump and courtyard locations need to be depicted on one of the figures. What material do these sumps collect report should provide any such information that be available.	sump report ? The it may	A figure will be provided which indicates the location of each of the IWTP influent sources, including the wet pad sump, located in the IWTP area, and the courtyard sump, which is located outside of the building north of the paint storage/mix room. The wet pad sump currently only collects stormwater; historically it collected drainage from the cleaning of molders. The courtyard sump is not currently operational; historically, it was designed to drain water used in the event of a spill in the paint room or compactor area.	Figures 1-3, 1-4, and 1-6
p. 3 Page 8: Mold Storage building: What types of plating chemicals and solvents were stored in the tank farm? What types of hazardous waste was stored in the area? Were there any spills/releases? The report should provide any such information that may be available.	Page 8: Mold Storage building: What types of p chemicals and solvents were stored in the tank. What types of hazardous waste was stored in the Were there any spills/releases? The report si provide any such information that may be avail	lating farm? area? hould lable.	The text will be revised to describe the chemicals stored in the mold storage/tank farm building. The tanks, contents, and capacity are as follows: three 9,000 gallon cyanide solution, one 7,000 gallon TCE, two 13,000 gallon acid-alkali, one 12,500 gallon chrome solution, and one 12,000 gallon sulfuric acid. Only process chemicals were stored in this building; no wastes, including hazardous wastes, were stored in the building. There were no known or documented spills/releases, however, the mold storage/tank farm building is a suspected source of contamination to ground water. Historic drawings show a trench in the building which discharged outside of the building to the ground. Chlorinated hydrocarbon concentrations in ground water in this vicinity in 1985 (244 ug/l in W-4D) were the same order of magnitude as chlorinated hydrocarbon concentrations measured in a mold storage/tank farm building sump in 1995 (230 ug/l).	Page 9
p. 3-4 Page 8: Main transformer substation: Were there any spills/releases of fluid at the substation? If so, what data was collected and how was the spill cleaned up?	Page 8: Main transformer substation: Were ther spills/releases of fluid at the substation? If so, data was collected and how was the spill cleane	e any what d up?	There are no known or documented spills/releases at the substation. According to GM plant personnel, previous sampling conducted by transformer maintenance personnel indicated that a 3750 KVA transformer contained PCBs at a concentration greater than 50 ppm and less than 500 ppm. This transformer was removed as part of facility decommissioning activities, and a concrete pad wipe sample indicated non-detectable PCB concentrations (<5 ug/100 cm²).	No revision
p. 4 Page 8: Process/Storm/Sanitary Sewers: Might infiltrating groundwater also be contributing to the flow noted in the process sewers?	8: Process/Storm/Sanitary Sewers: rting groundwater also be contributing oted in the process sewers?	Might to the	Ground water infiltration is a likely flow contribution to the process sewers.	Page 10

₹	
₹	
4	

		Historic Plant L	Historic Plant Layout and Operations	
March 13, March 13, 1998 NYSDEC Comment (1 1998 (1) Letter Reference Page		mment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
p. 4 Figure 1-8 indicates that the sanitary sewer is located beneath the Main Manufacturing Building only in the southeast portion of that building. Is this correct?	Figure 1-8 indicates that the sanitary some beneath the Main Manufacturing Build southeast portion of that building. Is		Figure 1-8 will be revised to show the full layout of the sanitary sewers under the manufacturing building.	Figure 1-8
p. 4 The report should describe the means by which the portion of the storm sewer beneath the Main Manufacturing Building was abandoned. It should also describe what is known or believed regarding the types of bedding/backfill materials which were used for these and all other subsurface utilities at the facility.	The report should describe the means portion of the storm sewer beneat Manufacturing Building was abandone also describe what is known or believed types of bedding/backfill materials whifor these and all other subsurface ut facility.		The text will be revised to describe the means of abandonment and known information regarding bedding materials. Attachment 3 to this document provides additional information regarding the storm sewer modifications.	Page 11 and 129 /Appendix G
p. 4 Page 9: Closed Surface Impoundments: The report should describe the types and concentrations of contaminants which were present within the surface impoundments prior to their closure. Did overflows from the IWT sump previously discharge to either or both of the impoundments? If so, this needs to be discussed in the report.	Page 9: Closed Surface Impoundments: should describe the types and concer contaminants which were present within impoundments prior to their closure. Diffom the IWT sump previously discharge both of the impoundments? If so, this discussed in the report.		Text will be added to this section to describe the surface impoundment characterization data prior to closure. Prior to the early 1980's, an overflow pipe from the IWT sump connected to the storm sewer leading to the lagoon/impoundment. In the early 1980's, the overflow pipe was plugged and a containment area was constructed to contain IWT sump overflow, which would be pumped out by a tanker in an overflow event.	Page 12
p. 4 What does "split sump 62/63" refer to on Figure 1-6?	What does "split sump 62/63" refer to on F		Split sump 62/63 is located in the IWTP basement, and receives sludge/water during cleaning of the floating sedimentation tank. Water from this sump is pumped to the equalization tank, and sludge is pumped to the sludge thickeners. Figure 1-5 will be revised to indicate the IWTP basement layout, and the locations of IWTP sumps, including split sump 62/63.	Figure 1-5
p. 4 Page 10: Prior to the establishment of Outfall 003, did Outfalls 001 and 002 always discharge to Ley Creek via a single pipe or a single swale?	Page 10: Prior to the establishment of Outfolfalls 001 and 002 always discharge to via a single pipe or a single swale?	3, did Creek	Initially, Outfalls 001 and 002 combined for discharge in a swale. In 1973, the swale was piped, and the outfall discharges combined in that pipe to Ley Creek.	No revision

April 20, 2000

		Historic Plant	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
39	p.4	To avoid confusion, the report needs to provide greater detail regarding the degree of storm sewer replacement and abandonment which occurred as part of each of the 1981 and 1985 Consent Orders. For instance, the text indicates that "the portion of the storm sewer system beneath the manufacturing building was abandoned" as a result of the 1981 Consent Order. However, the text also indicates that in compliance with the 1985 Consent Order, "Additional replacement of storm sewer piping underneath the manufacturing building with overhead piping and plugging of inactive storm sewers" occurred.	Sections 1 and 4, and Figure 1-8, will be revised to provide further detail regarding the two stages of sewer replacement/abandonment. Attachment 3 to this document provides additional detail on the sewer modifications.	Text revised to reference Appendix G.

April 20, 2000

~ ^
Ľ
IF
RIF
_
5
ਕ
ë
-=
Ξ
=
ė,
Υ.
7 P
7
Ô.
9
_
0
Ч
+
=
0
S
Ħ
72
ĕ
Ξ
Ξ
Ö
\circ
DEC
ш
\triangle
20
₹.
\subseteq
Z
0
┵
Ð
Š
Ξ
×
S
ยั
Ž
GM R
\geq
75
$\mathbf{\mathcal{I}}$
1
3

		Historic Plan	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
40	p. 4-5	Page 19: CRA Phase II ESA: The present condition and possible impacts of the storm water sewer trench, plating sumps, and other potential areas of contamination under the manufacturing building need to be better defined. The following information is necessary:	The storm sewers beneath the building were plugged, and oil/water collection sumps were installed to intercept water and oil within the lines. These sewers were not flushed. No integrity testing has been performed, but it is apparent that ground water infiltrates these sewers because water continues to be collected from the oil/water collection sumps.	Pages 11 and 129
		The method in which the former storm water sewer trench under the manufacturing building was removed from service needs to be explained. If the sewer was simply plugged, as is inferred from this section of the RJ/FS, any residual contamination left inside the lines has the potential to leach into the subsurface soils and/or groundwater via cracks or fissures in the storm sewer prior to reaching the collection sumps. The report does not indicate whether any cleaning, sealing, grouting, etc. of the storm sewer was performed prior		
		to or after removal from service.		

		Historic Plant	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
14	P. 5	Sampling data presented in Section 3 of the RI/FS indicates that 3 samples taken from the soils of the former trench and 5 samples in the vicinity of the former hydraulic oil sumps contain PCBs in excess of 10 mg/kg. Paint room and plating sump soil data in Section 3 show elevated levels of solvents and metals, respectively. Were these areas the ones cleaned in the deactivation activities referenced in Section 4.2? Is it possible that these contaminants migrated to groundwater? These areas should be more closely investigated to determine the full extent of contamination. For example, the means of abandonment of the subsurface structures referenced in this section, especially those referenced above, need to be more fully defined. Information on the integrity of the structures at time of abandonment, and whether surficial contamination was noted/removed in the vicinity of said structures needs to be provided to evaluate the potential of each of these areas with respect to environmental impacts. While some of this information is presented in Section 4.2, it is not noted whether any contamination due to leaks, spills, etc. were observed. This information at the site.	Areas cleaned as part of decommissioning activities after plant closure were aboveground surfaces, which do not likely correlate with subsurface contamination. It is unlikely that facility surface contamination migrated to ground water. As previously discussed, the means of historic abandonment of subsurface structures will be addressed in the report.	Section 1.2.2

Ĕ	
욋	
_	
0	

		Historic Plan	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2) location i Repo	Revision location in SRI Report
42	2 p. 5	Page 20: On-site Landfill: Was the landfill used continuously from 1952-1970?	The landfill was used from 1952 to 1961 or 1962 for the disposal of boiler fly ash and bottom ash, paint and buffing sludges, plating wastes (estimated 10 cu yd per year), general trash, and construction debris. Six to eight feet of soil/clay was placed on the landfill in 1962 or 1964. Disposal of boiler fly ash and construction debris continued until about 1970. It is unclear whether the material placed in the landfill after 1964 was placed on top of the soil/clay, or in a different area of the landfill.	22
43	3 p. 5	Page 20: General Storage Area: The report needs to specify the types of equipment which were stored in the General Storage Area.	Equipment about to be scrapped (e.g., conveyors, fork trucks) was stored in this area.	33
44	p. 5	Page 21: Storm Sewer Trench - What rationale was employed in selecting the portion of the inactive storm sewer to be addressed during the April 1996 investigation?	This portion of the inactive storm sewer was selected for investigation in 1996 because: • it is the portion of the storm sewer leading to oil/water collection sump #5, in which an oil layer was present, and • based on its proximity to total petroleum hydrocarbons detected in soil samples collected in the fill surrounding abandoned hydraulic oil sumps during the 1995 sampling activities.	4.
45	p. 6	Page 54: Does Onondaga County own the storm water drainage system (or a portion thereof) which discharges to Outfall 004?	Onondaga County owns the pipeline which discharges to Outfall 004, and has an No revision easement for access to the pipeline on GM's property.	ision
46	œ d.	Figure 3-4, as well as all of the other report figures, needs to include scales. In addition, the figures which depict the Manufacturing Building inactive storm sewers should indicate the prior directions of flow.	GM is currently conducting a survey of the former IFG facility property. The site Figure 1-9 map generated from the survey will be used as a base map for RI/FS Report figures. Figures which depict the inactive storm sewers will be revised to note flow directions.	I-9 and res
ACER0060906				

		Historic Plan	Historic Plant Layout and Operations	The state of the s
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
47	p. 10	Former Thinner Tanks Area What is known regarding the Manufacturing Building's foundation (depth, construction materials, etc.), in the vicinity of this area?	The foundation in the 1974 building addition is reinforced concrete with steel piles. Foundation drawings were not located which would indicate foundation depth.	No revision
48	p. 10	The report should provide greater detail regarding the types of materials which were disposed of in the former landfill, as well as the area which " was reportedly filled with construction debris and soil" and the time periods during which materials were placed in these areas.	The source of fill material placed in the northern property area was material excavated as part of building addition and other construction projects in various parts of the facility. There is no documentation of specific materials placed, locations, or time frames.	No revision
49	p. 10-11	A comparison of Figure 2-8 with Figure 9 (Exhibit N) suggests an inconsistency in regard to the location of the former swale in the general area of Outfall 003. The available information needs to be reviewed to determine, to the extent possible, the actual location of this feature.	A revised figure will be presented which depicts the former swale location based on a 1973 topographic survey of the northern property area.	Figures 3-11A, C, and E
RACER00609	p. 11	It appears that some of the soils associated with the former drainage swale have not been addressed through any remedial activities. Is this correct? Furthermore, a review of analytical results for this area indicates that some of the very high detections of PCBs in soils may not be related to the swale. What is known about other potential contaminant sources in this area?	The Ley Creck Relief Interceptor Sewer Soil Removal Interim Remedial Measure (IRM) was the only remedial measure performed which addressed soil associated with the former drainage swale. This IRM consisted of the removal of PCB-contaminated soil which was in the path of the Ley Creek Relief Interceptor Sewer. Other portions of the former drainage swale were not addressed as part of the IRM. As discussed in Maureen Salanger's (O'Brien & Gere) May 11, 1998 letter to Wayne Mizerak (NYSDEC) regarding the former drainage swale (with respect to the Ley Creek PCB Dredgings site), historic drawings and aerial photos indicate the presence of two drainage swales on the northern property, which are potential PCB sources. Further, the northern property was used for placement of potentially contaminated soil/fill generated during building construction activities.	No revision

+	
ä	
~	
4	

		Historic Plan	Historic Plant Layout and Operations	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
51	p. 23-24	A detailed review of the PCB data (and possible manufacturing records) will need to be performed to determine whether site related PCB Aroclors are truly limited to 1242 and 1248. To accomplish this, GM should submit copies of representative chromatograms.	A detailed review of the PCB data (and possible manufacturing records) will need to be performed to determine whether site related PCB Aroclors are truly limited to 1242 and 1248. To accomplish this, GM should submit copies of representative chromatograms. A detailed review of the PCB data (and possible will be provided to NYSDEC. GM used Pydraul and Askeral in plant operations. Peen revised to reflect SRI data. Chromatograms for the 1999 pcB data are available upon request from NYSDEC.	Section 3 has been revised to reflect SRI data. Chromatograms for the 1999 PCB data are available upon request from NYSDEC.

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
53	P. S.	Page 27: Section 2.1: No mention is made of any background soil samples except three by EDI in 1985, and these were apparently not submitted for chemical analysis. Without appropriate background samples, differentiation between site contributions and industrial background concentrations of contaminants such as lead and PAHs is not possible. This is especially important since "anthropogenic background" is used as justification for eliminating some pathways and/or contaminants from evaluation.	Off-site background soil conditions have not been assessed. Soil samples collected during installation of soil borings for wells U-1S, U-1D, and U-2 were not submitted for analysis during the 1985 Hydrogeological Investigation. Collection of background soil data will be incorporated into the Supplemental RI Work Plan. Anthropogenic background was not used as justification for eliminating pathways and/or contaminants from evaluation at the former IFG facility, only in Ley Creek Deferred Media.	Page 33. Background soil sample OBG-TB-33
45	p. 5-6	Page 27: 2nd bullet: It appears that background groundwater quality may not have been adequately addressed. For instance, while wells which are considered background should be sampled for all analytes, this has not been done, as would be necessary for background wells. Furthermore, upgradient/background samples are to be taken in areas not likely to have been impacted by facility use which is not the case here. The storage pad area, by its very designation and use could have been impacted by contamination, as could the area around U-2, next to the RR tracks/storm sewer. These wells have not been recently sampled to indicate recent influx of any contamination, and need to be.	As discussed in Section 2.2.5, samples from U-1D and U-2 were analyzed for priority pollutant volatiles, base neutrals, acid extractables, pesticides, total metals, and PCBs. A sample from U-1S was analyzed for priority pollutant volatiles. Collection of site-wide ground water data, including background off-site ground water data, will be incorporated into the Supplemental RI Work Plan.	Page 47. Background well OBG-11, U-1S, and U-1D.
S RAGEROO	p. 6	Page 30: <i>Trench Excavation</i> : Other than not observing any floating oil in the trenches, what other observations or sampling/analyses were noted or undertaken in these areas?	Text will be added to Section 3.1.2 to describe additional observations in the trenches reported in the EDI Hydrogeological Investigation Report, that fine layering of silt and clay in the lacustrine sediments was observed in the trench wall, and that the depth to ground water varied in the trenches.	Text was added to Section 2.1.2 (instead of 3.1.2) on page 34.
60909				

		The state of the s	Table of the state	
		Previous Investigation Rationale/Clarifications	arifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRJ Report
99	p. 6	Page 36: The text indicates that wells WT-10 to WT-15 "were installed in the area of the IWT plant to provide additional information on the distribution of VOCs, oil and PCBs However, Table 3-10 indicates that these wells have not ever been sampled for PCBs. The report needs to be revised to correct this inconsistency. If the wells were sampled for PCBS, data needs to be presented. Otherwise, the wells need to be sampled.	Soil samples from the monitoring well soil borings were analyzed for PCBs and oil, and ground water samples were analyzed for VOCs. The text in this section will be revised to indicate that the wells were installed to provide information on the distribution of VOCs in ground water. The text in Section 2.1.1 will be revised to indicate that the soil borings associated with these wells were installed to provide additional information on the distribution of PCBs and oil in soil, and VOCs in ground water. A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions.	Page 29 and page 43
57	ъ. б Э	Page 37: Did the 1986-1987 OBG soil boring results confirm the location of the buried drainage swale? In regard to the former swale system which discharged to Ley Creek, the sampling to date is limited to the downstream portion of this system. Additional sampling of the southern portion of the swale is warranted based upon the significant levels of contamination which may be present and the area's potential for further release.	The 1986-1987 soil borings at the Ley Creek PCB Dredgings site confirmed the location of the swale. The 1990-1991 O'Brien & Gere soil borings installed to identify the limits of the Ley Creek Relief Interceptor Sewer IRM confirmed the location of one former drainage swale just south of Factory Avenue. As discussed previously, historical drawings and aerial photos indicate the presence of two drainage swales in the northern property area, one of which continued to Ley Creek. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	Section 3 includes a discussion of the results of trenching performed during the SRI to locate the swale.

RACER0060910

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
58	p. 6	Page 42: The report needs to be revised such that it provides the groundwater sampling methodologies used in each of the investigations. This is important for data interpretation.	To the extent available in previous documents and based on GM input, ground water sampling methodologies will be included in a revised document.	The ground water discussion has been revised to reflect current ground water conditions, thus, text referring to historical ground water sampling has been deleted.
59	ъ. б б	Page 47: 2nd Bullet: A hydro punch location (HP-4) is also indicated on figure 2-6. Were any samples of GW taken? If so, the data needs to be included. If not, why not? This leaves a major data gap in regard to determination of the extent of the BTEX plume, if data were not collected.	A bullet will be added to indicate that dry conditions prevented the collection of ground water samples at HP-1, HP-3, and HP-4.	The ground water discussion has been revised to reflect current ground water conditions, thus, text referring to historical ground water sampling has been deleted. SRI ground water sampling methodologies are discussed in Section 2.
09	p. 6	Page 48: 1st bullet: Where is the pH data for the P-13 well? Was it indicative of acid having reached the well?	A sentence will be added in Section 3.3 to report that the pH value of 9.2 was measured by CRA in well P-13 in August 1995 during the Phase II ESA, which is not indicative of acidic conditions.	The ground water discussion has been revised to reflect current ground water conditions, thus, text referring to historical ground water sampling has been deleted.

INDIV71/PROJECTS/4966/21535/5_RPTS\SRI_RPTS\APP_G.WPD O'Brien & re Engineers, Inc.

_	,		
=	7		
,	í		
		4	

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
61	9 á	Page 49: Storm Outfall Assessment Figure 2-12 does not indicate the storm sewer sampling locations. This is a problem throughout the section. Are sediments known to be, or believed to be, present in any of the on-site sewers? If so, have the sediments been sampled and what was the resultant data?	The text will be corrected to refer to Figure 1-8, which depicts the sewer sample locations. Television inspection of the storm sewer leading to Outfall 004 in September 1992 indicated the presence of debris deposits on the bottom of the pipe in some piping runs. Sediment is likely present in the sewers leading to Outfall 003, as well. As discussed in Sections 2.3.2 and 3.4.1 (pages 54 and 82-83), sediment in the Outfall 003 sewer pipe north of Factory Avenue was sampled as part of the Ley Creek PCB Dredgings site RI. Other sewer sediment has not been sampled.	Figure referenced on Page 52 No other text revision
62	9	Page 51: The report must provide the rationale used for selecting the metals which would be analyzed.	The text will be revised to indicate the rationale for the metals analyzed. During the first storm event, storm water samples were analyzed for a complete scan of 129 EPA priority pollutants. Analyses during subsequent storm events were based on the detections during the first event, as well as historic constituent information for the former IFG facility (previously detected or potentially discharged).	Page 55
RACER0060912	p. 6-7	Page 57 and 58: Ley Creek Sampling Program: What method was used to qualitatively screen the sample for various Aroclors? There is no apparent discussion of methods in the referenced EDI 1985b report. Were any confirmatory samples submitted to the laboratory to be run for all Aroclors to serve as a check on the screening process? This also applies to the sediment and fish samples collected by EDI during the same program.	The EDI Report does not indicate the analytical methods used for qualitative screening or quantitative analyses. However, as documented in the RI/FS Work Plan for the Ley Creek PCB Dredgings site (O'Brien & Gere 1992), NYSDEC agreed that data from this study would be incorporated into the RI to limit the scope of further investigatory activities. This text is the same as what was included in the RI Report for the Ley Creek PCB Dredgings site, when surface water, sediment, and fish were part of the scope of that investigation.	To provide the latest sediment conditions in Ley Creek, the SRI presents the latest data collected in 1996, 1998 and 1999. Hence, 1985 data is not presented.

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
49	p. 7	Page 67: Manufacturing Building Subsurface: What depth are/were the sumps and tanks located? Were the boring and samples taken at or below this depth? What criteria was used to determine sampling points?	Hydraulic oil sump and tank depths are presented in Attachment 1. Soil borings were installed within 3 ft of the sump or tank in an attempt to examine soil conditions within the bedding material areas around the sumps. Borings were installed to the approximate depth of the bottom of the sump or tank, and one soil sample was collected from each boring from near the base of the bedding material.	Page 72
65	p. 7	Were soil cuttings used to backfill all of the soil borings drilled within the Main Manufacturing Building?	Soil cuttings were backfilled in the soil borings in the manufacturing building during the Phase II ESA.	No revision
99	∞ ∴	What rationale was employed in selecting soil boring depths and sampling intervals? For instance, why weren't soil samples collected south of Oil Sump J or north of Oil Sump L?	The objective of the Phase II ESA was to confirm or deny a release from each potential area of contamination (PAOC). Soil borings were installed within 3 ft of each hydraulic oil sump or tank to the approximate depth of the bottom of the sump or tank, and one soil sample was collected from the bottom interval of each boring.	Page 72
29	p. 8	The log for borings BH-13 indicates that concrete may have been encountered at a depth of 7.4 feet. Might this concrete be the base of Sump H or might it be related to the nearby Dirty Oil Transfer Station (DOTS)? Was the DOTS an above ground or below ground facility? What is the likely cause of the elevated (5 ppm) PID reading at the base of the boring?	The concrete encountered in boring BH-13 was likely associated with Sump H because the hydraulic oil sumps are bell shaped and have concrete footers that extend horizontally beyond the base of the sump. The dirty oil transfer station is an above-ground structure which is still present in the manufacturing building. The PID reading was likely associated with the TCE detected in other soil samples in that area.	No revision

INDIV71/PROJECTS/4966/21535/5_RPTS/SRL_RPTS/APP_G.WPD O'Brien & __ te Engineers, Inc.

Appendix ... GM Response to NYSDEC Comments on the 1997 Preliminary RI/FS ... fort

	-			
		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
89	& d	The log for boring BH-15 indicates that concrete was encountered at a depth of 7.4 feet. Might the concrete be the base of Sump I? Table 2-1 should be revised to indicate that the actual sampling interval was 7.0 to 7.4 feet. This type of change should be made for the other samples, as appropriate.	The concrete encountered in boring BH-15 was likely associated with Sump I because the hydraulic oil sumps are bell shaped and have concrete footers that extend horizontally beyond the base of the sump. The sampling intervals will be revised appropriately.	Table 2-1
69	8	The text should be revised to address all of the locations where concrete appears to have been encountered during drilling.	In addition to borings BH-13 and BH-15, concrete encountered in borings BH-11, BH-19, BH-23, BH-25, and BH-42 was likely associated with the sump footers. Concrete encountered in boring BH-24 was likely associated with the footer of Tank N, and the concrete encountered in boring BH-52 was potentially associated with the vault of a water tank located in that area.	No revision
70	∞ ∴	Considering the locations of the various hydraulic oil sumps and tanks throughout much of the building area, why weren't PCBs included in the analyses for all of the soil samples collected within this area?	Based on the sampling/analytical rationale for the Phase II ESA, each sample was analyzed for the parameters associated with the potential source area it was installed to investigate. Consequently, samples collected in the vicinity of plating sumps and the paint room were not analyzed for PCBs because PCBs were not associated with these processes.	No revision

Report
RI/FS R
ninary
997 Prelin
=
on the
omments on the
Com
AYSDEC C
to N
sponse
GM Re
G - C
cendix
Api

	ns (2) Revision location in SRI Report	be wrong on The CRA drawings and ngs will be facility drawings have been vas actually reviewed. On SRI figures, first boring the sump locations are from facility drawings and boring nalyzed for reports. AGM 4046 BH-47 were chromium, y associated presumably	be wrong on The CRA drawings and facility drawings have been restaully reviewed. On SRI figures, the sump locations are from facility drawings and boring locations are from the CRA reports.
larifications	May 18, 1998 Response/Considerations (2)	The location of cyanide sump #3 appears to be wrong on Figures 2-2 and 3-5. GM historic drawings will be reviewed to verify that cyanide sump #3 was actually located in the vicinity of BH-9. BH-9 was the first boring installed during the Phase II ESA to evaluate cyanide sump #3, and the sample from this boring was analyzed for cyanide. Cyanide was not detected in that sample, but chromium, copper nickel, and TCE were detected in this sample at concentrations above NYSDEC TAGM 4046 screening levels. Borings BH-46 and BH-47 were subsequently installed to further evaluate chromium, copper, and nickel concentrations presumably associated with the former paint shop.	The location of cyanide sump #3 appears to be wrong on Figures 2-2 and 3-5. GM historic drawings will be reviewed to verify that cyanide sump #3 was actually located in the vicinity of BH-9.
Previous Investigation Rationale/Clarifications	March 13, 1998 NYSDEC Comment (1)	Page 68: Electroplating Sumps: 2nd paragraph: The 1996 borings, indicated on Figure 3-5 as BH-46 and BH-47 are not east and west of the cyanide sump #3. Rather, the borings are approximately 100' or more southwest of Cyanide sump #3. It appears appropriate to have sampled for cyanide in this area yet this was not done. Please provide the rationale for this.	Page 68: Electroplating Sumps: 3rd paragraph: These borings are also not "near" cyanide sump #3, as discussed above.
	March 13, 1998 (1) Letter Reference Page	∞ ∴	∞
		7.7	72

Ŕ	
ч	

	2) Revision location in SRI Report	renches; Layout drawings depicting the to a the former trenches associated with the was not electroplating operations et to be e plating to 5 ft). Stat the elatively at trench will be	te depth Page 74 located loved to ay have re is no samples
larifications	May 18, 1998 Response/Considerations (2)	Sumps were not connected to each other by trenches; trenches surrounded equipment, and each trench led to a sump. Phase II ESA borings were intended to be placed adjacent to each sump. The paint room sump was not investigated during the Phase II ESA because it was inaccessible to a drill rig. Samples were intended to be collected from the borings installed to investigate plating sumps at the approximate depth of the sump (up to 5 ft). Soil samples were collected from these borings at the fill/native soil interface, which in some cases was relatively shallow. As previously discussed, die casting sump and trench locations are available on layout drawings, and will be presented in a revised document.	Soil samples were collected below the approximate depth of the bottom of the USTs, 5 ft bgs. The tank located inside of the building is believed to have been moved to the location outside of the building. The tank may have been removed from the second location, but there is no documentation of removal or that confirmatory samples were collected.
Previous Investigation Rationale/Clarifications	March 13, 1998 NYSDEC Comment (1)	Page 68: Electroplating Sumps: These sumps were indicated in Section I to be connected by trenches. These trenches should be indicated on the figure. Were these sumps connected to piping or trenches? If so, what was the layout of such? Many borings from which the samples were taken are seemingly upgradient of the sumps which were supposedly being investigated. Rationale for doing so is not given. The paint room sump was not investigated at all. Rationale is not given for why samples were taken at only certain depths. How deep were the sumps? Were the samples taken at depths at or just below the bottom of the sump? The die casting sumps and trenches are not depicted, nor is there evidence that the die-casting area was appropriately sampled. This information needs to be provided in the report.	Page 68: Former PCB oil USTs: Were the soil samples for PCBs taken below the depth of the former tank location? Were there any confirmatory samples taken when the tanks were removed? If so, this data needs to be presented.
	March 13, 1998 (1) Letter Reference Page	р. 8	о́.
		73	47

RACER0060916

		The second secon		
		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
75	Q.	What level of confidence does GM have regarding the actual locations of the former PCB oil USTS? Has GM interviewed former employees to aid in identifying the locations?	No historic drawings are available which indicate the location of the tanks. Boring locations were based on employee recollection. Five former plant engineering employees have been interviewed related to the tank location. GM has a high level of confidence regarding the indoor tank location, based on consistent recollections of its location inside a former doorway. The exact location of the outdoor tank is less clear, although plant personnel recall that the tank was never used at its second location.	No revision
92	9. g	Page 68: Paint Room: Why were no samples taken in the Paint room or near the paint room sump? The borings north of the paint room were shallow (1-2'). Why weren't samples taken for VOC's at depth (>6')? Appropriate rationale needs to be provided for not doing so, or data gathered to fill such gaps.	The paint room and paint room sump were not investigated during the Phase II ESA due to inaccessibility to a drill rig. The borings north of the paint room were installed to investigate the plating sumps, not the paint room. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	Additional borings installed as described on Page 32
L RA	. .	Why weren't any of the soil samples collected from the Manufacturing Building analyzed for SVOCs?	The objective of the Phase II ESA was to confirm or deny a release from each potential area of contamination (PAOC). Based on the sampling/analytical rationale for the Phase II ESA, each sample was analyzed for the parameters associated with the potential source area it was installed to investigate. For evaluation of potential releases from PAOCs inside the manufacturing building, SVOCs were not identified as target analytes for the purposes of the Phase II ESA.	SVOCs analyses conducted in SRI, as discussed in Section 3.
CER0060917				

		- And Andrews Control of the Control		
		Previous Investigation Rationale/Clarifications	arifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
78	P. 9	Why weren't cyanide analyses performed on all soil samples collected in the vicinity of the cyanide sumps?	Cyanide analyses were performed on soil samples collected from each of the initial borings installed to evaluate the cyanide sumps. Cyanide was not included in the analysis for samples from borings BH-46 and BH-47, installed near cyanide sump #3, because cyanide was not detected in boring BH-9, the initial boring installed adjacent to cyanide sump #3.	No revision
79	Q Q	In regard to the storm sewer sampling program, how was it determined which system was to be sampled? How were the boring locations established? Why weren't the other systems beneath the Manufacturing Building also addressed? To what extent might the PCBs be related to SAE 30W oil? Might they have been used in similar applications? This information is to be provided in the report.	This portion of the inactive storm sewer was selected for investigation in 1996 because: • it is the portion of the storm sewer leading to oil/water collection sump #5, in which an oil layer was present, and • based on its proximity to total petroleum hydrocarbons detected in soil samples collected in the fill surrounding abandoned hydraulic oil sumps during the 1995 sampling activities. PCBs are likely related to the SAE30W oil, which is likely mineral oil used after changeover to Pydraul. Systems were not cleaned out following the changeover from Pydraul to mineral oil, and concentrations observed are consistent with low level PCB contamination in mineral oil rather than high PCB concentrations in Pydraul	Page 24

RACER0060918

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
80	0 b. 10	Former Thinner Tanks Area: Why was HP-4 only analyzed for Oil & Grease? HP-5 soil results do not show up on Tables 3-3 thru 3-6 although the text indicates analyses for PHS, PCBS and VOCs. Table 2-1 indicates only PCB analyses. This inconsistency needs to be addressed appropriately.	Table 2-1 will also be revised appropriately. The fill/soil sample from HP-4 was analyzed for PCBs, petroleum hydrocarbon scan, and VOCs. Analytical results for HP-4 were inadvertently omitted from Tables 3-3 (PCBs) and 3-6 (VOCs). Neither PCBs nor VOCs were detected in the sample. The soil sample collected from HP-5 was labeled HP-BH-5. Analytical results for HP-BH-5 were inadvertently omitted from Tables 3-3 (PCBs), 3-4 (petroleum hydrocarbons), and 3-6 (VOCs). PCBs were detected in HP-BH-5 at 71 mg/kg; methylene chloride, acetone, and toluene were detected in HP-BH-5 at 16, 26, and 11J ug/kg; and petroleum hydrocarbons were not detected.	Tables 2-1, 3-5B, and 3-8B
—————————————————————————————————————	p. 10	The text and the appendices are confusing as to the hydro punch results for this area. For instance, the text discusses analytical results for a soil sample collected at HP-5. While Table 2-1 indicates that a soil sample was collected at HP-5, Exhibit J indicates that only a water sample was collected at this location and hence does not provide soil analytical results for HP-5. This is supported by the boring log for HP-5 which suggests that a groundwater sample was collected at this location. Is this correct? If so, the report needs to be revised accordingly. The report should also provide information as to the depth from which the HP-5 groundwater sample was collected. In addition, while Exhibit J provides analytical results for a soil sample which was collected from nearby hydro punch location HP4, the results were neither provided in the text nor in Table 2-1.	The text and tables will be revised to correct the inconsistency. A ground water sample was collected from HP-5, and fill/soil samples were collected from HP-4 and HP-BH-5. Ground water samples from HP-2 and HP-5 were collected at depths of 12 to 14 ft bgs and 19 to 21 ft bgs, respectively.	Table 2-1
ER0060919				

INDIV71PROJECTS/4966/21535/5_RPTS/SRI_RPTS/APP_G.WPD O'Brien Party Engineers, Inc.

۰		
5		
₹		

		Previous Investigation Rationale/Clarifications	arifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
83	р. 10	Page 72: Northeast Property Area: How deep is the Acid Alkali sump below ground surface (bgs)? Did this sump ever overflow? A soil sample to analyze for PCBS, metals, cyanide and VOC's (or anything else that may have gone to the sump) down gradient of this sump should be taken. The text indicates that VOC'S, SVOCs and cyanide were not detected. However, Table 2-1 indicates that these parameters were not analyzed. The report must correct these inconsistencies.	The acid/alkali bunker/IWT sump is approximately 7.5 ft in depth. Prior to the early 1980's, an overflow pipe from the IWT sump connected to the storm sewer leading to the lagoon/impoundment. In the early 1980's, the overflow pipe was plugged and a containment area was constructed to contain IWT sump overflow, which would be pumped out by a tanker in an overflow event. Boring HA-2 was installed during the Phase II ESA in an area of oil staining adjacent to the acid/alkali bunker. Table 2-1 will be revised to indicate that the sample from HA-2 was analyzed for VOCs, SVOCs, PCBs, RCRA metals, cyanide, copper and nickel.	Table 2-1 and Page 89
€ RACER0060	p. 10	Northern Property Area: Is P-6 the only area from which a soil sample was taken in the area of the construction debris? When was the construction debris disposed? What area of the plant did it come from? Given the nature of plant operations, why wasn't the soil/fill analyzed for other parameters such as metals?	In addition to P-6, some of the borings installed during the Phase II Hydrogeological Investigation for the purpose of investigating the former drainage swale (003-1 to 003-11) may have been placed in the general fill area. Additionally, the borings installed prior to the Ley Creek Interceptor Sewer soil removal IRM (B-1 to B-18), and the NIMO borings (35, 36E, 36C, 36W, 37E, 37C, 37W, and 38) may be in the general fill area. The source of fill material placed in the northern property area was material excavated as part of building addition and other construction projects in various parts of the facility. Monitoring well P-6 was installed for the purpose of ground water evaluation during the Hydrogeological Investigation. During the boring installation process for the wells, soils were examined for oil contamination, and selected soil samples (including P-6) were submitted for PCB analysis.	No revision

		Previous Investigation Rationale/Clarifications	larifications	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
84		Northern Property Area All of the analytical results for this area, as well as the other facility areas, should be provided in tabular form in the report.	Soil data for detected constituents are presented in Tables 3-3 through 3-7. Each table is for a different constituent group, and within each table, the data are grouped by property area. GM will work with NYSDEC to modify this format, if necessary, for submittal of the revised report section.	Section 3 data tables
85	р. 10	Based on a review of Table 3-3, it is not clear as to whether some samples were only analyzed for a limited number of Aroclors. For example, does the N/A designation for the B-2 soil samples mean that a given Aroclor was not analyzed for or that it was analyzed for but not detected?	Certain data were reported as total PCBs, without Aroclorspecific identification or quantitation. Other data were reported as total PCBs with Aroclor identification, but not Aroclor-specific quantitation. Newer data were reported quantitatively for each Aroclor. Therefore, the N/A designation in the Aroclor columns was meant to indicate that Aroclor-specific quantitation was not performed. Table 3-3 will be revised to clarify the data.	Table 3-3 has been eliminated from the report. PCB analytical data are presented in Table 3-5.
98	p. 11	Since the drainage swale has not been delineated north of Factory Avenue, the discussion of the soil samples collected from the area north of Factory Avenue should be revised to state that the PCB results for these samples "were not as elevated as those observed in the vicinity of the former drainage swale".	This discussion will be revised to reflect the current understanding of the drainage swale configurations, as discussed previously in these responses, and will incorporate NYSDEC's revised language.	Page 96
L8 RACE	p. 11	Page 75: On-site Landfill: What rationale was employed in determining the locations of the landfill borings? Why were all of the borings performed in the south and southeast portion of this area? A more comprehensive characterization of contaminants in this area appears warranted.	These borings were placed in the vicinity of the landfill, and were limited to the south and southeast areas due to the presence of the high voltage power lines over the other landfill areas.	The trenching activities and surface soil sample collection in the area of the on-site landfill were included as part of the 1999 SRI. Results discussed on page 96.
R0060921				

_		
	•	

		Previous Investigation Rationale/Clarifications	larifications	100 Mark 1
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
8	p. 11	Page 76: Considering that it takes place in the discussion of VOCs, what is meant by the reference to "floating oil"?	The discussion of these trench results will be moved to a new subsection of the ground water data section entitled "Other Data," so as not to associate the non-detected oil with a certain contaminant class. The pH data for well P-13 and SVOC data will also be addressed in this new subsection.	The ground water section has been rewritten to reflect the latest ground water conditions.
88	p. 12	Page 80: The discussion of each group of samples should be modified to state whether the samples were "total" or "filtered".	The discussion in Section 3.3.3 will be revised to indicate that the inorganic data discussed were total concentrations, with the exception of CRA's sample data which were filtered concentrations.	With the exception of samples collected from OBG-13 and OBG-15, new ground water data were submitted for unfiltered analysis. Both filtered and unfiltered analyses were submitted for these locations. The data discussion and the data presented on Figure C-6 are the unfiltered data.
06	p. 19	It appears that some of the information in Table 2-1 may be inaccurate. For instance, while the text indicates that VOCs were analyzed for in the BH-47 and HA-1 soil samples, the table indicates otherwise. Similarly, the text's statement that analyses of HA-7 and HA-8 soil samples included SVOCs is not supported by Table 2-1. The analysis column for all samples should be reviewed and the necessary changes made. In addition, the meaning of "composite" as used in the table (e.g. BH-47) is unclear. Does it mean that samples from the 4.0 - 6.0 feet, 7.0 - 9.0 feet, and 15.0-16.0 feet intervals were composited into a single sample? What is the purpose of assigning the "bgs" code to some of the soil analyses?	There are several errors in the analyses column of Table 2-1 which will be revised for the next submittal. Further, the notes for COM and bgs were intended simply as definitions and should not have been numbered 1 and 2, nor subsequently listed in the analyses column.	Table 2-1

IVIALCII 13, 1996 IN I SUJEC COIII	Acouply 11 your County William Brounds
	March 13, 1998 NYSDEC Comment (1)
65, 66: The revised report should include at least two ional cross sections which depict subsurface conditions at ite. These should include a north-south trending cross on which portrays conditions beneath the former surface undment area, the Main Manufacturing Building, and the itial Waste Treatment Plant as well as an east-west trending section which portrays conditions beneath the area of the er spill, the Main Manufacturing Building, and the inistration Building.	Page 65, 66: The revised report should include at least two additional cross sections which depict subsurface conditions at the site. These should include a north-south trending cross section which portrays conditions beneath the former surface impoundment area, the Main Manufacturing Building, and the Industrial Waste Treatment Plant as well as an east-west trending cross section which portrays conditions beneath the area of the thinner spill, the Main Manufacturing Building, and the Administration Building.
evised report should discuss how vertical gr s the site.	The revised report should discuss how vertical gradients vary across the site.
iscussion of the flow calculations should indicat for effective porosity.	The discussion of the flow calculations should indicate the values used for effective porosity.
the triaxial tests for vertical hydraulic crned on relatively undisturbed soil samples? T dressed in the report.	Were the triaxial tests for vertical hydraulic conductivity performed on relatively undisturbed soil samples? This needs to be addressed in the report.
text needs to address the possibility that building ruction or other facility operations may have influenced the ity of the glaciolacustrine unit.	address the possibility acility operations may have lacustrine unit.

	1	T	7
	Revision location in SRI Report	Lodgement till upper surface included in Figure 3-1	Figures 3-3 and 3-4
	May 18, 1998 Response/Considerations (2)	The Supplemental RI Report will include a map that portrays the elevation of the upper surface of the glaciolacustrine and lodgment till units based on existing data.	The ground water elevation maps will be revised to note the elevations at each well used to prepare the maps.
Geology/Hydrogeology	March 13, 1998 NYSDEC Comment (1)	The revised report should include maps which portray the upper surfaces of the glaciolacustrine and glacial till units. The Supplemental RI Report will include a map that Lodgement till upper surface of the included in Figure 3-1 glaciolacustrine and lodgment till units based on existing data.	3-2, 3-3: The groundwater elevations maps (Figures 3-2 and 3-3) The ground water elevation maps will be revised to Figures 3-3 and 3-4 and 3-4 should be revised such that they identify the measured elevation wall each well location.
	March 13, 1998 (1) Letter Reference Page	p. 7	p. 20
		100	101

	Revision location in SRI Report	As described on Pages 32 and 33
on	May 18, 1998 Response/Considerations (2)	Future documents will address the potential for DNAPL presence at the site.
Data Evaluation/Interpretation	March 13, 1998 NYSDEC Comment (1)	In light of the extremely high chlorinated hydrocarbon concentrations, the report needs to address, in detail, the possibility that Dense Non Aqueous Phase Liquids (DNAPLS) may be present at the site. This is supported by the groundwater quality data for the areas in the vicinity of the Administration Building and Impoundment No. 2 where chlorinated hydrocarbon concentrations are frequently much greater in the deep wells than in the shallow wells.
	March 13, 1998 (1) Letter Reference Page	p. 11
		102

RACER0060924

		Data Evaluation/Interpretation	ion	
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
103	p. 11	Chapter 3 needs to include discussions regarding the likely sources for the contamination detected in the various media at the site. This applies to all suites of contaminants present at the site.	Potential sources of contamination will be discussed in the Supplemental RI Work Plan and RI Report.	Data are presented by suspected source area in Section 3. Suspected sources, where appropriate are also discussed with relation to ground water discussions in Section 3.
104	p. 12	Page 79: <i>PCBs</i> : The MW-2S results should not be considered anomalous, since the September 1997 data for MW-2S indicated a level on the same order of magnitude. What is the possible source for this contamination? Contamination beneath the building? The former lagoon area beneath the building addition? What is the extent of the plume?	The October 1997 data for well MW-2S indicates PCBs at a concentration of 9,200 ug/l. The text will be revised to indicate that concentrations have generally remained the same with minor fluctuations, with the exception of recently increased PCB concentrations at MW-2S. It is likely that the source of PCBs in this well is from the portion of the former lagoon which was covered as part of the 1974 building addition, because the well is believed to be screened in former lagoon materials. The PCBs are therefore not necessarily part of a plume, but may represent a source area. Collection of current sitewide ground water data will be included in the Supplemental RI Work Plan.	A discussion of current ground water conditions is presented in Section 3.
105	p. 12	Based on the data for some of the more highly contaminated (with PCBs) samples, there is a very high likelihood that PCBs are present in the vicinity of some of the wells as a Non Aqueous Phase Liquid (NAPL). The report needs to address this in detail.	The Supplemental RI Work Plan and RI Report will address the potential for PCB NAPL presence at the site.	The presence of NAPL was investigated during the SRI. Discussed on pages 30, 31, 32, 37, 70, 74, 75, 86, 107, 135 and results summarized in Table 3-3
90 RACER0060	p. 12	The text needs to note that the potential presence of PCBs in groundwater has not been addressed in several major portions of the site. Therefore, additional groundwater data is warranted.	Collection of current site-wide ground water data will be included in the Supplemental RI Work Plan.	Site-wide ground water data was collected during the 1999 SRI

_	
5	
₹	

			Data Evaluation/Interpretation	uc		
]	Z 1 Z	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report	
21	107	p. 12	The metals concentrations reported for the "filtered" HP-2 sample suggest that a significant metals problem may exist here and thus indicates that further investigation of this area is warranted.	Collection of current site-wide ground water data will be included in the Supplemental RI Work Plan.	Metals data for ground water was collected during the 1999 SRI.	1
10	108	p. 12	The text should provide a brief discussion of trends noted in the quarterly data which were collected from the surface impoundment wells between the September 1988 and Fall 1997 sampling events.	A trend discussion for surface impoundment monitoring data will be included in the Supplemental RI Report.	The ground water discussion has been revised to reflect current conditions, thus data discussions are limited to the latest data collected in 1999	
109		p. 12	Page 80: Section 3.3.3: The text needs to state that the metals data for much of the site are sparse and that further sampling will be necessary to identify those areas where metals in groundwater are an issue. For instance, since Table 3-11 indicates that the referenced 1985 Hydrogeological Investigation included metals analyses for only three of the greater than 20 shallow monitoring wells (present at that time) at the site, the potential impacts of metals to groundwater has not been adequately addressed. More comprehensive sampling is warranted.	Collection of current site-wide ground water data will be included in the Supplemental RI Work Plan.	Metals data for ground water was collected during the 1999 SRI.	
110		p. 12	Page 81: Main Storm sewer system: Given the proximity of the sewer to areas (general storage pad, IWTP, power plant) that may have contributed contamination through surface spills/runoff, the statement that constituents in the sewer are likely from off-site contributions appears inappropriate.	The text will be revised to indicate that constituents in manholes S1 and S3 are likely related to off-site contributions. Manholes S2 and S4 receive facility runoff.	Page 114	
RACERO		p. 12	The text needs to address whether groundwater impacted by site activities may have contributed to the contamination in the sewers.	Ground water infiltration is a likely pathway of migration to the on-site storm sewers. The revised report will address this issue.	Page 116	
060926						

Data Evaluation/Interpretation March 13, 1998 NYSDEC Comment (1)
Page 82: In regard to the first bullet, the data do not preclude the potential for a PCB source in the more downstream portion of the system (along the west and northwest sides of the building).
The text needs to also discuss SPDES results for samples collected during the facility's active operation (prior to January 1994). As a related issue, note that the first statement of the final paragraph is incorrect if pre-1994 contaminant levels exceeded the applicable discharge limits.
Page 84: Main Storm Sewer system: Last sentence in section. Is the main area of PCB contribution in the southwestern corner as stated, or rather, the eastern corner of building? Has there been recent sampling to indicate that the eastern side of the building is not a contributor?
The text needs to state the means for identifying the locations of the "main contribution". Were flow values measured at the time of sampling so that contaminant mass loadings could be established for each of the sampling locations?

'n	
I/FS	
\sim	

	and the state of t	Data Evaluation/Interpretation	uc	Application of the control of the co
-14444	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
116	p. 13	All of the discussion of the surface water sampling events should be revised to also describe the locations of the samples relative to Outfall 004. This is important to the interpretation of the data.	The text will be revised to include Outfall 004 as a reference point, in addition to Outfall 003.	Page 118 Tables 2-6 and 2-7
117	p. 13	Page 86: The discussion of the 1988-1989 OBG data needs to be revised. More specifically, the reference to the 1985 Consent Order PCB limit needs to be deleted, as the limit is not comparable to a concentration in a surface water sample.	The reference to the 1985 Consent Order PCB limit will be deleted from the paragraph.	Deleted
11.8	p. 13	The report should provide greater detail regarding the number of samples in which PCBs were detected, and the dates on which these samples were collected. Where in Exhibit D are the PCB results presented?	The RIBS surface water data for PCBs was inadvertently omitted from Exhibit D, but are summarized in Table 3-15. The samples were collected at the Park Street Bridge between March and July 1990. Sample collection dates will be added to Table 3-15, and the data will be included in Exhibit D.	To provide the latest surface water conditions in Ley Creek, the SRI presents the latest data collected in 1996, 1998 and 1999. As such the 1990 data is not included in the SRI.
1119	p. 13	Page 94: The significance of the PCB results for L7 need to be addressed in the final paragraph of this section.	As part of the Supplemental RI, GM will conduct a sediment probing program to identify depositional areas, and conduct additional sediment sampling activities. In the Supplemental RI Report, we will evaluate the significance of the data set as a whole.	Deleted text on page 123 referring to PCB concentrations downstream.

RACER0060928

.	
U/FS Repor	
ary RI/]	
n the 1997 Preliminary RI	
1997 1	
ats on the 1	
ошше	
e to NYSDEC Com	
ise to N	
GM Response	
- GM R	
Appendix G	
4	

		SOIATA S	The desired in the second seco	
120	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
	p. 4	Page 13: RCRA: RCRA Closure of the remaining SWMUs and AOCs is still an issue that needs to be resolved. The RL/FS report must indicate how the areas have been investigated to determine whether a release has occurred and the extent of any release, along with a description of the cleanup appropriate for closure. Appendix A information is not sufficient for this need. Closure Plans which were pending prior to this order need to be revisited to ascertain whether the intended investigatory and cleanup work has been performed. Closure work which would have been necessary must also be indicated as performed appropriately or described in detail as to how such will be performed.	Appendix A will be expanded to provide a clearer explanation of the SWMUs and their status. Many of the SWMUs are aboveground structures which were or are to be addressed as part of facility decommissioning efforts. There was only one closure plan pending prior to this order for Drum Storage Area No. 1. The intended investigatory work will be incorporated into the Supplemental RI Work Plan, and cleanup work into the remediation program.	Appendix A
121	p. 22	RCRA SWMUS: The DEC has not received the appropriate information/documentation indicating that GM has performed any of the SWMU/AOC investigations specified in the draft PART 373 permit. If GM has performed the necessary investigative and closure activities, those activities should be throughly documented in the RI/FS. If such activities have not been performed, the necessary work plans to do so are to be submitted and reviewed by the Department and the activities appropriately performed under oversight by the DEC.	It is GM's desire to develop a site-wide investigative/remediation strategy. As identified previously, Appendix A will be expanded to provide a clearer explanation of SWMUs and current status.	Appendix A

Appendb.

Page 94 and 95. Exact locations of

The requested information will be included in the

revised report.

Page 99: Ley Creek Interceptor Sewer IRM: A figure depicting the area of excavation should be included. A reference in

Section 3 to the fact that this soil has been removed should be

Revision location in SRI Report

May 18, 1998 Response/Considerations (2)

Remedial/Decommissioning Efforts

March 13, 1998 NYSDEC Comment (1)

March 13, 1998 (1)

124

123

Reference Letter

Page

p. 13

125

available. The general excavation the confirmatory samples are not

				-
available. The general excavation location is depicted on Figures 3-11 and C-1.	No revision	No revision	No revision	
	Future decommissioning plans will be provided to NYSDEC for review and approval.	A pre-decommissioning sampling program was performed as part of a 1995 facility assessment. The results of this sampling were used to identify decommissioning tasks. As discussed in Section 4.2, many decommissioning tasks have already been performed.	Available documentation related to facility decommissioning is outlined in Attachment 4. Facility data have been available for NYSDEC review at the former IFG facility. If NYSDEC is interested in receiving copies of particular information, GM will provide it.	
included. Locations of the confirmatory sampling and the resultant levels of PCB and chromium should be included as part of Section 3.	Page 102: Decommissioning activities: Since the decommissioning/deactivation activities are considered a form of remedial action or may also be considered IRMs, all proposals/workplans are to be submitted to the DEC for review. Many of these items are for deactivating RCRA SWMUs, and as such, these actions fall under the purview of the September 1997 Order, and must be reviewed and approved by the DEC.	Information regarding the nature and distribution of contamination in the areas to be decommissioned may be important for understanding potential contaminant sources, pathways, etc. in these areas. Therefore, GM should submit a plan for a pre-decommissioning sampling program so that the necessary data may be gathered.	GM should provide copies of the work plans, design documents etc. and the resulting reports for the decommissioning work which has been performed thus far.	
	p. 13	р. 13	p. 13	
	126	127	128 AR	CER0060930

implemented as part of the 1999 SRI. Revision location in SRI Figures 3-7A, B, C and C-1. ground site-wide No revision 4 This portion of the inactive storm sewer was selected presented in the Supplemental RI Work Plan to it is the portion of the storm sewer leading to oil/water collection sump #5, in which an oil layer based on its proximity to total petroleum hydrocarbons detected in soil samples collected in Surface soil Supplemental RI. The storage area consists of a GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan part of the There is no containment A site-wide ground water sampling program will be collect current data with respect to ground water the fill surrounding abandoned hydraulic oil concrete storage pad area and a gravel general area, May 18, 1998 Response/Considerations (2) sumps during the 1995 sampling activities. based on the conclusions of the meeting. sampling will be conducted as S-13 will be added to Figure 2-3. for investigation in 1996 because: both level at grade. was present, and conditions. structure. 2-3. Shallow and surface soil samples need to be taken in this sewer area sampled was near the SW area of the building sewer systems" and preferential pathways beneath the building need to be evaluated. Unless integrity of the former sumps and trenches can be proven, the other areas of the plant where Page 69-70: Southeast area: S-13 is not depicted on the Figure area around the storage pad to identify contamination that may Page 69: Abandoned Storm Sewer Trenches: The only storm (previous area of the 500 series molders). Although this is likely the major source area for PCBs, the other "Abandoned storm have spilled from the area. It is more likely to be higher at the surface than 6-8' feet below grade. How is the pad constructed? Page 70: IWT Plant: GW issue: Given the proximity of the WT wells to the IWTP and PCB hot area, and the VOC's in the wells; Supplemental RI hydraulic fluids with PCBs were used, must be evaluated. March 13, 1998 NYSDEC Comment (1) Is it level? Is there a containment structure? hese wells need to be sampled for PCBs. (1) 8661 Reference March 13, Letter Page p. 9 p. 9 p. 9 129 130 131

INDIV71NPROJECTSN496621535NS_RPTSNSRL_RPTSNAPP_G.WPD O'Brien & are Engineers, Inc.

٠	
=	
?	
4	

		Supplemental RI		The state of the s
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
132	p. 9	Incinerator Area: The sample at HA-12 was taken 11-12 feet below grade. Surface/shallow samples need also to be presented. Also, sampling for dioxins and furans should be included due to the possible nature of the waste incinerated.	Surface/shallow samples were not collected for analysis from boring HA-12. A surface soil sampling program will be presented in the Supplemental RI Work Plan. Based on a review of historical information at the plant site, combustion related operations were primarily related to an on-site incinerator and boiler. As is typical of boilers or incinerators, these operations may have resulted in the formation of CDD or CDF congeners. Incineration of PCBs primarily results in the formation of CDFs rather than CDDs; the potential yield of CDFs depend on the specific conditions in the incineration operations. It is important to recognize that CDDs /CDFs are formed as a result of almost all common incineration/combustion processes, and are ubiquitous in soils and other environmental media, particularly in industrialized areas. Therefore, if CDD / CDF concentrations are detected in plant soils, attribution of these levels to specific heat related operations at the plant would be difficult in light of the levels which are expected to occur due to other common and widespread anthropogenic sources. Based on these considerations, it is our opinion that the project should not focus on CDD/CDFs to evaluate the nature and extent of contamination at the plant site.	Surface soil samples were collected in the IWT plant area during the SRI. Dioxin data was collected in the vicinity of the former on-site incinerator during the SRI. Figures 3-7A, B and C and C-2
ACER0060932			·	

Closure documentation provided Results discussed on page 93. Revision location in SRI Investigated during the SRI as Exhibit F. No revision Based on the sampling/analytical rationale for the locate closure GM would like to discuss approaches to soil/source it was installed to investigate. Consequently, this meeting, and develop the Supplemental Work Plan Phase II ESA, each sample was analyzed for the sample collected in the SO2 scrubber area was not GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the parameters associated with the potential source area analyzed for VOCs because VOCs were not Supplemental Work Plan based on the conclusions of area sampling with NYSDEC at the upcoming May 18, 1998 Response/Considerations (2) based on the conclusions of the meeting. 5 associated with the process. trying documentation in its files. currently he meeting. ВM Page 71: S02 Scrubber Area: Boring HA-11 was only sampled and analyzed for metals. Given the proximity of this boring to the TCE storage area, VOCs should also have been part of the Page 73: Former Drainage Swale: The swale can still be a preferential pathway for contaminants off the facility proper. Additional soil sampling for PCBs, metals, and VOCs should be was confirmatory sampling done? Was there any integrity testing of the tanks done? If not, this area needs to be Fuel Oil USTS: What sampling, if any, was done near the former fuel oil USTs located east of the IWT plant? When removed, Supplemental RI March 13, 1998 NYSDEC Comment (1) conducted along the full length of the swale. appropriately sampled. analysis. March 13, 1998 (1) Reference Letter p. 9 Page p. 9 p. 10 133 135 134

INDIV71/PROJECTS/4966/21535/5_RPTS/SRI_RPTS/APP_G.WPD O'Brien & See Engineers, Inc.

_	
á	
	4

			The state of the s	The state of the s
		Supplemental RI		
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
136	p. 20	Based on a review of the report, it is clear that additional data will need to be gathered and evaluated in order to determine the nature and extent of contamination resulting from the various contaminant sources at the site. Such data will also need to be adequate for supporting the Feasibility Study. While the determination of data needs will be influenced somewhat by GM's responses to the RI comments, it is possible to at least identify some general data needs at this time. These are discussed below. Additional data needs will likely be identified based on GM's responses to the Department's comments on the RI/FS report.	Specific comments are addressed below.	See below
137	p. 20	Surface Impoundments: Wells, down gradient of the surface impoundments show an increase in VOC concentration based on routine required monitoring data. The down gradient edge of the plume needs to be defined as well as a determination made regarding the plume's source.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions.	A site-wide ground water sampling program was implemented as part of the 1999 SRI.
138	p. 20	The area of the former impoundment now covered by the building has not been investigated to determine whether this area has contamination present, and whether it may be a continuing source for contamination to the groundwater.	GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	The former impoundment was investigated during the SRI. Results discussed on page 99.

		Supplemental RI		
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
139	p. 20	Manufacturing Building: The extent of PCBs, heavy metals, cyanide and VOCs beneath the building in soil (including within/near former trenches, pits, sumps) and groundwater (there is no gw data provided) has not been determined. What is the condition of the former storm water sewer trench? How many areas of exfiltration (e.g. cracks, fissures, holes, etc.) exist and what, if any, contamination is exfiltrating from these areas?	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting. With respect to the abandoned storm sewers, it is apparent that ground water infiltrates these sewers because water continues to be collected from the oil/water collection sumps. Specific areas of infiltration are not known. Contamination in the storm sewer system does not originate from within the storm sewers; the source of contamination in the storm sewer system is oil contamination in the fill material adjacent to the pipe. Exfiltration from the storm sewers is therefore not a migration pathway of concern.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2. Storm sewers will be investigated during the upcoming Sewer Televising IRM described in Section 4.3.
PACERO	p. 20	Additional soil and groundwater sampling will be necessary within the footprint of the Main Manufacturing Building. The purpose of this work is to better characterize the nature and extent of contamination and to identify all contaminant sources in this area. Laboratory analyses will need to be adequate for addressing all potential contaminants for the area. The sampling should address the various areas including the abandoned storm sewers (and their associated backfill materials), the sumps, trenches, and pits used for the manufacturing operations, the "oil sumps", and the Paint room.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.

	***************************************	The state of the s	The state of the s	
	A CONTRACTOR OF THE CONTRACTOR	Supplemental RI		
*****	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
141	p. 20-21	Additional soil and groundwater sampling will be necessary within the vicinity of the IWT, the Administration Building and the closed surface impoundments in order to better characterize the nature and extent of contamination and to identify all contaminant sources in these areas. As part of this, sampling will need to address the sources of PCBs and chlorinated solvents in these areas and the possibility that these contaminants are present as NAPLs. It will also need to address the reasons for the relative variations (as evidenced by the data in Figure 3-9) in the vertical distribution of chlorinated solvents in the groundwater system. Laboratory analyses will need to be adequate for addressing all potential contaminants in these areas.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.
142	p. 21	Landfill: The report indicates that only a minimal amount of investigative work has been performed at the Historic Landfill. This includes the collection of a single groundwater sample and three soils samples from the southeast portion of the landfill. The analytical results for the groundwater sample (hydro punch HP-2) and the soil samples, as well as the unknown nature of the landfill warrants that further work be performed in this area. Therefore, additional soil and groundwater sampling will be necessary within the footprint of, and in the vicinity of, the landfill in order to better characterize the nature and extent of contamination and to identify all contaminant sources. Laboratory analyses will need to be adequate for addressing all potential contaminants for the area.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.

RACER0060936

Supplemental RJ	March 13, 1998 NYSDEC Comment (1) May 18, 1998 Response/Considerations (2) Report Report	Northern Property: The distribution of PCBs in the northern property area does not appear to be solely linked to the former drainage swale. Because of this, and to address the general drainage swale. Because of this, and to address the general filling which occurred in the northern portion of the facility, additional soil and groundwater sampling with nis area in order to better characterize the nature and groundwater sampling in the more upstream portion of the swale has been sampled previously. Laboratory analyses will need to be adequate for addressing all potential contaminants in this area.	IWT Plant: Surface soil and groundwater has not been investigated to determine extent of contamination in the area. RCRA SWMUs in this area need to be investigated and cleaned, or documentation provided, along with methodology that such has been satisfactorily performed. A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to ground water sampling is sampling with NYSDEC at the upcoming meeting, and 3.2.
	March 13, March 13, 1998 NYSDEC C 1998 (1) Letter Reference Page	p. 21 Northern Property: The distribution of PCBs property area does not appear to be solely link drainage swale. Because of this, and to add filling which occurred in the northern portion additional soil and groundwater sampling w within this area in order to better characterize extent of contamination and to identify any cont which may exist here. This will need to i groundwater sampling in the more upstream por system as only the downstream (northernmoss swale has been sampled previously. Laborato need to be adequate for addressing all potential this area.	p. 21 IWT Plant: Surface soil and groundwater investigated to determine extent of contamina RCRA SWMUs in this area need to be investiga or documentation provided, along with methoc has been satisfactorily performed.
		143	441

		Supplemental RI		
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
	p. 21	Dioxin and furan sampling should be conducted in the area of the former liquid waste incinerator, and at other areas as may be appropriate.	As discussed previously, based on a review of historical information at the plant site, combustion related operations were primarily related to an on-site incinerator and boiler. As is typical of boilers or incinerators, these operations may have resulted in the formation of CDD or CDF congeners. Incineration of PCBs primarily results in the formation of CDFs rather than CDDs; the potential yield of CDFs depend on the specific conditions in the incineration operations. It is important to recognize that CDDs /CDFs are formed as a result of almost all common incineration/combustion processes, and are ubiquitous in soils and other environmental media, particularly in industrialized areas. Therefore, if CDD / CDF concentrations are detected in plant soils, attribution of these levels to specific heat related operations at the plant would be difficult in light of the levels which are expected to occur due to other common and widespread anthropogenic sources. Based on these considerations, it is our opinion that the project should not focus on CDD/CDFs to evaluate the nature and extent of contamination at the plant site.	Dioxin data was collected in the vicinity of the former on-site incinerator during the SRI.
RACER006093	p. 21	Southeast property: Documentation of proper closure and removal of the fuel oil tanks is to be provided. The general storage pad area has not been investigated regarding surface soil contamination. Recent groundwater data has not been provided to confirm current levels of contamination in this area.	Documentation of closure/removal of the two 50,000 gallon fuel oil tanks formerly adjacent to the Powerhouse will be provided. A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. A surface soil sampling program will also be included in the Supplemental RI Work Plan.	Exhibit F

		Supplemental RI		
- HARE	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Comment (1)	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
147	p. 21	Southwest property: The Mold Storage Building (A RCRA SWMU) has not been satisfactorily investigated to determine presence of contamination in the area and in soil around the area. Groundwater is known to be contaminated. The extent of such contamination, or the source has not been documented.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.
148	p. 21	Former Thinner Tank Area: The extent of the BTEX plume has not been determined (i.e. beneath the building). Contamination potentially present in the soil and groundwater in the area of the switch house and transformers has not been determined.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions. GM would like to discuss approaches to soil/source area sampling with NYSDEC at the upcoming meeting, and develop the Supplemental Work Plan based on the conclusions of the meeting.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.
149	p. 21-22	Ley Creek Deferred Media: The sediments and surface water of this area have not been adequately investigated to determine the nature and extent of contamination and impacts. The sediments need to be analyzed for all site-related contaminants in depositional areas. Surface water samples need to be collected upstream and downstream of the site and analyzed for all siterelated contaminants to determine ongoing impacts from the facility and groundwater.	A sampling program and rationale for the Ley Creek Deferred Media will be presented in the Supplemental RI Work Plan.	Ley Creek sediment and surface water was investigated as part of the 1998 and 1999 SRI.

INDIV71/PROJECTS/4966/21535/5_RPTS/SRI_RPTS/APP_G.WPD O'Brien

·		Supplemental RI		
	March 13, 1998 (1) Letter Reference Page	March 13, 1998 NYSDEC Com	May 18, 1998 Response/Considerations (2)	Revision location in SRI Report
15	150 p. 22	General Groundwater issue: It is evident that the vertical extent of groundwater contamination has not been determined at the site. Groundwater flow within the glacial till will need to be addressed unless it can be demonstrated, with the available data, that groundwater contamination does not exist within that unit.	The potential for vertical migration of ground water contamination will be addressed in the Supplemental RI Work Plan.	A site-wide ground water sampling program was implemented as part of the 1999 SRI. Soil/source area sampling is discussed in Sections 2.1 and 3.2.
151	51 p. 23	Data: In addition to that referenced above, all of the groundwater quality data will need to be reviewed and additional sampling planned to ensure that adequate analytical results (VOCS, SVOCS, PCBs/Pesticides, Inorganics) for site wide groundwater are evaluated in the Supplemental RI report. For example, Figure 3-10 indicates that PCB analyses have not been performed on groundwater samples collected from the area of the IWT Plant and PCBs were analyzed for in only one of the groundwater samples collected from the area of the Administration Building. Since it is possible that PCBs are present in the groundwater in these areas, such analyses will need to be incorporated in the Supplemental RI work plan. As a related comment, additional groundwater sampling will need to be performed to assess the appropriateness of wells U-1S, U-1D, and U-2 as background wells.	A site-wide ground water sampling program will be presented in the Supplemental RI Work Plan to collect current data with respect to ground water conditions.	A site-wide ground water sampling program was implemented as part of the 1999 SRI.
RACER00609	52 p. 23	All of the available data will need to be reviewed and additional sampling performed, to ensure that the Supplemental RI adequately addresses the potential for subsurface utilities (and their associated backfill materials) to behave as potential contaminant migration pathways.	The evaluation of subsurface utilities as a potential migration pathway will be evaluated during the Supplemental RI.	SRI included investigation of sump line 5, sump line 1, the fire protection line, and the various oil/water sumps in manufacturing building.
940				

Notes:

- (1) March 13, 1998 letter from Sue Benjamin (NYSDEC) to James Hartnett (GM) regarding NYSDEC review of the RI/FS Report Former IFG Facility and Ley Creek Deferred Media Report, dated October 1997.
- May 18, 1998 letter from James Hartnett (GM) to William Daigle (NYSDEC) regarding GM's responses to NYSDEC's March 13, 1998 comments. (2)

Attachment 1 GM Response to NYSDEC Comments on Preliminary RI/FS Report Order on Consent Index # D-7-0001-97-06

Depth of Hydraulic Oil Sumps and Tanks

Sump Designation	Location (Bay)	Depth (1) (ft)
Α	K-20	8.25
В	K-13	7.67
c	K-6	NA
D	K-4	8.25
E	I-19	7.67
F	H-11	7.67
G	G-3	8.25
Н	F-13	7.67
I I	G-3	7.67
J	C-7	12
K	B-6	7.67
L	CC-14	NA
M	I-13	NA

Tank Designation	Location (Bay)	Depth (2) (ft)
N	L-9	5.5
0	J-19	6
P	G-11	6.5
Q	D-6	6
R	H-6	6

Notes:

- (1) Sump depths are measured from top of ground surface to bottom of the sump.
- (2) Tank depths are measured from top of ground surface to bottom of the tank.
- (3) Sumps were constructed of reinforced concrete with a 2 ft diameter manhole cover tapered to 5 ft diameter at the bottom. A rectangular concrete base was constructed below the sump. Gravel backfill was used below the concrete base.
- (4) Tanks were constructed of steel.
- NA Not Available from historical drawings.

Attachment 2 GM Response to NYSDEC Comments on Preliminary RI/FS Report Order on Consent Index # D-7-0001-97-06

Industrial Waste Treatment Plant Tank and Storage Facility Construction Materials

Items	#	Construction Material	Height (ft)	Width (ft)	Length	Area
		material	(11)	(10)	(ft)	(ft^2)
Tanks						
Dirty Oil Tank	1	Steel				
Clean Oil Tank	1	Steel				
Caustic Tank	2	Steel				
Emulsifier System (mixer, tank)	2	Steel				
Filter Recycle Tanks	2	Steel				
Used Oil Tank	3	Steel				
Deionized Water Tank	2	Steel				
Polymer Tanks	4	Steel				
Former Virgin Oil Tanks	3	Steel				İ
Sludge Thickener Walls	8	Reinforced Concrete	12.0	1.0	25.0	
Sludge Thickener Floor Slab	2	Reinforced Concrete	2.0	25.0	25.0 25.0	
Sludge Thickener Sumps	2	Reinforced Concrete	3.0	1.0	4.0	
Clarifier Floor Slab	2	Reinforced Concrete	2.0	1.0	4.0	2830.0
Clarifier Walls	2	Reinforced Concrete	12.0			1
Wet Well Walls	6	Reinforced Concrete	12.0			95.0
Wet Well Floor Slab	6	Reinforced Concrete	1.0			9.7
Waste Oil Tank Walls	32	Reinforced Concrete	12.0	1.0	12.0	38.0
Waste oil Tank Floor Slab	8	Reinforced Concrete	1.0	12.0	12.0	
Oil Removal Tank Walls	4	Reinforced Concrete	12.0	1.0	25.0	
Oil Removal Tank Floor Slab	,	Reinforced Concrete	1.0	25.0	25.0 25.0	
A/A Tank Walls	6	Reinforced Concrete	12.0	1.0	25.0 25.0	
A/A Tank Walls	6	Reinforced Concrete	12.0	1.0	25.0 15.0	
A/A Tank Floor Slab	•	Reinforced Concrete	1.0	15.0	25.0	(
EQ Tank Walls	6	Reinforced Concrete	12.0	4.0	25.0 65.0	
EQ Tank Floor Slab	_	Reinforced Concrete	4.0	65.0	65.0	
Holding Tank Walls	4	Reinforced Concrete	12.0	1.0	25.0	
Holding Tank Floor Slab	•	Reinforced Concrete	2.0	25.0	25.0 25.0	
5		Tromisional deficience	2.0	25.0	25.0	
Sumps						
Clarifier Sumps	2	Reinforced Concrete				
Sludge Sumps	3	Reinforced Concrete				
Acid Alkali Sump #65	1	Reinforced Concrete		[`		
Sump #62	1	Reinforced Concrete				
Filter Press Sump	1	Reinforced Concrete				
Subsurface Building Structures						
IWT Basement Slab .		Reinforced Concrete	2.0			7200.0
IWT Basement Walls		Reinforced Concrete		0.7		3600.0
Footers	6	Reinforced Concrete	4.0		•	1.0

Attachment 3

GM Response to NYSDEC Comments on Preliminary RI/FS Report Order on Consent Index # D-7-0001-97-06

Storm Sewer Modifications (1981-1988)

Due to an oil sheen observed in Ley Creek, which originated at the GM Syracuse Plant outfall "plant outfall"; combined flow from monitoring points Outfall 001 and 002), NYSDEC issued a Consent Order to GM on January 20, 1981. The Consent Order required investigations and actions to minimize the oil discharging to Ley Creek. As a result of GM's investigations, the following sources were found to contribute to the oil discharge into Ley Creek:

- Leakage from oil reclamation sumps within the manufacturing plant building
- Powerhouse sump overflow
- Administration parking lot drainage
- Industrial Waste Sump (also known as acid/alkali bunker/wastewater holding bunker)

Modifications to the above mentioned systems were conducted during the early 1980s and included the following:

- A temporary holding pond was installed in the northern portion of the site to observe, contain, and collect oil that may have discharged with storm water from Outfall 001. Previously, storm water, which contained oil from leaking reclamation sumps and Powerhouse sump overflow, discharged directly into the plant outfall. The temporary pond was equipped with an underflow weir to prevent flow around, an imbiber bead filter box at the outlet to capture oil sheen, and a brill skimmer to remove collected oil.
- The lagoon was revised to include a new underflow weir to prevent spill over during high flow conditions. Also, permanent type booms were installed to replace the absorbent booms in order to more adequately contain oil sheen. The newly installed booms were fitted into metal containment boxes with absorbent material to capture oil.
- To modify the underground concrete oil reclamation sumps, molder trenches tied into the sumps were temporarily plugged. Molder trenches were kept clean by utilizing portable vacuum units. The sumps were pumped free of oil, cleaned, and sand blasted. An epoxy liner was poured to minimize leaks in the sump's concrete.
- Modifications to the Powerhouse sump system included installing a submersible trash style pump capable of handling solids that had been plugging the former pump and causing overflow. The trash pump would discharge oils, fly ash, and other solids to the Industrial Waste Treatment (IWT) Plant. Also, an underflow baffle was installed such that overflow conditions would not allow floating oil or material to be discharged.
- Modifications to the Administration Building parking lot included rerouting an 18 inch storm sewer pipe that led from the parking lot to the plant outfall bypassing the lagoon and temporary holding pond. This line was found to discharge oil from a nearby leaking oil reclamation sump. The portion of the line leading to the outfall was cut and plugged with concrete. The portion from the parking lot was extended to lead into the temporary holding pond. New manholes and piping were installed in the lot and tied into the pipe leading to the temporary holding pond. Old pipe within the parking lot was plugged. Old manholes within

O'Brien & Gere Engineers, Inc.
I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\APPG_3.WPD_1

April 19, 2000

- the parking lot were used for monitoring.
- Modifications to the industrial waste sump included the following: replacement of existing vertical water pump with submersible trash pump to better remove solids; installation of air agitation unit for keeping solids in suspension to allow more efficient pumping to the IWTP; installation of emergency pump; installation of float controls and monitor panels to inform maintenance of problems; disconnection of overflow pipe to storm sewer; plugging of pipe to lagoon; and installation of a lined bunker to collect overflow.
- A sewer junction chamber was installed just west of the temporary holding pond. Discharge
 piping from the temporary holding pond and the lagoon met at the sewer junction chamber
 prior to discharge to the Outfall.

In response to the 1985 Consent Order, GM hired W & W Facilities Group (a division of EDI) to provide engineering and construction services to further modify the storm sewer system. The following activities were conducted during the 1985-1986 sewer modification:

- Plugged the roof drains, leaders and underground storm sewer pipes associated with the east half of the manufacturing building.
- Installed new roof drains, leaders, and aboveground storm sewers to direct storm water to a north roof drain outfall just east of the industrial waste sump.
- Installed a new 24 inch storm sewer pipe (north roof drain outfall) to handle the roof drainage from the eastern portion of the manufacturing building. The north roof drain outfall was connected to a new storm sewer pipe (Administration Building parking lot storm sewer) that included the following new manholes and pipe sections (also refer to Figure 1-8):

New manholes: BA7, BA6, BA5, BA4, BA3, BA2, BA1, B1

New catch basins: BAC1, BAC2, BAA1

Old manholes and catch basins tied into new storm sewer: BAE4, BAE3, BAE2 BAE2A, BAE1, BAE1A, BAF1, BAB1

New reinforced concrete pipe sections: 30 inch from BA7 to BA4; 36 inch from BA4 to B1

- Two east roof drains were installed and connected to Manholes B7 and B9.
- Plugged old sewer lines that led from the Administration Building parking lot to the temporary holding pond.
- Installed a new sewer pipe from new manhole B4 to new manhole A1 New manholes: B4, B3, B2, B1, A1
 - New reinforced concrete pipe sections: 36 inch from B4 to B1; 42 inch from B1 to A1
- Installed a new sewer pipe from new manhole A2 to A1 with a 42 inch reinforced concrete pipe. This pipe was not used until the surface impoundment closure program in 1989.
- Installed new 42 inch reinforced concrete storm sewer pipe to and from old Manhole A1A, a new 36 inch wide trough, a 36 inch by 24 inch culvert under Factory Avenue, a 8 ft wide cmp trough, and a 6 ft wide ditch to Ley Creek.
- Oil/water collection sumps number 1 through number 8 were installed to collect oil in the abandoned underground storm sewers. Oil and water were pumped from the oil/water collection sumps to the IWTP via newly installed aboveground piping. Oil/water collection sumps 1, 2, 4, and 7 pump oil/water to the industrial waste sump prior to the IWT. Oil/water collection sumps 3, 5, and 6 bypass the industrial waste sump and go directly to the IWTP.

In 1987, O'Brien & Gere Engineers, Inc. conducted an investigation of the site storm sewer leading to Outfall

O'Brien & Gere Engineers, Inc. I:\DIV71\PROJECTS\4966\21535\5_RPTS\SRI_RPTS\APPG_3.WPD_2

April 19, 2000

003. The investigation included sewer televising and visual inspection. It concluded that specific sewer sections required either cleaning, slip lining, or Insituform®. From 1987 to 1988, O'Brien & Gere Engineers, Inc. conducted storm sewer system modifications as part of the 1985 Consent Order issued by NYSDEC.

- The following sewer pipe sections were cleaned: from A13 to A12; from A12 to MHA11
- The following sewer pipe sections were slip lined: B11 to B10; B10 to B9; B9 to B8; B8 to B7; B8 to B7; B7 to B6; B6 to B5; B5 to B4; BB1 to B5; AC1 to A4
- The following sewer pipe sections were in situ formed: A4 to A3
- Plugged roof drains, leaders, and underground storm sewer pipes associated with the western side of the manufacturing building.
- Installed new roof drains and aboveground sewer pipes that would service the western side
 of the manufacturing building and the new warehouse.
- Installed a new storm sewer pipe along the western side of the manufacturing building that had two connections for roof drainage at new Manhole A5 and old Manhole AB1. New manholes: A8A, A8, A9, A10, A7, A6, A5, A4, A11, A12. Old manholes and catch basins tied into new storm sewer: A8B, AG2, AG1, AF2, AF1, MHA11, AH1A, AH2A, A13, AH3, AJ1, AE2, AE1, AD1, AB1
- New pipe sections: 24 inch reinforced concrete from A8A to A8 to A7 to A6 to A5; 36 inch
 reinforced concrete from A5 to A4; 12 inch reinforced concrete from A12 to A11 to A10 and
 old catch basin AF1 to A10; 15 inch from A10 to A9 to A8.
- The old storm sewer pipe along the western side of the manufacturing building was plugged.
 The pipe from the Mold Storage Building to the old western storm sewer pipe was rerouted such that it tied into the new sewer pipe.

Attachment 4 GM Response to NYSDEC Comments on Preliminary RI/FS Report Order on Consent Index # D-7-0001-97-06

Decommissioning Information

1995 Facility Assessment Data Collection

Analytical data which could be provided to NYSDEC is summarized below:

- PCB and metal wipe sample data for floors, structural beams, and select sumps
- PCB and metal dust sample data for floors and structural beams
- PCB and metal sludge sample data for select sumps, stacks and piping
- VOC sample data for the tank farm sump and the paint storage room floor
- Asbestos survey
- 1998 Facility Assessment Addendum Data Collection

Analytical data which could be provided to NYSDEC is summarized below:

- PCB and metal wipe sample data for select walls and floors
- PCB wipe sample data for transformer pad
- PCB oil and water sample data for oil/water collection sumps
- Additional asbestos survey
- Bid specification packages were developed separately from the GM standard cleaning specifications to assist in completion of cleanup projects
 - Cleanup Project #1 tasks included the following: deactivation of the coal pile area, decontamination of the coal silos, deactivation of a 300 gallon solvent tank and associated piping, flushing of facility process sewers, cleaning and permanent closure of a 12,000 gallon caustic tank, and decontamination of small areas of concrete floor (paint mix room, paint storage room, and at loading docks). Except for flushing of facility process sewers, the tasks for Cleanup Project #1 were completed. The Cleanup Project #1 documentation in the form of a bid specification (O'Brien & Gere, December 1995), confirmatory PCB wipe sampling analysis, and field notes is available.
 - Cleanup Project #2 tasks included surface decontamination for the removal of dust, oil and grime from approximately 750,000 sq. ft. of concrete floor and above floor (structural steel, ductwork, piping, walls, etc.) surfaces within the main manufacturing building. Cleanup Project #2 is currently on hold. Decontamination has been completed on 30% of the above floor surfaces and 10% of the concrete floor surfaces. The Cleanup Project #2 documentation in the form of bid specification (O'Brien & Gere, July 1996), confirmatory PCB wipe sampling analysis, and field notes is available.

- Cleanup Project #3 tasks include removal of several hundred linear feet of process oil piping, deactivation of the oil reclamation system including the storage tanks, deactivation of the emulsion filtering and transfer system, decommissioning of the paint mix room including mixing vessels, cleaning of the powerhouse floor drains and associated piping, demolition of the fly ash hopper, decontamination of the mold storage building, and decontamination of the glycol pumping station. Cleanup Project #3 has not yet been initiated. Documentation for Cleanup Project #3 includes the bid specification (O'Brien & Gere, 1997).
- Cleanup Project #4 task included removal of a 3750 kVA transformer from site. Based on previous sampling and analysis, PCBs were detected in the transformer greater than 50 ppm but less than 500 ppm. In February 1998, the transformer was removed from site and disposed of at the TSCA permitted Laidlaw facility in Utah. Documentation for Cleanup Project #4 includes the disposal manifests.